首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 210 毫秒
1.
Reaction norms across seven constant and one fluctuating temperature of development were measured for thorax length and several wing size traits for up to 10 isofemale lines of each of the cactophilic Drosophila species, D. aldrichi and D. buzzatii, originating from the same locality. Maximum thorax length was reached at different low to intermediate temperatures for the two species, whereas wing length was highest at the lowest temperature in both species. Various ratio parameters showed pronounced species differences. The reaction norm for the wing loading index (wing length/thorax length) decreased monotonically with temperature in both species, but was much steeper and spanned a wider range in D. aldrichi than in D. buzzatii, suggesting either that wing loading is not a good characterization of flight capacity or, more likely, that flight optimization does not occur in the same manner in both species. The vein ratio (distal length/proximal length of the third vein) increased with temperature in D. buzzatii but decreased in D. aldrichi. Wing development in the two species thus is very different, with the proximal part of the wing in D. buzzatii more closely allied to the thorax than to the distal part. Among line variation was significant for all traits in both species, and most pronounced for thorax length and the ratio parameters. Coefficients of variation were significantly different between the species for all traits, with those in D. aldrichi higher than in D. buzzatii. Genetic variance in plasticity was significant for all traits in D. buzzatii, but only for seven out of 12 in D. aldrichi. Additive genetic variances for all traits in both species were significantly larger than zero. Genetic correlations between thorax length and several wing length parameters, and between these and wing area, were positive and generally significant in both species. The genetic correlation between the distal and the proximal length of the third vein was not significantly different from zero in D. aldrichi, but negative and significant in D. buzzatii. Heritabilites varied significantly among temperatures for almost all traits in both species. Phenotypic variances were generally higher in D. aldrichi than in D. buzzatii, and commonly highest at the extreme temperatures in the former species. At the high temperature the genetic variances also were usually highest in D. aldrichi. The data clearly suggest that the process of thermal adaptation is species specific and caution against generalizations based on the study of single species.  相似文献   

2.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

3.
Abstract.
  • 1 Competitive interactions among larvae of Drosophila species using the same habitat will usually involve individuals varying in age and size. Older, larger larvae might be expected to outcompete younger, smaller larvae.
  • 2 Newly hatched laryae of Drosophila aldrichi and D.buzzatii were placed on induced cactus necroses (simulating the natural habitat), either simultaneously, or with a 1 or 2 day difference in the time at which individuals of the other species were added.
  • 3 Evidence for competitive differences with larval age were found. In both species, body weight was significantly higher for those larvae added first than for later addition larvae, and a longer time to complete development was required for those larvae added 2 days later. However, pre-adult viability of D.aldrichi was significantly higher for larvae started 1 or 2 days after larvae of D.buzzatii. For D.buzzatii, viability was lowest for larvae started simultaneously with D.aldrichi, but not different between those started either before or after D.aldrichi.
  • 4 Considering all three traits, no clear advantage for the early addition larvae was observed.
  相似文献   

4.
Drosophila aldrichi and D. buzzatii are cactophilic species that colonised Australia about 55–60 years ago. They are sympatric only in Australia. Thus they may be in the process of adapting to new environments and to each other, and diversifying among local, possibly isolated, populations. Larval competitive effects for three populations of each species (Roma, Planet Downs, and Binjour) were measured on semi-natural cactus rots at three temperatures, with preadult viability, developmental time and adult body weight scored for each sex and species. Populations of both species varied in their responses to the other species as competitor, and one D. buzzatii population (Roma) reduced larval performance of D. aldrichi significantly more than did other D. buzzatii populations. Geographic divergence for the three traits was similar in both species, with a relative performance index derived from these traits highest for Roma, second for Binjour, and least for the Planet Downs population of each species. The Roma D. aldrichi population was the most different from the other populations for the performance index and in terms of genetic distances derived from allozyme frequencies. Additionally, comparisons of climatic variables among the population localities showed that the Roma environment was most different from the others. Differential natural selection in different areas of the cactus distribution may be a major cause of population divergence in both species. Drosophila aldrichi is superior for some fitness components at the highest temperature. Thus temperature variation throughout the cactus distribution may contribute to the different ranges of these two species, with competitive exclusion of D. aldrichi in the southern, cooler region of the cactus distribution, but coexistence in the northern, warmer region.  相似文献   

5.
Variation in three life‐history traits (developmental time, preadult viability and daily female productivity) and five morphometrical traits (thorax length, wing length, wing width, wing/thorax ratio and wing‐aspect ratio) was studied at three developmental temperatures (20, 25 and 30 °C) in Drosophila buzzatii and Drosophila simulans collected on the island of La Gomera (Canary Archipelago). The flies originated from five closely situated localities, representing different altitudes (from 20 to 886 m above sea level) and a range of climatic conditions. We found statistically significant population effects for all traits in D. buzzatii and for most of the traits in D. simulans. Although no correlations of trait values with altitude were detected, geographical patterns for three life‐history traits and body size in D. buzzatii indicated that short‐range geographical variation in this species could be maintained by local climatic selection. Five of eight traits showed population‐by‐temperature interactions either in D. buzzatii or in D. simulans, but in all cases except wing width in D. buzzatii this could not be interpreted as adaptive responses to thermal conditions in the localities. The range of plastic changes across temperatures for particular traits differed between species, indicating a possibility for different levels of environmental stress experienced by the natural populations. The reaction norm curves and the response of within‐population variability to thermal treatments suggested better adaptations to higher and lower temperatures for D. buzzatii and D. simulans, respectively. The levels of among‐population differentiation depended on developmental temperature, implying environmental effects on the expression of the genetic variance. At 20 and 25 °C, interpopulation variability in D. buzzatii was higher than in D. simulans, while at 30 °C the opposite trend was observed. © 2005 The Linnean Society of London, Biological Journal of the Linnean Society, 2005, 84 , 119–136.  相似文献   

6.
The cactophilic species,Drosophila buzzatii, normally breeds in decaying pockets ofOpuntia cladodes, in which there is a complex interaction with the microbial flora, especially yeast species. Isofemale lines were used to estimate genetic variation among larvae reared on their natural feeding substrate. Four naturally occurring cactophilic yeast species isolated from the same Tunisian oasis as theDrosophila population were used. Two fitness components were studied for each line, viability and developmental time. Genetic variations amongD. buzzatii lines were observed for both traits. A significant yeast species x isofemale line interaction for viability was also evidenced, suggesting the occurrence of specialized genotypes for the utilization of breeding substrates. This genetic heterogeneity in the natural population may favor a better adaptation to the patchily distribution of yeasts.  相似文献   

7.
Abstract Competition is a major aspect of the ecology of insect communities exploiting ephemeral and fragmented resources. We analysed the effect of intraspecific (single species culture) and interspecific (mixed species culture) competition on larval viability, developmental time and wing length in the cactophilic Drosophila buzzatii and Drosophila koepferae (Diptera: Drosophilidae) reared in cultured media prepared with fermenting tissues of three common natural cactus hosts in nature at different densities. Our results show that all traits measured were affected by both intra‐ and interspecifc competition, although the effect of competition depended on the Drosophila species and the rearing cactus. In fact, flies tended to have a lower viability, shorter wing size and longer developmental time as a function of increasing density in single species culture in both D. buzzatii and D. koepferae (intraespecific competition). Besides, the performance of both species was seriously affected (shorter body size, slower developmental times, lower viability) by the presence of heterospecific competitors except in the case of D. koepferae reared in its primary host plant, Trichocereus terschekii. We also show that D. koepferae successfully utilized Opuntia quimilo, which is absent in most parts of its distribution range. We discuss the roles of intra‐ and interspecific competition as determinants of the relative abundance of these two species in the arid zones of Southern South America.  相似文献   

8.
Abstract Climatic data and collection records for the cactophilic Drosophila aldrichi and Drosophila buzzatii for 97 localities were used to examine the effects of geographical location, season, host plant species and climatic factors on their range and relative abundance. Temporal variation in relative abundance was assessed from monthly collections over 4 years at one locality. Effects of weather variables over the 28 days before each collection were examined. A generalized linear model of the spatial data showed significant geographical variation in relative abundance, and significant climatic effects, with the proportion of D. aldrichi higher in the warm season, and increasing as temperature variation decreased and moisture indices increased. The temporal data gave generally concordant results, as D. aldrichi proportion was higher in summer and autumn, and increased as maximum and minimum temperatures increased, and as variation in maximum temperature decreased. In a laboratory competition experiment, D. aldrichi eliminated D. buzzatii at 31°C, but was itself eliminated at 18°C and 25°C. The range of D. buzzatii is constrained only by availability of its host plant, Opuntia species, although its relative abundance is reduced in the northern part of its distribution. The range of D. aldrichi, from central Queensland to northern NSW, Australia, is entirely within that of D. buzzatii, and its relative abundance decreases from north to south. Both climate and weather, particularly temperature variability, have direct effects on the relative abundances of the two species, and both likely act indirectly by influencing the outcome of interspecific competition.  相似文献   

9.
Host shifts cause drastic consequences on fitness in cactophilic species of Drosophila. It has been argued that changes in the nutritional values accompanying host shifts may elicit these fitness responses, but they may also reflect the presence of potentially toxic secondary compounds that affect resource quality. Recent studies reported that alkaloids extracted from the columnar cactus Trichocereus terscheckii are toxic for the developing larvae of Drosophila buzzatii. In this study, we tested the effect of artificial diets including increasing doses of host alkaloids on developmental stability and wing morphology in D. buzzatii. We found that alkaloids disrupt normal wing venation patterning and affect viability, wing size and fluctuating asymmetry, suggesting the involvement of stress–response mechanisms. Theoretical implications are discussed in the context of developmental stability, stress, fitness and their relationship with robustness, canalization and phenotypic plasticity.  相似文献   

10.
Size-related phenotypic variation among second-chromosome karyotypes inDrosophila buzzatii was examined in an Argentinian natural population. For all measured traits (thorax and wing length; wing, head and face width), this inversion polymorphism exhibited a significant and (additive) linear contribution to the phenotypic variance in newly emerged wild flies. The results suggest that only overall body size, and not body shape, is affected. as no karyotypic variation was found for any trait when the effects of differences in within-karyotype size were removed with Burnaby's method. Likewise, in an experiment of longevity selection in the wild, variation in chromosomal frequencies was verified in the direction predicted on the basis of: (i) previous studies on longevity selection for body size in the wild and (ii) the pattern of chromosomal effects we observed on size. The direction of such selection is consistent with a pattern of antagonistic selection detected in previous studies on the inversion polymorphism.  相似文献   

11.
The correlation between body size and longevity was tested in an Argentinian natural population of Drosophila buzzatii. Mean thorax length of flies newly emerging from rotting cladodes of Opuntia vulgaris was significantly smaller than that of two samples of flies caught at baits. The present results which might be interpreted as directional selection for longevity favoring larger flies are in agreement with previous results achieved in a Spanish natural population of D. buzzatii. Flies emerging from different substrates showed significant differences in thorax length, suggesting that an important fraction of phenotypic variance can be attributed to environmental variability. However, laboratory and field work in different populations of D. buzzatii showed a significant genetic component for thorax length variation.  相似文献   

12.
In this work we investigate the effect of interspecific hybridization on wing morphology using geometric morphometrics in the cactophilic sibling species D. buzzatii and D. koepferae. Wing morphology in F1 hybrids exhibited an important degree of phenotypic plasticity and differs significantly from both parental species. However, the pattern of morphological variation between hybrids and the parental strains varied between wing size and wing shape, across rearing media, sexes, and crosses, suggesting a complex genetic architecture underlying divergence in wing morphology. Even though there was significant fluctuating asymmetry for both, wing size and shape in F1 hybrids and both parental species, there was no evidence of an increased degree of fluctuating asymmetry in hybrids as compared to parental species. These results are interpreted in terms of developmental stability as a function of a balance between levels of heterozygosity and the disruption of coadaptation as an indirect consequence of genomic divergence.  相似文献   

13.
Two Drosophila species, D. buzzatti and D. aldrichi, coexist on several species of Opuntia cacti in Australia, primarily on O. tomentosa and O. streptacantha in the northern part of the cactus distribution, and on O. stricta in the south. Thorax length of field-collected adults was less, and the variance in length greater, than that for flies reared on simulated rots in the laboratory, indicating that these species are affected by crowding in nature. A larval performance index, measured on simulated cactus rots at low, moderate and high densities in single-species cultures, and at moderate and high densities in mixed-species cultures, was used to compare the relative intensity of intra- and interspecific competition at the same total larval density per 5 g necrotic cactus. Larval performance of both fly species was greatest on O. streptacantha, intermediate on O. tomentosa, and least on O. stricta in both single-species and mixed-species cultures. On O. stricta, the performances of D. aldrichi and D. buzzatii were not different when in single-species cultures, but that of D. aldrichi decreased significantly in mixed-species cultures. On the other two cactus species, the performances of D. aldrichi and D. buzzattii were not different in mixed-species cultures. The order of preferences by adult females for the cacti differed from that for larval performance, with females of both species prefering O. stricta. Analysis of microbial numbers growing on the cacti showed little difference among cacti at the rot age used for testing adult preference, but later growth was greater on O. tomentosa and O. streptacantha, the cacti that best supported larvae. Differential larval performance on O. stricta may contribute to the rare presence of D. aldrichi in the southern part of the cactus distribution, while the superior quality of O. tomentosa and O. streptacantha (larger rot size and higher microbial concentration) may reduce competition and facilitate cocxistence of the fly species in the north.  相似文献   

14.
A simple way to think of evolutionary trade-offs is to suppose genetic effects of opposed direction that give rise to antagonistic pleiotropy. Maintenance of additive genetic variability for fitness related characters, in association with negative correlations between these characters, may result. In the cactophilic species Drosophila buzzatii, there is evidence that second-chromosome polymorphic inversions affect size-related traits. Because a trade-off between body size and larval developmental time has been reported in Drosophila, we study here whether or not these inversions also affect larva-adult viability and developmental time. In particular, we expect that polymorphic inversions make a statistically significant contribution to the genetic correlation between body size (as measured by thorax length) and larval developmental time. This contribution is expected to be in the direction predicted by the trade-off, namely, those flies whose karyotypes cause them to be genetically larger should also have a longer developmental time than flies with other karyotypes. Using two different experimental approaches, a statistically significant contribution of the second-chromosome inversions to the phenotypic variances of body size and developmental time in D. buzzatii was found. Further, these inversions make a positive contribution to the total genetic correlation between the traits, as expected by the suggested trade-off. The data do not provide evidence as to whether the genetic correlation is due to antagonistic pleiotropic gene action or to gametic disequilibrium of linked genes that affect one or both traits. The results do suggest, however, a possible explanation for the maintenance of inversion polymorphism in this species.  相似文献   

15.
The Drosophila buzzatii species cluster consists of the sibling species D. buzzatii, D. koepferae, D. serido, D. borborema, D. seriema, D. antonietae and D. gouveai, all of which breed exclusively in decaying cactus tissue and, except for D. buzzatii (a colonizing subcosmopolitan species), are endemic to South America. Using a morphometric approach and multivariate analysis of 17 wing parameters, we investigated the degree of divergence in wing morphology among the sibling species of this cluster. Significant differences were obtained among the species and discriminant analysis showed that wing morphology was sufficiently different to allow the correct classification of 98.6% of the 70 individuals analysed. The phenetic relationships among the species inferred from UPGMA cluster analysis based on squared Mahalanobis distances (D2) were generally compatible with previously published phylogenetic relationships. These results suggest that wing morphology within D. buzzatii cluster is of phylogenetic importance.  相似文献   

16.
The cloning and characterization ofGandalf, a new DNA-transposing mobile element obtained from theDrosophila koepferae (repleta group) genome is described. A fragment ofGandalf was found in a middle repetitive clone that shows variable chromosomal localization. Restriction, Southern blot, PCR and sequencing analyses have shown that mostGandalf copies are about 1 kb long, are flanked by 12 by inverted terminal repeats and contain subterminal repetitive regions on both sides of the element. As with other elements of the DNA-transposing type (known as the Ac family), theGandalf element generates 8 by direct duplications at the insertion point. Coding region analysis has shown that the longer open reading frame found inGandalf copies could encode part of a protein. However, whether or not the 1 kb copies of the element are actually the active transposons remains to be elucidated.Gandalf shows a very low copy number inD. buzzatii, a sibling species ofD. koepferae. An attempt to induce interspecific hybrid dysgenesis in hybrids of these two species has been unsuccessful.  相似文献   

17.
Using wild-reared flies, we examined sexual selection on five phenotypic traits (thorax length, wing length, wing width, head width, and face width) inDrosophila buzzatii, by scoring copulatory status in nine mass mating cages. Only male face width was identified as a direct target of sexual selection in an analysis of selection gradient, while indirect selection was present on all other studied traits, as expected from their correlations with face width. In contrast to males, there was no indication of selection in females. Nor was there evidence of assortative mating. The suggested direct selection on face width seems to take place during licking behavior of the courtship and might be related to courtship feeding. This study suggests that courtship success gives rise to indirect selection on body size.  相似文献   

18.
A. F. Sell 《Oecologia》2000,125(1):150-160
The presence of plankton predators may induce altered morphology in their potential prey. To date, the mechanism of induction and adaptive value of such defensive responses have been examined in the laboratory. This study investigated the morphological defense structures induced by the invertebrate predator Chaoborus in two coexisting Daphnia species, D. pulex and D. rosea, in the field. In Piscivore Lake (Gr?fenhain, Germany), continuous and intense biomanipulation had led to near elimination of planktivorous fish and greatly increased abundances of Chaoborus (up to >10 larvae l–1). Here, the density of Chaoborus was manipulated within the lake by an enclosure/exclosure setup and resulting morphological responses of Daphnia spp. were investigated in situ. Three replicate enclosures (4.6 m3) contained no Chaoborus (predator exclusion bags), whereas Chaoborus entered three others at ambient densities (predator enclosures). In both species of Daphnia, formation of neckteeth and elongation of the tail spine were recorded in the predator enclosures, but not in the predator exclusion treatments. Additionally, D. rosea responded to predator inclusion with an increase of the size at first reproduction. Despite the induced defense structures, the presence of Chaoborus caused increased mortality of both Daphnia species. In addition, Chaoborus affected the coexistence of the two populations of Daphnia by causing higher relative mortality in D. rosea. Neckteeth formation was always more pronounced in D. pulex than in D. rosea of the same size. Neckteeth were induced specifically in vulnerably sized juvenile instars of D. pulex, but were not found in all vulnerable instars of D. rosea. In D. rosea, neckteeth were few or absent in the ephippial hatchlings, and neckteeth formation ceased before juveniles reached a body size outside the range that larger larval stages of Chaoborus could ingest. This study provides the first experimental demonstration in the field of the inducibility of morphological defense structures in Daphnia at ambient densities of Chaoborus larvae, and quantifies these in situ responses. This expands on earlier observations of a correlation between predator density in the field and the expression of neckteeth in Daphnia. The term ”maximum size for neckteeth formation” (MSNF) is defined as the limit in body size above which no production of neckteeth was evident. This limit was used to distinguish the size classes of Daphnia that show a sensitive response to Chaoborus kairomone. This new term may be used for further comparisons among species and among different types of predator-induced responses as well as for the evaluation of the adaptive value of defense structures. Received: 10 April 1999 / Accepted: 6 April 2000  相似文献   

19.
Soto I  Cortese M  Carreira V  Folguera G  Hasson E 《Genetica》2006,127(1-3):199-206
We assessed the indirect response of longevity in lines selected for wing length (WL) and developmental time (DT). Longevity in selection lines was compared to laboratory control lines and the offspring of recently collected females. Wild flies (W lines), flies from lines selected for fast development (F lines), and for fast development and large wing length (L lines) outlived control laboratory lines (C lines) and lines selected for fast development and short wing (S lines). The decline in longevity in S lines is in line with the idea that body size and longevity are correlated and may be the result of the fixation of alleles at loci affecting pleiotropically the two traits under selection and longevity. In addition, inbreeding and artificial selection affected the correlation between wing length and longevity that occurs in natural populations of Drosophila buzzatii, suggesting that correlations between traits are not a perdurable feature in a population.  相似文献   

20.
Transposition of a new Drosophila retrotransposon was investigated. Total genomic Southern analysis and polytene in situ hybridizations in D. buzzatii strains and other related species using a 6 kb D. buzzatii clone (cDb314) showed a dispersed, repetitive DNA pattern, suggesting that this clone contains a transposable element (TE). We have sequenced the cDb314 clone and demonstrated that it contains all the conserved protein sequences and motifs typical of retrovirus-related sequences. Although cDb314 does not include the complete TE, the protein sequence alignment demonstrates that it includes a defective copy of a new long terminal repeat (LTR) retrotransposon, related to the gypsy family, which we have named Osvaldo. Using a D. buzzatii inbred line in which all insertion sites are known, we have measured Osvaldo transposition rates in hybrids between this D. buzzatii line and its sibling species D. koepferae. The results show that Osvaldo transposes in bursts at high rate, both in the D. buzzatii inbred line and in species hybrids.This paper is dedicated posthumously to Osvaldo A. Reig in recognition of his contributions to evolutionary biology and his early appreciation of the role of transposable elements in evolution  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号