首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The development and adoption of transgenic (Bt) crops that express the Bacillus thuringiensis (Bt) toxin has reduced the use of synthetic insecticide on transgenic crops to target Helicoverpa spp., the major insect pest of cotton in Australia. However, it has also increased the threat posed by sucking pests, particularly Creontiades dilutus (green mirid), which are unaffected by the Bt toxins in transgenic cotton crops. Here we report the efficacy of the entomopathogenic fungus Aspergillus sp. (BC 639) in controlling the infestation of transgenic cotton crops by C. dilutus and promoting interactions of transgenic cotton with beneficial insects. The results showed that the number of C. dilutus adults and nymphs recorded on plots treated with 1000, 750, 500, 250 ml/ha BC 639 fungus formulation were the same as on plots treated with the recommended concentration of the commercial insecticide Fipronil. The fungus was found to have minimal effect on predatory insects compared with Fipronil and was most effective against C. dilutus when applied at the rate of 500 ml/ha (equivalent to 50 g spores/ha). At this rate, the fungus was as effective as Fipronil for controlling C. dilutus populations and ensured the survival of predatory beetles, lacewings and spiders compared with Fipronil treatment. The yield from fungus-treated plots was 5.24 bales per acre compared with 5.40 and 3.88 bales per acre for Fipronil-treated and unsprayed plots, respectively. The ability of the BC 639 strain to control C. dilutus infestations of transgenic cotton crops while conserving beneficial insect populations suggests its potential for supplementing integrated pest management programs to reduce the use of synthetic insecticides for transgenic cropping systems.  相似文献   

2.
Sublethal effects were evaluated in subsequent generations of whiteflies Bemisia tabaci (Gennadius) arising from parental generations exposed in the four nymphal stages to the fungus Beauveria bassiana (Balsamo) Vuillemin. Examples of such effects include impaired fertility, production of malformations or external variations, and reduced survival of later generations. Malformations of the head, legs, wings or abdomen were not observed in adults derived from treated nymphs, nor were negative effects observed in the fecundity and fertility of the descendants of the whiteflies treated with the fungus. However, moulting problems were observed in insects descended from B. bassiana-treated whiteflies. This is the first time that such effects have been reported, with almost 30% of imagos resulting from treated nymphs unable to detach completely from the exuvia. A gradual reduction in mortality rates between subsequent generations was observed. The importance of these results is discussed in the light of findings from other studies into the effects of entomopathogenic fungi on pest insects.  相似文献   

3.
Abstract: Biological control provides an environmentally harmonious and potentially stable management tactic to combat noxious pests such as Bemisia tabaci, notorious for its resistance to synthetic pesticides. Bioassays conducted under control chamber conditions integrating applications of the parasitoid Encarsia formosa, reared for 20 years on Trialeurodes vaporariorum, and the fungus Verticillium lecanii on the third‐fourth instar nymphs of B. tabaci on tomato, showed a comparable effect between the parasitoid‐fungus combined treatment and the fungus treatment alone (70.7% vs. 70.4%). Analysis of our results indicates antagonism between the two biocontrol agents related to the parasitoids’ ability to discriminate between infected and healthy B. tabaci nymphs. The parasitoid treatment alone produced 36.3% mortality, with no mortality in the distilled water controls. The behavioural performance of the parasitoid could have either genetic or environmental causes. Bioassays studying the feeding habit of the imported mirid predator Macrolophus caliginosus (adults) and the indigenous mirid Camptotylus reuteri (nymphs and adults) on eggs, or early second instar nymphs of B. tabaci, and choice preference tests indicated a significant difference in feeding between M. caliginosus and C. reuteri. There was no significant difference in percentage feeding of M. caliginosus on eggs (2.2%) or second instar nymphs (8.0%). There was a significant difference in feeding of M. caliginosus adults (18.6%) when offered eggs and second instars in the same arena compared with eggs or second instars offered separately. These results could be attributed to the biological behaviour of the predator having a type III functional response. Studies with the local C. reuteri species showed no significant difference in adult and nymphal consumption on second instars of B. tabaci compared with nymphs on eggs. However, C. reuteri adults fed less on eggs compared with nymphs. This local predatory species appears to be more efficient than M. caliginosus in feeding on particular stages of B. tabaci without depending on prey density. This is further supported by the low consumption of both adults and nymphs in the choice test (4% and 2.3%, respectively) compared with M. caliginosus adults (18.6%).  相似文献   

4.
We conducted three experiments for management of Bemisia tabaci (Gennadius) biotype ‘B’ on tomatoes under greenhouse conditions: (i) vertically placing yellow sticky cards either parallel or perpendicular to tomato rows at a rate of 1 per 3‐m row; (ii) releasing Eretmocerus sp. nr. rajasthanicus once at 30 adults/m2 in the high whitefly density greenhouses (> 10 adults/plant), or twice at 15 adults/m2 at a 5‐day interval in the low whitefly density greenhouses (< 10 adults/plant); and (iii) using combinations of yellow sticky cards that were placed vertically parallel to tomato rows and parasitoids released once at 30/m2 in high whitefly density greenhouses or twice at 15/m2 at a 5‐day interval in low whitefly density greenhouses. Our data show that yellow sticky cards trapped B. tabaci adults and significantly reduced whitefly populations on tomato. The yellow sticky cards that were placed parallel to tomato rows caught significantly more whitefly adults than those placed perpendicular to tomato rows on every sampling date. In the treatment where parasitoids were released once at 30/m2 in high whitefly density greenhouses, the number of live whitefly nymphs were reduced from 4.6/leaf to 2.9/leaf in 40 days as compared with those on untreated plants on which live whitefly nymphs increased from 4.4/leaf to 8.9/leaf. In the treatment where parasitoids were released twice at 15/m2 in low whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.1/leaf to 1.7/leaf in 20 days as compared with those on untreated plants on which numbers of live nymphs of B. tabaci increased from 2.2/leaf to 4.5/leaf. In the treatment of yellow sticky cards and parasitoid release once at 30/m2 in high whitefly density greenhouses, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 7.2/leaf to 1.9/leaf, and in the treatment of yellow sticky cards and parasitoid release twice at 15/m2 at a 5‐day interval at low whitefly density, the numbers of live nymphs of B. tabaci on tomato leaves were reduced from 2.5/leaf to 0.8/leaf; whereas the numbers of live nymphs of B. tabaci on untreated plants increased from 4.4/leaf to 8.9/leaf. An integrated program for management of B. tabaci on greenhouse vegetables by using yellow sticky cards, parasitoids and biorational insecticides is discussed.  相似文献   

5.
Bemisia tabaci (Gennadius) is an important invasive pest of vegetables and other horticultural plants worldwide. In this study, the functional response of Neoseiulus cucumeris (Oudemans) to different stages of immature B. tabaci was evaluated under laboratory conditions. Predation experiments were conducted on tomato leaf discs (2.5?cm diameter) over a 24-h period at 26?±?1°C and 65?±?5% relative humidity with a L16:D8 photoperiod. The prey densities ranged from 5 to 90 immature stages (eggs and first- to fourth-instar nymphs) of B. tabaci per leaf disc. The results showed that the egg stage of B. tabaci was the most susceptible prey stage and that the mated female adult mite (3-day-old) was a more effective predator than the male adult mite. The functional response of adult N. cucumeris followed a Type II trend curve as shown in a logistic regression model. Adult N. cucumeris exhibited different predation tendencies towards prey in different stages of immaturity. The daily maximum number of eggs, first-, second- and third-instar nymphs of B. tabaci killed by a single female over a 24-h period (26?±?1°C, 65?±?5% RH and L16:D8 photoperiod) were 8.5, 5.2, 3.0 and 2.1, respectively, whereas the number killed by a single male was 6.0, 4.0, 2.3 and 1.8, respectively. The results of this study could help determine an effective B. tabaci biocontrol measure that employs a natural predator.  相似文献   

6.
7.
The potential for using the entomopathogenic fungus Lecanicillium muscarium to control the sweetpotato whitefly, Bemisia tabaci has been established in the laboratory by other studies. Laboratory studies however frequently overestimate the level of control achieved by biological control agents in the glasshouse. Before full-scale commercial or field development is considered, glasshouse trials are required to confirm laboratory results. Under both controlled laboratory and glasshouse conditions high mortality of second instar B. tabaci was recorded after application of L. muscarium. The potential of incorporating L. muscarium into integrated pest management strategies for the control of B. tabaci is discussed.  相似文献   

8.
Isaria fumosorosea is an entomopathogenic fungus that is used as a control alternative for nymphs and adults of Bemisia tabaci. Currently there are some commercial products, however, in greenhouse or field, these do not reach the levels of control as in the laboratory because the viability of the spores decreases as a result of the conditions of application of these products in situ. The objective of this work is to implement, through agroecological data, a system of biotechnological traps based on I. fumosorosea to increase the control efficiency mainly of adults of B. tabaci in strawberry greenhouses. One way to quantify the degree of infestation of a crop is the use of yellow traps, likewise to determine the spatial distribution of adults. The Taylor method [(1984). Assessing and interpreting the spatial distributions of insect populations. Annual Reviews of Entomology, 29, 321–357) was used in five different strawberry cultivation models, finding aggregate and regular distributions. Finally, once the crop model with the highest degree of infestation was selected, the designed traps were tested and mortalities were obtained between 50% and 90% in both the laboratory and the greenhouse. The biotechnological traps based on I. fumosorosea both in the laboratory and in the greenhouse had statistically the same effect as those used under the traditional method used in the field that is aspersion; therefore, this alternative method of application can be a tool important for the biological control of this pest.  相似文献   

9.
10.
A strain of the fungus Cladosporium sp. (RM16) from an egg of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae) was assessed as a potential biocontrol agent for this pest. Pathogenicity of the fungus was tested against H. armigera eggs and larvae, cotton aphids (Aphis gossypii Glover; Homoptera: Aphididae), and silverleaf whitefly type B (Bemisia tabaci Gennadius; Hemiptera: Aleyrodidae). The pathogenicity of the fungus to the predatory red and blue beetles (Dicranolaius bellulus Guérin-Méneville; Coleoptera: Melyridae), transverse ladybird beetles (Coccinella transversalis Fabricius; Coleoptera: Coccinellidae), green lacewings (Mallada signatus Schneider; Neuroptera: Chrysopidae) and damsel bugs (Nabis kinbergii Reuter; Hemiptera: Nabidae), was also assessed in the laboratory. Fungus treatment resulted in failure to hatch of up to 64% of H. armigera eggs (compared with 11% in the controls) and mortality of 54% of first instar H. armigera larvae (compared with 5% in the controls). In contrast, it was not pathogenic to later instar H. armigera larvae. Cladosporium RM16 was also efficacious against the sap-sucking insect pests of cotton that were tested. No significant harmful effect of the fungus was found on any of the four beneficial predatory insects assessed in this study. Cladosporium RM16 has the potential as biological control agent to support integrated pest management in cotton farming systems, although this needs intensive study.  相似文献   

11.
The esterase enzymes are a major component of insect detoxification systems and play a crucial role in hydrolyzing lots of xenobiotic compounds. Among insect, generalist herbivores can exhibit developed biochemical defences as a result of exposing to a wide range of plant chemical compounds. To overcome this ability, host plants may affect the level of hydrolases in herbivore insects feeding on. To examine this hypothesis, in the present study total esterase activity was investigated in a highly polyphagous whitefly, Bemisia tabaci, reared on six different varieties of cotton, Gossypium hirsutum. Results showed significant differences in esterase activity of B. tabaci feeding on the host plant varieties. The highest esterase activities were detected in whiteflies feeding on Sk-Tb and Siokra varieties, whereas those whiteflies that feed on Hopicala variety exhibited the least esterase activities. Our findings highlight the important role of host plants in detoxification ability of herbivore insects. The importance of these findings in biology of insect pests and their applications in integrated pest management programmes of B. tabaci have been discussed in detail.  相似文献   

12.
Bemisia tabaci biotype B is a key pest in pepper crops in Argentina. The parasitoid Eretmocerus mundus is frequently found parasitizing this whitefly in greenhouses without pesticide applications. The present studies were carried out with the objective of evaluating control obtained with different rate and number of parasitoid releases under experimental conditions. Release rate: cages with pepper pots were positioned in an experimental greenhouse and randomly assigned to the release rate treatments (0, 1 and 3 pairs of E. mundus/plant/week with a total of three introductions). Number of releases: similar cages were assigned to the number of parasitoid introduction treatments (0, 1, 2 and 3) with the best release rate obtained in the previous trial. In both assays whitefly (adults and nymphs) and parasitoid (parasitized nymphs) population sizes in each cage were monitored weekly for a period of 10 weeks. Results suggested that the introduction of 2 E. mundus/plant/week was enough to suppress host population compared to control treatment (peaks of 7.75 adults and 58.75 nymphs/cage and 643.75 adults and 1598 nymphs/cage, respectively) (p < 0.05), with 85% of parasitism. E. mundus had to be introduced three times to achieve the best pest control (peaks of 1.17 adults and 20.33 nymphs/cage vs. 55.67 adults and 75 nymphs/cage in control treatment) with 84% of parasitism (p < 0.05). These results were then validated in a pepper crop under experimental greenhouse conditions. Whitefly population was lower in those greenhouses where E. mundus was released compared to control greenhouses (0.15 adults and 0.71 nymphs/4 leaves and 0.73 adults and 1.64 nymphs/4 leaves, respectively), with a peak of 54% of parasitism (p < 0.05). We concluded that good suppression of B. tabaci could be achieved using E. mundus under spring conditions in Argentina.  相似文献   

13.
Atmospheric carbon dioxide concentration is expected to rise in the coming decades. Rising atmospheric CO2 levels may alter plant‐insect‐parasitoid associations due to the indirect effects of CO2 enrichment on phytochemicals important for herbivore and parasitoid nutrition. Tritrophic effects of elevated CO2 on Bt cotton (GK‐12) and non‐transgenic (Simian‐3, or S3) cotton [Gossypium hirsutum L. (Malvaceae)], Bemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae), and its parasitoid Encarsia formosa Gahan (Hymenoptera: Aphelinidae), were examined in open‐top chambers. Significantly, longer egg‐adult developmental duration and higher mortality of nymphs were observed under elevated CO2 concentrations on both cotton cultivars during three successive generations. However, no significant differences were found in adult longevity, offspring sex ratio, and the number of eggs laid per female adult of B. tabaci fed on transgenic (GK‐12) or non‐transgenic cotton (S3) grown under elevated CO2. Abundance of B. tabaci adults increased from 10 to 120 per plant and then decreased to 40 per plant through the growing season, but no significant differences in density occurred between CO2 treatments and between cultivar treatments. Similarly, no significant differences were found in the developmental duration, parasitization rate, and adult emergence rate of E. formosa after parasitizing B. tabaci for three successive generations. Our results showed that the effects of transgenic Bt cotton did not significantly affect the development, survivorship, life span, or fecundity of B. tabaci and its parasitoids. Moreover, interactions between B. tabaci and E. formosa were not significantly affected by elevated CO2. These results suggest that the biological control of B. tabaci by E. formosa would not be influenced by transgenic Bt cotton and/or elevated CO2, indicating that the current risk management strategy regarding B. tabaci outbreaks and biocontrol by E. formosa will remain effective if the atmospheric CO2 level continues to rise.  相似文献   

14.
We used brightfield electron microscopy (BEM), differential interference contrast microscopy (DICM), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM) to investigate the stylet pathways of Bemisia tabaci during nymphal feeding behavior in cotton leaves beginning with penetration of the abaxial leaf surface and ending with stylets in sieve tubes in phloem tissues. Most nymphal stylets within salivary sheaths penetrating leaf tissues made complex turns and developed more than one salivary sheath branch before ending in sieve tubes. The external morphology of the salivary sheaths and their routes between and through leaf cells are described during the present study. Results showed the presence of the stylet within the sieve tubes. B. tabaci nymphs may remove stylets and feed in different sieve tubes. Ten short movies showing the progression of the stylet penetrations from adaxial surface to the sieve tubes are attached to Figures 8-15. The report and movies can be viewed from the internet. Download the movies to a local drive in your computer first for fast upload. The movies are posted on the website http://www.ars.usda.gov/Services/docs.htm?docid=14629. The movies can be used as a teaching aid in biology classes.  相似文献   

15.
The native parasitoid Eretmocerus mundus Mercet and the predator Macrolophus pygmaeus Rambur are widely used to control Bemisia tabaci (Gennadius) in Mediterranean tomato greenhouses. An optimal biological control strategy for B. tabaci should take into account intraguild interactions between these natural enemies. In this study, predator's prey preferences and prey consumption were studied when offered different parasitoid and whitefly stages. The effect of the host plant on the adults of both natural enemies was also examined. M. pygmaeus preferred to consume B. tabaci over E. mundus when immature stages and adults of B. tabaci and E. mundus were offered. They consumed a larger amount of healthy B. tabaci nymphs and adults than of parasitised nymphs or E. mundus adults. The predator M. pygmaeus interfered with the reproduction of E. mundus females on cotton but not on tomato. However, B. tabaci nymphal mortality on tomato associated with parasitoid host feeding was also lower when the adult parasitoids coexisted with the predators. The joint release of M. pygmaeus and E. mundus adults did not increase the control of the whitefly B. tabaci.  相似文献   

16.
Abstract The sweetpotato whitefly, Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) remains a serious threat to crops worldwide. The damaging B‐biotype is of specific economic concern because it is an effective vector of over 111 viruses from several families, particularly geminiviruses. Bemisia tabaci is regularly intercepted on plants coming into the UK where it is subjected to a policy of eradication. The UK maintains Protective Zone status against this pest. A main pathway of entry of B. tabaci into the Protected Zone involves propagating material, especially Poinsettia (Euphorbia pulcherrima). With increased insecticide resistance continuously being recorded, B. tabaci is becoming more difficult to control/eradicate. Recent research involving both entomopathogenic nematodes and fungi is showing much potential for the development of control programs for this pest. Both the nematode Steinernema feltiae and the fungus Lecanicillium muscarium have been shown to be most effective against second instar B. tabaci. Fine‐tuning of the environmental conditions required has also increased their efficacy. The entomopathogens have also shown a high level of compatibility with chemical insecticides, all increasing their potential to be incorporated into control strategies against B. tabaci.  相似文献   

17.
An outbreak of the sweetpotato whitefly, Bemisia tabaci (Gennadius), biotype B occurred in the Imperial Valley, California in 1991. The insects destroyed melon crops and seriously damaged other vegetables, ornamentals and row crops. As a result of the need for sampling technology, we developed a whitefly trap (named the CC trap) that could be left in the field for extended time periods. We used the traps to monitor populations ofB. tabaci adults during year-round samplings from 1996 to 2002 to study variations in the weekly trap catches of the insect. The greatest number ofB. tabaci adults was recorded in 1996, followed by a continuing annual decrease in trap catches each year through 2002. The overall decline of B. tabaci is attributed in part to the adoption of an integrated pest management (IPM) program initiated in 1992 and reduced melon hectares from 1996 to 2002. Other factors may also have contributed to the population reductions. Seasonally, B. tabaci trap catches decreased during the late summer and fall concurrent with decreasing minimum tempera- tares that are suggested to be a significant factor affecting seasonal activity and reproduction.  相似文献   

18.
Laboratory bioassays were conducted to determine host plant effect on pathogenicity of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuill. (Ascomycota: Hypocreales) to the sweetpotato whitefly, Bemisia tabaci (Gennadius) (Homoptera: Aleyrodidae). Fourth instar B. tabaci reared on cucumber, tomato, melon, green pepper, potato, eggplant, marrow, cabbage, bean or cotton, were treated with 1 × 107 conidia/ml B. bassiana EABb 93/14-Tp isolate. Mortality caused by B. bassiana significantly increased with time and it was significantly affected by the host plant on which the nymphs were reared. Mean mortality of nymphs 8 days after inoculation ranged between 52.3±7.3 for nymphs reared on cotton and 91.8±5.8 for nymphs reared on cucumber. Average survival times of nymphs treated with the fungal suspensions were also significantly influenced by the host plant, with a mean of 4.7±0.1 days for nymphs reared on cucumber, 6.6±0.2 days for cotton and 6.9±0.1 days for green pepper. The production of newly formed conidia was also affected by host plant and varied from 111000±8600 conidia/cadaver for nymphs reared on cotton to 597000±28000 conidia/cadaver for those reared on melon.  相似文献   

19.
The ability of thrips and other minute insects to escape from conventional assay cups led to development of a successful assay chamber. In the present study, we evaluated three bioassay systems for thrips; Tashiro cage, microtube assay and leaf sandwich assay and introduced an improved thrips entomopathogenic bioassay system (TEBS). Our objective was to investigate the effect of Metarhizium anisopliae on Thrips tabaci using an easy-to-use and inexpensive holding chamber that would produce bioassay results with acceptable levels of accuracy and precision. In our assays, we found that escape of second-instar larvae from TEBS was significantly less than those of other methods which we tested. Our results indicated that our assay system was more suitable than the other conventional assays for the bioassay of entomopathogenic fungi on T. tabaci.  相似文献   

20.
《Journal of Asia》2023,26(1):102022
The sweet potato whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), and the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), are important pests of protected crops grown in warm climates. We compared efficacy of a new strain of the entomopathogenic fungus Beauveria bassiana (ARP14) isolated from Riptortus pedestris (Hemiptera: Alydidae) with a commercial strain (GHA) against different life stages of both B. tabaci and T. vaporariorum. Eggs, nymphs, and adults were exposed to 1 × 108 conidia/mL of each strain using the leaf-dipping method. The mycosis rate of B. tabaci eggs (as a proportion) was relatively low (0.13 for B. bassiana ARP14 and 0.10 for B. bassiana GHA), while, for T. vaporariorum eggs, mycosis rate was 0.44 for B. bassiana GHA and 0.27 for B. bassiana ARP14. However, mycosis rate of 1st instars of both whiteflies was much higher than for eggs, for both strains (ARP14 and GHA). The developmental period of B. tabaci eggs exposed to ARP14 was significantly shorter than for either eggs treated with GHA or the control. For 2nd and 4th instar nymphs and adults of both whiteflies there were no differences in mycosis rates between the two B. bassiana strains. These results suggest that, B. bassiana ARP14 could be commercialized as a native biological control agent for control of B. tabaci and T. vaporariorum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号