首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Field monitoring revealed that the infection ratio of the bacterial symbiont Cardinium in the whitefly (Bemisia tabaci MED) was relatively low in northern China. However, the role of this symbiont and the symbiont–whitefly–host plant interaction mechanism are poorly understood. We investigated the influence of Cardinium on the competitiveness of the host whitefly and the physiological interaction between the host plants and host whiteflies. Cardinium-infected whiteflies were displaced by uninfected whiteflies after 5 generations, which showed that Cardinium infection reduced whitefly competitiveness. The defense response genes of cotton significantly decreased under infestation by infected whiteflies compared to uninfected whiteflies. The expression of detoxification metabolism genes, especially the uridine 5ʹ-diphospho-glucuronyltransferase and P450 genes, in infected whiteflies significantly decreased. These results demonstrated that Cardinium could inhibit the defense response of the host plant and decrease the detoxification metabolism ability of the host whitefly. The reduced competitiveness of infected whiteflies may be associated with the inhibition of the whitefly detoxification metabolism by Cardinium, resulting in the reduced performance of infected whiteflies. However, Cardinium infection can suppress plant defenses, which may benefit both infected and uninfected whiteflies when they coexist. This research illustrates the symbiont–whitefly–host plant interaction mechanism and the population dynamics of the whitefly.  相似文献   

2.
The development of herbivore insects is influenced by the quality of their host plants. Elevated CO2 alters plant metabolism, which may change the nutritional quality of the plant, modifying the life history and feeding behaviour of herbivore insects. Understanding how insect pests respond to increasing CO2 concentration is essential for predicting the impact of the pest on food security. In this study, we investigated the effects of elevated CO2 (eCO2) on the life history and feeding behaviour of the MEAM1 species of Bemisia tabaci on a Bt soybean cultivar. We found that eCO2 increased the egg to adult development time and reduced the reproductive responses (fecundity and fertility) of B. tabaci. The whitefly B. tabaci that fed on the soybean plants grown under eCO2 conditions was negatively influenced by several traits related to the host plant resistance, such as the time spent on phloem sap ingestion. Furthermore, we evaluated the changes in the C:N concentration and plant morphology of the Bt plants. The biomass (weight of leaves and stems) of the Bt soybean plants grown under eCO2 conditions was significantly increased, and the elevated C:N ratio in the phenological stage V6 (i.e. when the plants had six trifoliate leaves developed) was the most pronounced difference in the Bt soybean plants subjected to eCO2 treatment. Taken together, our results indicate that Bt plants cultivated under eCO2 inhibit B. tabaci feeding, which can reduce whitefly infestations of the soybean fields.  相似文献   

3.
Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a highly polyphagous herbivore. This research was conducted to compare the development of B. tabaci reared in a multi‐plant treatment (polyculture) with those in single‐plant treatments (monocultures). Adult B. tabaci females fed on a mixture of tomato, cabbage, cotton, cucumber, and kidney bean survived longer and laid more eggs than those fed exclusively on one of these plant species. Egg numbers per plant laid in the polyculture treatment were positively correlated with those laid on the same plant species in the monoculture treatments, and egg numbers per plant laid on tomato, cotton, and cucumber in the polyculture were significantly higher than those laid on the same plants in the monocultures. Concentrations of total protein and trehalose in B. tabaci were not significantly different after 7 days of feeding in the respective treatments, but activities of superoxide dismutases (SOD) and alkaline phosphatase (AKP) of B. tabaci in polyculture were lower than those in monoculture. Conversely, activities of trehalase, sucrase, and amylase in B. tabaci kept in polyculture were higher than those of insects from the monoculture. In each of the monoculture treatments, there was a negative correlation between AKP in B. tabaci and oviposition, and also between AKP and amylase. SOD and sucrase activities in B. tabaci were positively correlated with polyphenol oxidase (PPO) and peroxidase (POD) activities in plants. In the plants damaged by whiteflies in the polyculture treatment, activities of SOD in cucumber, PPO in cotton and kidney bean, and POD in tomato and cucumber were lower than those in the monoculture treatments, whereas SOD in cabbage and catalase (CAT) in tomato in the polyculture treatment were higher than those in the monoculture treatments.  相似文献   

4.
Nomikou M  Janssen A  Sabelis MW 《Oecologia》2003,136(3):484-488
Evidence is accumulating that herbivorous arthropods do not simply select host plants based on their quality, but also on the predation risk associated with different host plants. It has been suggested that herbivores exclude plant species with high predation risk from their host range. This assumes a constant, predictable predation risk as well as a rather static behaviour on the part of the herbivore; plants are ignored irrespective of the actual predation risk. We show that adult females of a small herbivore, the whitefly Bemisia tabaci, can learn to avoid plants with predatory mites that attack only juvenile whiteflies, while they accept host plants of the same species without predators. Predatory mites disperse more slowly than whiteflies; they cannot fly and walk from plant to plant. Hence, by avoiding plants with predators, the whiteflies create a temporary refuge for their offspring. We suggest that the experience of arthropod herbivores with risks associated with host plants plays an important role in their host plant selection.  相似文献   

5.
Abstract.The effects of water stress on phloem sap quality of the melon, Cucumis melo, and how this, in turn, has an impact on the sweet potato whitefly, Bemisia tabaci were studied. Melon plants were grown under watering regimes that produced plants with or without water stress. Plants showed strong developmental responses to the treatments; water-stressed plants were shorter, with fewer, smaller leaves than those without stress. There was, however, no effect of plant water stress on the development period of whiteflies feeding on these plants, or on the weights of male or female adults. Honeydew production was used as an indirect measure to test whether the absence of insect developmental or behavioural effects was due to differential phloem sap ingestion. Feeding rates on the stressed plants were almost half those on unstressed plants, and there was also variation in the daily pattern of honeydew production. Phloem sap and honeydew were analysed to determine why the feeding behaviours differed. Amino acid composition of the phloem sap was similar in both groups of plants, but carbohydrate concentrations were greater in water-stressed plants, indicating that lower feeding rates may have been due either to the physical or nutritional quality of the phloem sap. The honeydew of insects that were feeding on water-stressed plants contained a greater concentration of carbohydrate than those on unstressed plants, and was composed of a significantly greater proportion of glucose and the disaccharide, trehalulose. This isomerization of more complex sugars from those in the diet suggests that B. tabaci uses a mechanism of osmoregulation to actively maintain its internal water status. It is concluded that transient conditions of water stress in this host plant do not affect the development of B. tabaci, due to physiological and behavioural changes in response to diets with different nutritional and physical properties. The implications of this finding for the feeding biology of B. tabaci on desert-grown crops are discussed.  相似文献   

6.
Ecological hypotheses of plant–insect herbivore interactions suggest that insects perform better on weakened plants and plants grown under optimal conditions are less damaged. This study tested the hypothesis that the colonization and oviposition rates by pests with different feeding strategies and levels of specialization are affected in different ways by two conditions commonly faced by commercially grown plants–water deficit and application of kaolin sprays, a reducer of abiotic plant stressors. We used four major pests of cotton as insect herbivore models. Three were chewing Lepidoptera: Alabama argillacea (Hüb.), a monophagous pest on cotton; Heliothis virescens (Fabr.), which is polyphagous, but with cotton as a primary host; and Chrysodeixis includens (Walk.), which is polyphagous, with cotton as secondary host. The fourth pest was a sap-sucking species, the polyphagous whitefly Bemisia tabaci (Gen.). In both choice and no-choice trials, the three chewing pests oviposited significantly less upon water-stressed plants; the greatest effect was observed for C. includens (>90 % reduction in oviposition under choice and >58 % under no-choice conditions). In contrast, the sap-sucking B. tabaci exhibited statistically more colonization and oviposition on water-stressed plants. Application of kaolin sprays reduced colonization and oviposition by all herbivore species tested, irrespective of irrigation regime and feeding strategies.  相似文献   

7.
Interactions between plants and herbivorous insects have been models for theories of specialization and co‐evolution for over a century. Phytochemicals govern many aspects of these interactions and have fostered the evolution of adaptations by insects to tolerate or even specialize on plant defensive chemistry. While genomic approaches are providing new insights into the genes and mechanisms insect specialists employ to tolerate plant secondary metabolites, open questions remain about the evolution and conservation of insect counterdefences, how insects respond to the diversity defences mounted by their host plants, and the costs and benefits of resistance and tolerance to plant defences in natural ecological communities. Using a milkweed‐specialist aphid (Aphis nerii) model, we test the effects of host plant species with increased toxicity, likely driven primarily by increased secondary metabolites, on aphid life history traits and whole‐body gene expression. We show that more toxic plant species have a negative effect on aphid development and lifetime fecundity. When feeding on more toxic host plants with higher levels of secondary metabolites, aphids regulate a narrow, targeted set of genes, including those involved in canonical detoxification processes (e.g., cytochrome P450s, hydrolases, UDP‐glucuronosyltransferases and ABC transporters). These results indicate that A. nerii marshal a variety of metabolic detoxification mechanisms to circumvent milkweed toxicity and facilitate host plant specialization, yet, despite these detoxification mechanisms, aphids experience reduced fitness when feeding on more toxic host plants. Disentangling how specialist insects respond to challenging host plants is a pivotal step in understanding the evolution of specialized diet breadths.  相似文献   

8.
Virus infection may change not only the host‐plant phenotypic (morphological and physiological) characteristics, but can also modify the behavior of their insect vector in a mutualistic or rather antagonistic manner, to promote their spread to new hosts. Viruses differ in their modes of transmission and depend on vector behavior for successful spread. Here, we investigated the effects of the semi‐persistently transmitted Tomato chlorosis virus (ToCV, Crinivirus) and the persistent circulative Tomato severe rugose virus (ToSRV, Begomovirus) on alighting preferences and arrestment behavior of their whitefly vector Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Middle East Asia Minor 1 (MEAM1) on tomato plants (Solanum lycopersicum L. cv. Santa Clara, Solanaceae). The vector alighting preferences between infected and uninfected plants in choice assays were apparently influenced by the presence of ToCV and ToSRV in the whiteflies or by their previous exposure to infected plants. The observed changes in vector behavior do not seem to benefit the spread of ToCV: non‐viruliferous insects clearly preferred mock‐inoculated plants, whereas ToCV‐viruliferous insects landed on mock‐inoculated and ToCV‐infected plants, indicating a partial change in insect behavior – ToCV was able to directly affect the preference of its vector B. tabaci, but this change in insect behavior did not affect the virus spread because viruliferous insects landed on mock‐inoculated and infected plants indistinctly. In contrast, ToSRV‐viruliferous insects preferred to land on mock‐inoculated plants, a behavior that increases the probability of spread to new host plants. In the arresting behavior assay, the majority of the insects remained on mock‐inoculated plants when released on them. A greater number of insects moved toward mock‐inoculated plants when initially released on ToCV‐ or ToSRV‐infected plants, suggesting that these viruses may repel or reduce the nutritional quality of the host plants for B. tabaci MEAM1.  相似文献   

9.
《Trends in plant science》2023,28(6):715-727
Begomoviruses constitute an extremely successful group of emerging plant viruses transmitted by whiteflies of the Bemisia tabaci complex. Hosts include important vegetable, root, and fiber crops grown in the tropics and subtropics. Factors contributing to the ever-increasing diversity and success of begomoviruses include their predisposition to recombine their genomes, interaction with DNA satellites recruited throughout their evolution, presence of wild plants as a virus reservoir and a source of speciation, and extreme polyphagia and continuous movement of the insect vectors to temperate regions. These features as well as some controversial issues (replication in the insect vector, putative seed transmission, transmission by insects other than B. tabaci, and expansion of the host range to monocotyledonous plants) will be analyzed in this review.  相似文献   

10.
Drought events are predicted to increase due to climate change, yet consequences for plant–insect interactions are only partially understood. Drought‐mediated interactions between herbivores and their host plants are affected by a combination of factors, including characteristics of the affected plant, its associated herbivore and of the prevailing drought. Studying the effect of these factors in combination may provide important insight into plant and herbivore responses to drought. We studied drought effects on plant resistance to two leaf‐chewing herbivores by considering differing growth conditions, plant chemistry and insect responses in concert. We exposed Alliaria petiolata plants from several wild populations to different intensities of intermittent drought stress and quantified drought‐mediated changes in plant chemistry. Simultaneously, we assessed behavior (feeding preference) and performance of two lepidopteran herbivores: Pieris brassicae, a specialist, and Spodoptera littoralis, a generalist. Drought led to lowest concentrations of secondary defense compounds in severely stressed plants, without affecting total nitrogen content. Additionally, drought evoked opposite patterns in feeding preferences (plant palatability) between the herbivore species. Pieris brassicae consumed most of well‐watered plants, while S. littoralis preferred severely drought‐stressed plants. Hence, feeding preferences of S. littoralis reflected changes in plant secondary chemistry. Contrary to their feeding preference, P. brassicae performed better on drought‐stressed than on well‐watered plants, with faster development and higher attained pupal mass (plant suitability). Spodoptera littoralis showed retarded development in all treatments. In conclusion, drought caused plant secondary defense compounds to decrease consistently across all studied plant populations, which evoked contrasting feeding preferences of two herbivore species of the same feeding guild. These results suggest herbivore specificity as a possible explanation for herbivore responses to drought and emphasize the importance of herbivore characteristics such as feeding specialization in understanding and predicting consequences of future drought events.  相似文献   

11.
陈澄宇  康志娇  史雪岩  高希武 《昆虫学报》2015,58(10):1126-1130
植物次生物质(plant secondary metabolites)对昆虫的取食行为、生长发育及繁殖可以产生不利影响,甚至对昆虫可以产生毒杀作用。为了应对植物次生物质的不利影响,昆虫通过对植物次生物质忌避取食、解毒代谢等多种机制,而对寄主植物产生适应性。其中,昆虫的解毒代谢酶包括昆虫细胞色素P450酶系(P450s)及谷胱甘肽硫转移酶(GSTs)等,在昆虫对植物次生物质的解毒代谢及对寄主植物的适应性中发挥了重要作用。昆虫的解毒酶系统不仅可以代谢植物次生物质,还可能代谢化学杀虫剂,因而昆虫对寄主植物的适应性与其对杀虫剂的耐药性甚至抗药性密切相关。昆虫细胞色素P450s和GSTs等代谢解毒酶活性及相关基因的表达可以被植物次生物质影响,这不仅使昆虫对寄主植物的防御产生了适应性,还影响了昆虫对杀虫剂的解毒代谢,因而改变昆虫的耐药性或抗药性。掌握昆虫对植物次生物质的代谢适应机制及其在昆虫抗药性中的作用,对于明确昆虫的抗药性机制具有重要的参考意义。本文综述了植物次生物质对昆虫的影响、昆虫对寄主植物次生物质的代谢机制、昆虫对植物次生物质的代谢适应性对昆虫耐药性及抗药性的影响等方面的研究进展。  相似文献   

12.
13.
Our laboratory found that silverleaf whitefly (SLW; Bemisia argentifolii Bellows & Perring) feeding alters host plant physiology and chemistry. The SLW induces a number of host plant defenses, including pathogenesis-related (PR) protein accumulation (e.g., chitinases, beta-1,3-glucanases, peroxidases, chitosanases, etc.). Induction of the PR proteins by SLW feeding occurs in various plant species and varieties. The extent and type of induction is dependent on a number of factors that include host plant growing conditions, the length of time the host plant is exposed to SLW feeding, the plant variety, and SLW population densities. The appearance of PR proteins correlates well with reduced infestations of conspecific insect herbivore competitors. Greenhouse and field experiments in which herbivore competitors (cabbage looper, Trichoplusia ni; leaf miner, Liromyza trifolii) were placed on plants previously exposed to SLW feeding demonstrated behavioral differences (oviposition, feeding preferences) and reduced survival rates and development times of these insects. The interaction was asymmetrical, i.e., SLW infestations of plants previously exposed to leaf miners had little or no effect on SLW behavior (oviposition). Induction of plant-defensive proteins by SLW feeding was both local (at the feeding site) and systemic (uninfested leaves distant to the feeding site). There are interactions between diseases such as tomato mottle virus (ToMoV; a geminivirus) and the host plant and SLW. PR proteins were induced in tomato plants infected with ToMoV much as they were via non-viruliferous SLW feeding. The presence of ToMoV in tomato plants significantly increased the number of eggs produced by SLW females. Experiments using tomato plants, powdery mildew (PM), and tobacco mosaic virus (TMV) show that whitefly infestations can affect plant pathogen relationships but the effects vary among pathogen types. Enzyme analyses prior to pathogen inoculation showed that whitefly treatment significantly increased the activities of foliar chitinase and peroxidase. Evaluation of pathogen growth 3 weeks after inoculation showed that whitefly feeding significantly reduced the incidence of PM. However, TMV levels evaluated by ELISA were not significantly affected by whitefly feeding. Six weeks after inoculation with pathogens, the chitinase and peroxidase activities were still elevated in plants initially fed on by whiteflies but continuing pathogen infection had no effect on these enzymes. The possibility that geminivirus infection and/or SLW infestations isolate the host plant for the selected reproduction of the virus and the insect is discussed. Multitrophic cascade effects may contribute to the successful eruptive appearance of SLW on various crops, ranking them as a major pest. They may explain the general observation that when SLW infest a host plant there are few if any competing insect herbivores and pathogens found in the host. However, the results indicate that certain SLW-virus relationships could be mutualistic.  相似文献   

14.
Summary Levels of insect attack and yields of leaf essential oils in Eucalyptus vary widely within and among species. We tested the hypotheses that 1) metabolic cost of oil detoxification increases with increasing oil yield, resulting in lower herbivore growth rates and, consequently, 2) in lower herbivore damage to plants. Distribution of insect damage, eggs, immature insects and adults and feeding rates, growth and survivorship of insects do not support the hypotheses, although a threshold level of oil may be necessary to influence herbivorous insects. Herbivorous beetles tested do not detoxify essential oils. Levels of leaf nitrogen, rather than oil content, explained differences in insect feeding and growth.  相似文献   

15.
Abstract The sweetpotato whitefly, Bemisia tabaci, has been a destructive pest in China for over the past two decades. It is an extremely polyphagous insect, being recorded feeding on hundreds of host plants around the world. Potential host plants and natural enemies of B. tabaci in the south, southeast, middle, north and northwest of China were investigated during the last decade. In total 361 plant species from 89 families were recorded in our surveys. Plants in the families Compositae, Cruciferae, Cucurbitaceae, Solanaceae and Leguminosae were the preferred host species for B. tabaci, which therefore suffered much damage from this devastating pest due to their high populations. In total, 56 species of parasitoids, 54 species of arthropod predators and seven species of entomopathogenic fungi were recorded in our surveys. Aphelinid parasitoids from Encarsia and Eretmocerus genera, lady beetles and lacewings in Coleoptera and Neuroptera were found to be the dominant arthropod predators of B. tabaci in China. The varieties of host plant, their distribution and the dominant species of natural enemies of B. tabaci in different regions of China are discussed.  相似文献   

16.
Isaria fumosorosea is one of important entomopathogenic fungi showed a good potential in controlling Bemisia tabaci. The effects of I. fumosorosea Ifchit1 mutant (Ifchit1 gene deletion mutant) on the mortality, oviposition, and host immunological response of B. tabaci, on Brassica campestris L. plant, were evaluated under laboratory conditions. The wild-type fungal strain infection significantly increased insect mortality and reduced the oviposition effeciency of B. tabaci, whereas the Ifchit1 mutant was much less effective, resulting in higher survival and ovipositing of B. tabaci. The activities of four insect enzymes were examined during a time course of fungal infection. Insect phenoloxidase, perioxidase, and catalase activities were decreased in whiteflies treated with the wild type and mutant I. fumosorosea strain at 12–36?h post treatment. However, these enzyme activities increased in fungal-treated whiteflies as compared to controls between 36 and 60?h post-infection, reaching peak values. Superoxide dismutase activity in fungal-treated whiteflies was higher than that in controls during the entire experimental time course examined. The overall enzyme activity profiles in Ifchit1 mutant-treated whiteflies were significantly different from wild-type strain treatments. Our results showed that loss of the Ifchit1 gene in I. fumosorosea affects whitefly mortality, ovipositioning and various antioxidant enzyme activities, providing new insights into the role of chitinases in I. fumosorosea-insect host–pathogen interactions.  相似文献   

17.
The electrical penetration graphing or electropenetrography (EPG) technique is essential for understanding interactions of hemipteran insects with their host plants. Typically, 10–12.5 μm diameter gold wire is used as the tethering material in EPG studies. This wire was originally chosen based on suitability for aphids, but application of the EPG technique to other insects necessitates testing of alternative tethering materials that permit natural foraging and probing behavior. Whiteflies are one group for which EPG studies are increasing, with most researchers using 10 or 12.5 μm diameter gold wire even though these insects are smaller than aphids and very different in mobility. However, 2.5 μm diameter Wollaston process platinum wire has been used for a subset of EPG studies and seems to permit more natural movement and feeding behaviors. Here, we compared EPG variables derived from recordings of the sweet potato whitefly (Bemisia tabaci) tethered with 12.5 μm diameter gold wire or 2.5 μm diameter platinum wire. On a suitable host, gold-tethered whiteflies had reduced phloem phases, which are indicative of host plant acceptance, compared to platinum-tethered whiteflies. When we included a treatment known to reduce plant quality (methyl jasmonate application), platinum-tethered whiteflies exhibited expected reductions in EPG variables related to host acceptance, while gold-tethered whiteflies either had no response, or the opposite response. Our results indicate that tethering material strongly influences the outcome of EPG experiments, with important consequences for evaluations of host plant resistance, putative instances of plant virus manipulation, and feeding variables associated with virus transmission.  相似文献   

18.
Insect–plant interactions occur in several ways and have considerable environmental and ecological importance. Many feeding strategies have evolved among herbivorous insects, with host–herbivore systems likely being influenced by trophobionts with ants. We investigated how these interactions vary across elevation gradients by evaluating the structure of the herbivorous insect community and ants associated with Baccharis dracunculifolia at three distinct elevations (800, 1100, and 1400 m a.s.l.) on a mountain in southeastern Brazil. Moreover, we evaluated the diversity and specialisation of interactions between herbivores and host plants along the elevational gradient. We sampled herbivores and ants on 60 plants at each elevation (totalling 180 plant individuals). Herbivore species composition differed among elevations, as did interaction diversity and specialisation. Richness and abundance of chewing insects increased with elevation, while β‐diversity among patches of the host plant was higher at the lowest elevation, probably due to the patchy occurrence of B. dracunculifolia. Richness and abundance of sap‐sucking insects were higher at the intermediate elevation, possibly due to local environmental conditions. We observed a positive relationship between ant and herbivore trophobiont richness on B. dracunculifolia. We found that interactions were more specialised and less diverse at higher elevations compared to the lowest elevation. Changes in vegetation and environmental variables shaped species distributions and their ecological interactions along the elevation gradient. Our study demonstrates that increased elevation changes the structure and patterns of interactions of the herbivore insect guilds associated with the host plant B. dracunculifolia. Ant effects depend on the context, the environment, and the species of ants involved, and are essential for the presence of insect trophobionts.  相似文献   

19.
The sweetpotato whitefly, Bemisia tabaci (Gennadius), is a worldwide pest of numerous agricultural and ornamental crops. In addition to directly feeding on plants, it also acts as a vector of plant viruses of cultivated and uncultivated host plant species. Moreover, host plants can affect the population dynamics of whiteflies. An open‐choice screening experiment was conducted with B‐biotype B. tabaci on a diverse collection of crops, weeds, and other indigenous plant species. Five of the plant species were further evaluated in choice or no‐choice tests in the laboratory. The results reveal 49 new reproductive host plant species for B. tabaci. This includes 11 new genera of host plants (Arenaria, Avena, Carduus, Dichondra, Glechoma, Gnaphalium, Molugo, Panicum, Parthenocissus, Trianthema, and Triticum) for this whitefly. All species that served as hosts were acceptable for feeding, oviposition, and development to the adult stage by B. tabaci. The new hosts include three cultivated crops [oats (Avena sativa L.), proso millet (Panicum miliaceum L.), and winter wheat (Triticum aestivum L.)], weeds and other wild species, including 32 Ipomoea species, which are relatives of sweetpotato [I. batatas (L.) Lam.)]. Yellow nutsedge, Cyperus esculentus L., did not serve as a host for B. tabaci in either open‐choice or no‐choice tests. The results presented herein have implications for whitefly ecology and the numerous viruses that B. tabaci spreads to and among cultivated plants.  相似文献   

20.
This study examines allelopathic potential of genetically modified rice. The experiment was conducted on two isogenic lines Bacillus thuringiensis (Bt) and non-Bacillus thuringiensis (non-Bt). Both isogenic lines have same allelopathic ability before insect feeding and after limited insect feeding (Spodoptera litura) non-Bt rice genotype demonstrates more allelopathic potential. The S. litura cannot feed Bt rice genotype. The role of shoot herbivory in allelopathic induction is further supported when Bt plants also exhibited higher allelopathic potential after insect regurgitant application to the damaged leaves. Allelopathic potential was assessed through several methods after treatments of mechanical damage, insect feeding and insect regurgitant application to damaged rice leaves. Rhizosphere soil and leaf leachates of non-Bt rice cultivar exhibited higher allelopathic potential on lettuce and barnyard grass after herbivore feeding. Enzyme activities (PAL and C4H) responsible for biosynthesis of phenolic compounds and their concentration were significantly higher in non-Bt plant after herbivore feeding and attain the same level in Bt plants after insect regurgitant application to damaged leaves. Similarly, genes (OsPAL and OsCYC1) responsible for biosynthesis of allelopathic compounds showed high expression in non-Bt plants after herbivore feeding. Our results indicate that herbivore feeding enhance rice allelopathic potential and no insect feeding as incase of Bt plants may reduce allelopathic potential of genetically modified rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号