首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Corneal transplantation by full‐thickness penetrating keratoplasty with human donor tissue is a widely accepted treatment for damaged or diseased corneas. Although corneal transplantation has a high success rate, a shortage of high‐quality donor tissue is a considerable limitation. Therefore, bioengineered corneas could be an effective solution for this limitation, and a decellularized extracellular matrix comprises a promising scaffold for their fabrication. In this study, three‐dimensional bioprinted decellularized collagen sheets were implanted into the stromal layer of the cornea of five rabbits. We performed in vivo noninvasive monitoring of the rabbit corneas using swept‐source optical coherence tomography (OCT) after implanting the collagen sheets. Anterior segment OCT images and averaged amplitude‐scans were acquired biweekly to monitor corneal thickness after implantation for 1 month. The averaged cornea thickness in the control images was 430.3 ± 5.9 μm, while the averaged thickness after corneal implantation was 598.5 ± 11.8 μm and 564.5 ± 12.5 μm at 2 and 4 weeks, respectively. The corneal thickness reduction of 34 μm confirmed the biocompatibility through the image analysis of the depth‐intensity profile base. Moreover, hematoxylin and eosin staining supported the biocompatibility evaluation of the bioprinted decellularized collagen sheet implantation. Hence, the developed bioprinted decellularized collagen sheets could become an alternative solution to human corneal donor tissue, and the proposed image analysis procedure could be beneficial to confirm the success of the surgery.   相似文献   

2.
This study was to investigate the stability, physico-mechanical property and biocompatibility of porcine corneal acellularized matrix (PCAM) that was prepared using human sera treatment to decellularize corneas. The stability (the rate of biodegradation) and physico-mechanical property (water uptake, density, and porosity) of PCAM were not compromised, compared with porcine fresh cornea matrix (PFCM, p > 0.05). The contact and extract cytotoxicity tests with human corneal epithelial cells and human keratocytes showed that PCAM has a good biocompatibility ex vivo and no cytotoxic effect. These results present the ability to create safety scaffolds that function as cornea grafts and provide a novel experimental approach for the study of cornea tissue engineering using acellular porcine cornea.  相似文献   

3.
目的:将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,观测带瓣管道材料体内情况。方法:去细胞处理牛颈静脉体,无菌处理后种植标记过的犬骨髓间质干细胞,构建组织工程带瓣管道,犬开胸手术,将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,术后4、8、12行胸部B超检查;取出补片,HE染色;荧光显微镜下标记细胞检测;样本钙含量测定。结果:术后犬胸部B超观察:瓣叶无增厚,钙化,管道血流通畅,无血栓及钙化。术后4、8、12周除了瓣叶逐渐缩小外,补片无动脉瘤形成,瓣膜表面光滑,无血栓形成,弹性良好,血管壁内面光滑,无血栓形成。种植种子细胞牛颈静脉带瓣补片成活。4周钙含量增加,8周时候,钙含量又有增加,12周时钙含量与8周相比无明显变化。结论:组织工程技术构建组织工程右心带瓣管道有可行之处。  相似文献   

4.
Keratan sulphate (KS) proteoglycans (PGs) are key molecules in the connective tissue matrix of the cornea of the eye, where they are believed to have functional roles in tissue organisation and transparency. Keratocan, is one of the three KS PGs expressed in cornea, and is the only one that is primarily cornea-specific. Work with the developing chick has shown that mRNA for keratocan is present in early corneal embryogenesis, but there is no evidence of protein synthesis and matrix deposition. Here, we investigate the tissue distribution of keratocan in the developing chick cornea as it becomes compacted and transparent in the later stages of development. Indirect immunofluorescence using a new monoclonal antibody (KER-1) which recognises a protein epitope on the keratocan core protein demonstrated that keratocan was present at all stages investigated (E10–E18), with distinct differences in localisation and organisation observed between early and later stages. Until E13, keratocan appeared both cell-associated and in the stromal extracellular matrix, and was particularly concentrated in superficial tissue regions. By E14 when the cornea begins to become transparent, keratocan was located in elongate arrays, presumably associated along collagen fibrils in the stroma. This fibrillar label was still concentrated in the anterior stroma, and persisted through E15–E18. Presumptive Bowman’s layer was evident as an unlabelled subepithelial zone at all stages. Thus, in embryonic chick cornea, keratocan, in common with sulphated KS chains in the E12–E14 developmental period, exhibits a preferential distribution in the anterior stroma. It undergoes a striking reorganisation of structure and distribution consistent with a role in relation to stromal compaction and corneal transparency. E. Claire Gealy and Briedgeen C. Kerr were joint first authors.  相似文献   

5.
为了研究可降解聚合材料3-羟基丁酸与3-羟基己酸共聚酯 (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)的血管内生物相容性, 采用脱细胞羊肺动脉为支架, 以PHBHHx涂层, 构建复合补片(Hybrid patch), 植入New Zealand兔腹主动脉内(12只), 以脱细胞未涂层羊肺动脉片(Uncoated patch)做为对照(12只)。分别于术后第1、4和12周处死动物, 取出移植补片进行组织学、免疫荧光染色、扫描电镜和钙含量测定。结果表明: hybrid patch管腔面光滑无血栓, 内膜增生适度, 再细胞化完全; 免疫荧光染色检测, 新生内膜组织中类内皮细胞呈CD31阳性反应, 单层连续排列, 间质细胞呈现SMA阳性反应; 钙含量测定, hybrid patch明显低于uncoated patch(P<0.05)。由此认为: PHBHHx的血管内生物相容性满意, 是心血管组织工程较为理想的腔内涂层材料。  相似文献   

6.
为了研究可降解聚合材料3-羟基丁酸与3-羟基己酸共聚酯 (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx)的血管内生物相容性, 采用脱细胞羊肺动脉为支架, 以PHBHHx涂层, 构建复合补片(Hybrid patch), 植入New Zealand兔腹主动脉内(12只), 以脱细胞未涂层羊肺动脉片(Uncoated patch)做为对照(12只)。分别于术后第1、4和12周处死动物, 取出移植补片进行组织学、免疫荧光染色、扫描电镜和钙含量测定。结果表明: hybrid patch管腔面光滑无血栓, 内膜增生适度, 再细胞化完全; 免疫荧光染色检测, 新生内膜组织中类内皮细胞呈CD31阳性反应, 单层连续排列, 间质细胞呈现SMA阳性反应; 钙含量测定, hybrid patch明显低于uncoated patch(P<0.05)。由此认为: PHBHHx的血管内生物相容性满意, 是心血管组织工程较为理想的腔内涂层材料。  相似文献   

7.
This study was designed to explore the feasibility of using autologous rabbit adipose derived stem cells (rASCs) as seed cells and polylactic-co-glycolic acid (PLGA) as a scaffold for repairing corneal stromal defects. rASCs isolated from rabbit nape adipose tissue were expanded and seeded on a PLGA scaffold to fabricate cell-scaffold constructs. After 1 week of cultivation in vitro, the cell-scaffold complexes were transplanted into corneal stromal defects in rabbits. In vivo, the autologous rASCs-PLGA constructed corneal stroma gradually became transparent without corneal neovascularization after 12 weeks. Hematoxylin and eosin staining and transmission electron microscopy examination revealed that their histological structure and collagen fibril distribution at 24 weeks after implantation were similar to native counterparts. As to the defect treated with PLGA alone, the stromal defects remained. And scar tissue was observed in the untreated-group. The implanted autologous ASCs survived up to 24 weeks post-transplantation and differentiated into functional keratocytes, as assessed by the expression of aldehyde-3-dehydrogenase1A1 (ALDH1A1) and cornea-specific proteoglycan keratocan. Our results revealed that autologous rASCs could be one of the cell sources for corneal stromal restoration in diseased corneas or for tissue engineering of a corneal equivalent.  相似文献   

8.
Keratoconus is the primary cause of corneal transplantation in young adults worldwide. Riboflavin/UV‐A corneal cross‐linking may effectively halt the progression of keratoconus if an adequate amount of riboflavin enriches the corneal stroma and is photo‐oxidated by UV‐A light for generating additional cross‐linking bonds between stromal proteins and strengthening the biomechanics of the weakened cornea. Here we reported an UV‐A theranostic prototype device for performing corneal cross‐linking with the ability to assess corneal intrastromal concentration of riboflavin and to estimate treatment efficacy in real time. Seventeen human donor corneas were treated according to the conventional riboflavin/UV‐A corneal cross‐linking protocol. Ten of these tissues were probed with atomic force microscopy in order to correlate the intrastromal riboflavin concentration recorded during treatment with the increase in elastic modulus of the anterior corneal stroma. The intrastromal riboflavin concentration and its consumption during UV‐A irradiation of the cornea were highly significantly correlated (R = 0.79; P = .03) with the treatment‐induced stromal stiffening effect. The present study showed an ophthalmic device that provided an innovative, non‐invasive, real‐time monitoring solution for estimating corneal cross‐linking treatment efficacy on a personalized basis.   相似文献   

9.
The goal of this study was to evaluate the potential suitability of an artificial membrane composed of silk fibroin (SF) functionalized by different ratios of chitosan (CS) as a substrate for the stroma of the cornea. Keratocytes were cultured on translucent membranes made of SF and CS with different ratios. The biophysical properties of the silk fibroin and chitosan (SF/CS) membrane were examined. The SF/CS showed tensile strengths that increased as the CS concentration increased, but the physical and mechanical properties of chitosan-functionalized silk fibroin scaffolds weakened significantly compared with those of native corneas. The resulting cell scaffolds were evaluated using western blot in addition to light and electron microscopy. The cell attachment and proliferation on the scaffold were similar to those on a plastic plate. Keratocytes cultured in serum on SF/CS exhibited stellate morphology along with a marked increase in the expression of keratocan compared with identical cultures on tissue culture plastics. The biocompatibility was tested by transplanting the acellular membrane into rabbit corneal stromal pockets. There was no inflammatory complication detected at any time point on the macroscopic level. Taken together, these results indicate that SF/CS holds promise as a substrate for corneal reconstruction.  相似文献   

10.
Advances in the development of cornea substitutes by tissue engineering techniques have focused on the use of decellularized tissue scaffolds. In this work, we evaluated different chemical and physical decellularization methods on small intestine tissues to determine the most appropriate decellularization protocols for corneal applications. Our results revealed that the most efficient decellularization agents were the SDS and triton X-100 detergents, which were able to efficiently remove most cell nuclei and residual DNA. Histological and histochemical analyses revealed that collagen fibers were preserved upon decellularization with triton X-100, NaCl and sonication, whereas reticular fibers were properly preserved by decellularization with UV exposure. Extracellular matrix glycoproteins were preserved after decellularization with SDS, triton X-100 and sonication, whereas proteoglycans were not affected by any of the decellularization protocols. Tissue transparency was significantly higher than control non-decellularized tissues for all protocols, although the best light transmittance results were found in tissues decellularized with SDS and triton X-100. In conclusion, our results suggest that decellularized intestinal grafts could be used as biological scaffolds for cornea tissue engineering. Decellularization with triton X-100 was able to efficiently remove all cells from the tissues while preserving tissue structure and most fibrillar and non-fibrillar extracellular matrix components, suggesting that this specific decellularization agent could be safely used for efficient decellularization of SI tissues for cornea TE applications.  相似文献   

11.
目的:检测去细胞处理牛颈静脉的生物相容性.方法:去细胞处理牛颈静脉,与新鲜牛颈静脉分别于兔皮下包埋,术后2,4,12周取材,HE染色;进行血浆蛋白吸附和血小板粘附实验,检测血液相容性.结果:包埋早期有炎性细胞浸润,后期炎性细胞消失,以成纤维细胞为主.去细胞牛颈静脉与新鲜牛颈静脉血浆蛋白吸附和血小板粘附无显著差异.结论:去细胞牛颈静脉有良好的生物相容性.  相似文献   

12.
Major advances are currently being made in regenerative medicine for cornea. Stem cell-based therapies represent a novel strategy that may substitute conventional corneal transplantation, albeit there are many challenges ahead given the singularities of each cellular layer of the cornea. This review recapitulates the current data on corneal epithelial stem cells, corneal stromal stem cells and corneal endothelial cell progenitors. Corneal limbal autografts containing epithelial stem cells have been transplanted in humans for more than 20 years with great successful rates, and researchers now focus on ex vivo cultures and other cell lineages to transplant to the ocular surface. A small population of cells in the corneal endothelium was recently reported to have self-renewal capacity, although they do not proliferate in vivo. Two main obstacles have hindered endothelial cell transplantation to date: culture protocols and cell delivery methods to the posterior cornea in vivo. Human corneal stromal stem cells have been identified shortly after the recognition of precursors of endothelial cells. Stromal stem cells may have the potential to provide a direct cell-based therapeutic approach when injected to corneal scars. Furthermore, they exhibit the ability to deposit organized connective tissue in vitro and may be useful in corneal stroma engineering in the future. Recent advances and future perspectives in the field are discussed.  相似文献   

13.
Monoclonal antibodies highly selective for developmentally regulated antigens present in the cornea (Zak and Linsenmayer, Dev. Biol. 99, 373-381, 1983) have been used to immunohistochemically evaluate differentiation in intact chick corneas cultured on the chorioallantoic membrane (CAM) of host embryos. One antibody is directed against the epithelial cell layer and the other is against the corneal stromal matrix. It has been established that both antigens recognized by the antibodies are expressed de novo in young explanted corneas and that the stromal matrix antigen is a product of the corneal fibroblasts. Thus expression of the antigens can be used as criteria for overt differentiation of the respective cell types. The antibodies have been employed to assess when the corneal epithelial and stromal cells become capable of autonomous differentiation within isolated corneas. To accomplish this, corneas of various ages were explanted with and without adjacent pericorneal tissues. The results indicate that, under the culture conditions employed, corneal stromal differentiation is dependent on the presence of the lens until stage 28 (51/2-6 days of development), which is the time when invasion of the stroma by pericorneal mesenchymal cells is initiated. After stage 28, the stromal matrix antigen was expressed by isolated corneas irrespective of the presence of the lens. Possibly the lens acts by maintaining the integrity of the corneal endothelial monolayer and thus promoting normal migration of pericorneal mesenchymal cells into the primary corneal stroma, where they undergo differentiation. Conversely, differentiation of the corneal epithelium was independent of any pericorneal structure from the earliest stage examined (41/2-5 days of development). It was even independent of overt stromal differentiation, thus suggesting an early and strong determination for this tissue.  相似文献   

14.
Keratocan (Kera) is a cornea-specific keratan sulfate proteoglycan (KSPG) in the adult vertebrate eye. It belongs to the small leucine-rich proteoglycan (SLRP) gene family and is one of the major components of extracellular KSPG in the vertebrate corneal stroma. The Kera gene is expressed in ocular surface tissues including cornea and eyelids during morphogenesis. Corneal KSPGs play a pivotal role in matrix assembly, which is accountable for corneal transparency. In humans, mutations of the KERA gene are associated with cornea plana (CNA2) that manifests decreases in vision acuity due to the flattened forward convex curvature of cornea. To investigate the biological role of the Kera gene and to establish an animal model for corneal plana, we generated Kera knockout mice via gene targeting. Northern and Western blotting and immunohistochemical analysis showed that no Kera mRNA or keratocan protein was detected in the Kera-/- cornea. The expression levels of other SLRP members including lumican, decorin, and fibromodulin were not altered in the Kera-/- cornea as compared with that of the wild-type littermates. Mice lacking keratocan have normal corneal transparency at the age of 12 months. However, they have a thinner corneal stroma and a narrower cornea-iris angle of the anterior segment in comparison to the wild-type littermates. As demonstrated by transmission electron microscopy, Kera-/- mice have larger stromal fibril diameters and less organized packing of collagen fibrils in stroma than those of wild type. Taken together, our results showed that ablation of the Kera gene resulted in subtle structural alterations of collagenous matrix and did not perturb the expression of other SLRPs in cornea. Keratocan thus plays a unique role in maintaining the appropriate corneal shape to ensure normal vision.  相似文献   

15.
Bone marrow-derived cells (BMCs) reside in the anterior stroma of the central and paracentral cornea, as well as all stromal layers of the peripheral cornea, in normal human eyes. We investigated the factors regulating the constitutive distribution of BMCs in normal human corneal stroma. Cultured human corneal keratocytes expressed several chemokines (growth-related oncogene/CXCL1-3, IL-8/CXCL8, and MCP-1/CCL2) in the Ab array study. CCR2 and CCR7 mRNAs were detected in BMCs by multiplex RT-PCR. Keratocytes/corneal epithelial cells and BMCs selected from normal human donor corneas by using magnetic beads expressed MCP-1/CCL2 and CCR2 protein, respectively. BMCs isolated from human corneal stroma showed a chemotactic response to MCP-1/CCL2 in the Boyden chamber assay. The chemotactic effect of keratocyte supernatant was inhibited by blockade of MCP-1/CCL2. This is the first work on constitutive expression of CCR2 by BMCs from the corneal stroma and MCP-1/CCL2 by keratocytes/epithelial cells. Our findings suggest that the interaction between MCP-1/CCL2 and CCR2 determines the distribution of constitutive BMCs in normal human corneal stroma.  相似文献   

16.
The cornea is a highly specialized transparent tissue which covers the front of the eye. It is a tough tissue responsible for refracting the light and protecting the sensitive internal contents of the eye. The biomechanical properties of the cornea are primarily derived from its extracellular matrix, the stroma. The majority of previous studies have used strip tensile and pressure inflation testing methods to determine material parameters of the corneal stroma. Since these techniques do not allow measurements of the shear properties, there is little information available on transverse shear modulus of the cornea. The primary objectives of the present study were to determine the viscoelastic behavior of the corneal stroma in shear and to investigate the effects of the compressive strain. A thorough knowledge of the shear properties is required for developing better material models for corneal biomechanics. In the present study, torsional shear experiments were conducted at different levels of compressive strain (0–30%) on porcine corneal buttons. First, the range of linear viscoelasticity was determined from strain sweep experiments. Then, frequency sweep experiments with a shear strain amplitude of 0.2% (which was within the region of linear viscoelasticity) were performed. The corneal stroma exhibited viscoelastic properties in shear. The shear storage modulus, G′, and shear loss modulus, G″, were reported as a function of tissue compression. It was found that although both of these parameters were dependent on frequency, shear strain amplitude, and compressive strain, the average shear storage and loss moduli varied from 2 to 8 kPa, and 0.3 to 1.2 kPa, respectively. Therefore, it can be concluded that the transverse shear modulus is of the same order of magnitude as the out-of-plane Young's modulus and is about three orders of magnitude lower than the in-plane Young's modulus.  相似文献   

17.
18.
目的:将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,观测带瓣管道材料体内情况。方法:去细胞处理牛颈静脉体,无菌处理后种植标记过的犬骨髓间质干细胞,构建组织工程带瓣管道,犬开胸手术,将体外构建的组织工程右心带瓣管道,以带瓣补片的形式移植于犬主肺动脉,术后4、8、12行胸部B超检查;取出补片,HE染色;荧光显微镜下标记细胞检测;样本钙含量测定。结果:术后犬胸部B超观察:瓣叶无增厚,钙化,管道血流通畅,无血栓及钙化。术后4、8、12周除了瓣叶逐渐缩小外,补片无动脉瘤形成,瓣膜表面光滑,无血栓形成,弹性良好,血管壁内面光滑,无血栓形成。种植种子细胞牛颈静脉带瓣补片成活。4周钙含量增加,8周时候,钙含量又有增加,12周时钙含量与8周相比无明显变化。结论:组织工程技术构建组织工程右心带瓣管道有可行之处。  相似文献   

19.
A triphasic analysis of corneal swelling and hydration control.   总被引:1,自引:0,他引:1  
Physiological studies strongly support the view that hydration control in the cornea is dependent on active ion transport at the corneal endothelium. However, the mechanism by which endothelial ion transport regulates corneal thickness has not been elaborated in detail. In this study, the corneal stroma is modeled as a triphasic material under steady-state conditions. An ion flux boundary condition is developed to represent active transport at the endothelium. The equations are solved in cylindrical coordinates for confined compression and in spherical coordinates to represent an intact cornea. The model provides a mechanism by which active ion transport at the endothelium regulates corneal hydration and provides a basis for explaining the origin of the "imbibition pressure" and stromal "swelling pressure." The model encapsulates the Donnan view of corneal swelling as well as the "pump-leak hypothesis."  相似文献   

20.
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号