首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Summary We report the results of a pot experiment that examined the effects of three ecologically important factors controlling plant growth rates in savanna grasslands: defoliation, soil nitrogen and soil water availability. The experiment was conducted in the Amboseli region in east Africa, and was designed to simulate natural conditions as far as possible, using local soils and a grass species that is heavily grazed by abundant large herbivores. Productivity by different plant components was reduced, stimulated or unchanged by defoliation, depending on specific watering and fertilization treatments. Total above-ground production was stimulated by defoliation and was maximized at moderate clipping intensities, but this was statistically significant only when plants were watered infrequently (every 8 days), and most important, periods between clipping events were extended (at least 24 days). Under these conditions, plant growth rates were limited by water availability at the time of clipping, and soil water conserved in clipped, compared to unclipped plants. Within a given fertilization treatment, whole-plant production was never stimulated by defoliation because root growth was unaffected or inhibited by clipping. However, when fertilization was coupled to defoliation, as they are in the field, whole-plant production by fertilized and moderately clipped plants exceeded production by infertilized, unclipped plants. Under this interpretation, maximum whole-plant production coincided with optimum conditions for herbivores (maximum nitrogen concentration in grass leaves) when watering was frequent, and plants were moderately defoliated. However, these conditions were not the same as those that maximized relative above-ground stimulation of growth (infrequent watering and clipping).The results indicate that above-ground grass production can be stimulated by grazing, and when that is likely to occur. However, the results emphasize that plant production responses to defoliation can vary widely, contigent upon a complex interaction of ecological factors.  相似文献   

2.
R. W. Ruess 《Oecologia》1988,77(4):550-556
Summary Sporobolus kentrophyllus, a grazing-tolerant C4 grass from the southeastern Serengeti Plains, was grown in solution culture to examine the effects of clipping on the uptake, preference and subsequent transport of varying nitrogen forms. Clipping reduced offtake mass, crown mass ane root mass, resulting in a 58% decline in plant mass. Proportional biomass allocation to roots decreased with clipping, while tillering rates increased. Clipping also increased the nitrogen concentrations of all tissues, and plant nitrogen uptake (nitrogen accumulated throughout the experiment per gram root). The 15N concentrations (% atom excess) of all tissues were higher in clipped compared with unclipped plants, and the average 15N uptake rate of clipped plants was twice that of unclipped plants. The relative 15N allocation to aboveground mass, a measure of canopy sink strength, was higher in clipped plants. Plants fed 15N-ammonium or 15N-nitrate during the 15N pulse experiment had greater 15N tissue concentrations compared with urea-fed plants, and 15N uptake rates were higher in ammonium-fed and nitrate-fed plants, compared with urea-fed plants. The relative magnitudes of these differences were higher when plants were clipped. Clipped plants had higher uptake rates for potassium, phosphorus and sodium, while differences between clipping treatments for calcium, iron, and magnesium were indistinguishable. Rapid uptake rates for species on the southeastern Serengeti plains, particularly during grazing periods, have important implications for nutrient cycling in this system.  相似文献   

3.
Summary Mycorrhizal and nonmycorrhizal plants of Panicum coloratum L. were grown in a factorial treatment design under two nitrogen levels and two clipping heights with an unclipped control. The nitrogen concentration in different plant components was determined following 9 weeks of growth under experimental conditions. Mycorrhizal infection increased green leaf and sheath nitrogen concentration by a relatively small, but significant percentage and had no effect on nitrogen allocation to the various plant components. Clipping increased leaf nitrogen concentration but inhibited growth to the extent that, when compared with the unclipped controls, less nitrogen remained in residual plant biomass with up to half of the total nitrogen allocated to offtake (the material removed by clipping). Plants receiving the higher nitrogen fertilization had higher tissue concentration of N and more N allocated to above-ground living tissues. Mycorrhizal infection interacted with clipping height and also with N availability significantly. Infection was unable to ameliorate the negative effects of the most severe clipping regime and of the low nitrogen availability on leaf and sheath N content. This is possibly due to mycorrhizal demand for carbohydrates competing with the carbohydrate requirement of roots for nitrogen uptake.  相似文献   

4.
Summary Themeda triandra Forsk., a medium height perennial grass common in semi-arid Africa, was collected from Serengeti National Park in Tanzania, propagated vegetatively and grown in controlled environments simulating native conditions. The experiment demonstrated mechanisms that result in inability to withstand frequent defoliation, and thus how plant-herbivore interactions are affected by plant morpho-physiology. Clipping reduced most plant yield components. After two months leaf elongation rate was greater in clipped plants, but over the whole experiment aboveground yield was unaffected by clipping. Since clipping did not stimulate growth, residual leaf area was less in clipped plants. Tillering was not stimulated by clipping so there was no mechanism to increase leaf area below the clipping height. The resulting reduced leaf area accounted for reduced root and crown production by clipped plants.  相似文献   

5.
Large mammalian herbivores in grassland ecosystems influence plant growth dynamics in many ways, including the removal of plant biomass and the return of nutrients to the soil. A 10-week growth chamber experiment examined the responses of Sporobolus kentrophyllus from the heavily grazed short-grass plains of Serengeti National Park, Tanzania, to simulated grazing and varying nitrogen nutrition. Plants were subjected to two clipping treatments (clipped and unclipped) and five nitrogen levels (weekly applications at levels equivalent to 0, 1, 5, 10, and 40 g N m−2), the highest being equivalent to a urine hit. Tiller and stolon production were measured weekly. Total biomass at harvest was partitioned by plant organ and analyzed for nitrogen and mineral element composition. Tiller and stolon production reached a peak at 3–5 weeks in unclipped plants, then declined drastically, but tiller number increased continually in clipped plants; this differential effect was enhanced at higher N levels. Total plant production increased substantially with N supply, was dominated by aboveground production, and was similar in clipped and unclipped plants, except at high nitrogen levels where clipped plants produced more. Much of the standing biomass of unclipped plants was standing dead and stem; most of the standing biomass of clipped plants was live leaf with clipped plants having significantly more leaf than unclipped plants. However, leaf nitrogen was stimulated by clipping only in plants receiving levels of N application above 1 g N m−2 which corresponded to a tissue concentration of 2.5% N. Leaf N concentration was lower in unclipped plants and increased with level of N. Aboveground N and mineral concentrations were consistently greater than belowground levels and while clipping commonly promoted aboveground concentrations, it generally diminished those belowground. In general, clipped plants exhibited increased leaf elemental concentrations of K, P, and Mg. Concentrations of B, Ca, K, Mg, and Zn increased with the level of N. No evidence was found that the much greater growth associated with higher N levels diminished the concentration of any other nutrient and that clipping coupled with N fertilization increased the total mineral content available in leaf tissue. The results suggest that plants can (1) compensate for leaf removal, but only when N is above a critical point (tissue [N] 2.8%) and (2) grazing coupled with N fertilization can increase the quality and quantity of tissue available for herbivore removal. Received: 25 August 1997 / Accepted: 14 April 1998  相似文献   

6.
Changes in rainfall and temperature regimes are altering plant productivity in grasslands worldwide, and these climate change factors are likely to interact with grassland disturbances, particularly grazing. Understanding how plant production responds to both climate change and defoliation, and how this response varies among grassland types, is important for the long-term sustainability of grasslands. For 4 years, we manipulated temperature [ambient and increased using open-top chambers (OTC)], water (ambient, reduced using rainout shelters and increased using hand watering) and defoliation (clipped, and unclipped) in three grassland types along an elevation gradient. We monitored plant cover and biomass and found that OTC reduced biomass by 15 %, but clipping and water treatments interacted with each other and their effects varied in different grassland types. For example, total biomass did not decline in the higher elevation grasslands due to clipping, and water addition mitigated the effects of clipping on subordinate grasses in the lower grasslands. The response of total biomass was driven by dominant plant species while subordinate grasses and forbs showed more variable responses. Overall, our results demonstrate that biomass in the highest elevation grassland was least effected by the treatments and the response of biomass tended to be dependent on interactions between climate change treatments and defoliation. Together, the results suggest that ecosystem function of these grasslands under altered climate patterns will be dependent on site-specific management.  相似文献   

7.
Sharaf KE  Price MV 《Oecologia》2004,138(3):396-404
Ungulate browsing of flowering stalks of the semelparous herb Ipomopsis aggregata leads to regrowth of lateral inflorescences, a response that has been reported to yield overcompensation in some cases (browsed plants with higher reproductive success than unbrowsed), but undercompensation in others. Little is known about the mechanisms that cause such variable tolerance to herbivory. We explored one possible mechanism—variation in effects of browsing on pollination—by clipping I. aggregata inflorescences to mimic browsing, observing subsequent visits by pollinators and nectar-robbers, and adding pollen by hand to flowers of some clipped and unclipped plants. Clipping reduced floral display size and increased inflorescence branching, but neither hummingbirds, the primary pollinators, nor nectar-robbing bumblebees showed any preference for unclipped versus clipped plants. Clipping delayed flowering; this shift in phenology caused clipped plants to miss the peak of hummingbird activity and to have lower per-flower visitation rates than unclipped controls in one year, but to have greater overlap with birds and higher visitation rates in the subsequent year. In three sites and 2 years, clipped plants exposed to natural pollination suffered extreme undercompensation, producing on average only 16% as many seeds as unclipped controls. This was not directly attributable to clipping effects on pollination, however, because clipped plants were unable to increase fecundity when provided with supplemental pollen by hand. Taken altogether, our results suggest that compensation was constrained less by indirect effects of browsing on pollination than by its direct impacts on resource availability and hence on the ability of plants to regrow lost inflorescence tissue and to fill seeds. Exploring the physiological and developmental processes involved in regrowth of inflorescences and provisioning of seeds is a promising future direction for research designed to understand variation in browsing tolerance.  相似文献   

8.
Interactions between aboveground vertebrate herbivores and subterranean yellow meadow ants (Lasius flavus) can drive plant community patterns in grassland ecosystems. Here, we study the relative importance of the presence of ants (L. flavus) and ant mounds under different simulated grazing regimes for biomass production and species composition in plant communities. We set up a greenhouse experiment using intact soil cores with their associated vegetation.We found that plant biomass production in the short term was affected by an interaction between simulated grazing (clipping) and ant mound presence. Clipping homogenized production on and off mounds, while in unclipped situations production was higher off than on mounds. During the experiment, these differences in unclipped situations disappeared, because production on unclipped mounds increased. Plant species richness was on average higher in clipped treatments and patterns did not change significantly over the experimental period. Plant community composition was mainly affected by clipping, which increased the cover of grazing-tolerant plant species. The actual presence of yellow meadow ants did not affect plant community composition and production.We conclude that the interaction between ant mounds and clipping determined plant community composition and biomass production, while the actual presence of ants themselves was not important. Moreover, clipping can overrule effects of ant mounds on biomass production. Only shortly after the cessation of clipping biomass production was affected by ant mound presence, suggesting that only under low intensity clipping ant mounds may become important determining plant production. Therefore, under low intensity grazing ant mounds may drive the formation of small-scale plant patches.  相似文献   

9.
Compensatory growth responses of Leymus chinensis, a dominant species in Inner Mongolia steppe, to clipping defoliation were evaluated in a pot-cultivated experiment under different nutrient (N and P) and water availability conditions. Leymus chinensis exhibited over-compensatory growth at the light and moderate clipping intensities (20% and 40% aerial mass removed) with a greater accumulated aboveground biomass, higher relative growth rate (RGR), more rhizomatic tillers and a stimulation of compensatory photosynthesis to the remnant leaves as compared with those of the unclipped plants. Intense clipping (80% aerial mass removed), which removed most of the aboveground tissues, greatly reduced the growth of aboveground biomass in comparison with that of the unclipped plants. Nitrogen addition only slightly improved the biomass production and RGR in light and moderately clipped plants, and it did not allow plants in the intense clipping condition to over-compensate. Phosphorus addition had no obvious influences on the growth and physiological responses to clipping defoliation. These results indicated that nutrient addition could not compensate for the negative effects of severe clipping on the defoliated grass. On the other hand, there were no distinct positive responses under water deficiency condition for L. chinensis at all clipping intensities with a significant reduction of aboveground and belowground biomass, lower RGR, fewer rhizomatic tillers, and a lower net photosynthetic rate than other wet treatments. Additionally, the chlorophyll contents of remnant leaves gradually increased with the increase of clipping intensities in each treatment. In conclusion, although L. chinensis could compensate for tissues removal by some morphological and physiological responses, intense clipping and drought can result in a significant decrease of biomass and growth rate, even under enriched nutrition conditions.  相似文献   

10.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   

11.
A laboratory study was conducted to determine the effects of defoliation and denodulation on compensatory growth of Medicago sativa (L.). Plants grown hydroponically in clear plastic growth pouches were subjected to 0 and 50% nodule pruning, and 0, 25, 50, and 75% defoliation by clipping trifoliate leaves. An additional experiment was conducted to determine if clipping leaves simulated herbivory by Hypera postica (Gyllenhal) larvae. Previously, we determined that nodule pruning accurately simulated herbivory by Sitona hispidulus (L.) larvae (Quinn & Hall, 1992). Results indicated that denodulation stimulated nodule growth and caused exact compensation in standing and total number of nodules per plant within 15 days and in standing nodule biomass within 22 days of treatment. Denodulation caused a significant reduction (13%) in final shoot biomass, but did not affect significantly final root biomass. Percentage of change in number of trifoliate leaves per plant increased with the level of defoliation. Within 22 days of treatment, total number of trifoliate leaves per plant was similar to controls. However, final standing shoot biomasses were significantly less that controls, indicating undercompensatory growth. Shoot biomasses of the 25-, 50-, and 75%-defoliated plants were 18, 20, and 36% lower than controls, respectively. Nodule biomass per plant was reduced by 24 and 32% in 50- and 75%-defoliated plants, respectively, but was not affected significantly by 25% defoliation. Root biomass was affected by all levels of defoliation. Clipping trifoliate leaves accurately simulated defoliation by H. postica larvae. Our results indicated that partial defoliation affected shoot, root, and nodule biomass of M. sativa, but that partial denodulation only affected shoot biomass.  相似文献   

12.
Urea as a promotive coupler of plant-herbivore interactions   总被引:1,自引:0,他引:1  
Summary Growth responses of Kyllinga nervosa Steud., a sedge from the Serengeti short-grass plains, were examined in a factorial experiment which included clipped and unclipped plants, and nitrogen supplied as either urea or ammonium nitrate. Results were expressed in relation to three transfer processes: flow to grazers, flow to producers and flow to reproduction. Clipping increased biomass and nitrogen flow to grazers by significantly increasing nitrogen uptake, aboveground nitrogen flow, and the weights of and proportional allocation to green leaf production. This was at the expense of flow to vegetative and sexual reproduction, since the weights and proportional investments in roots, crowns and reproductive structures were reduced. Urea nutrition increased flow to grazers and plant reproduction through increases in green leaf weight, flower weight, allocation to green leaves, flowers and stems, and aboveground: belowground biomass ratios. Stimulation of aboveground productivity by urea was a consequence of increased tillering rates.Interactive responses of clipping and nitrogen source regulated plant growth, thus controlling flow to each transfer process. Combined effects of clipping and urea resulted in compensatory production of both green leaves and flowers, and maximized biomass and nitrogen flow to grazers. Both urea and clipping tightened herbivore-producer recycling by significantly reducing litter nitrogen and carbon masses. In contrast, when plants were unclipped and grown on NH4NO3, biomass allocation and weights of roots and crowns were increased at the expense of aboveground tissues, thus increasing flow to primary producers. Plant growth responses to experimental treatment combinations simulating nutritional status of grazed and ungrazed field plants indicate that urea represents a potential importance beyond it nitrogen contribution by introducing a positive feedback to herbivores.  相似文献   

13.
Predicting how herbivory and neighbor plant interactions combine to affect host plants is critical to explaining variation in herbivores’ impact on plant population dynamics. In a field experiment, we asked whether the combined effects of neighbor plants and folivores upon performance of tall thistle (Cirsium altissimum), a monocarpic perennial, can be predicted as the product of their individual effects (i.e., effects of neighbor plants and folivores act independently in suppressing tall thistle performance). Alternately, the combined effects of neighbor plants and folivores might be greater, indicating a synergistic interaction, or less, indicating an antagonistic interaction, than the product of their individual effects. Our experiment involved a neighbor plant clipping treatment and a folivory reduction treatment in a factorial design with manipulations applied to naturally occurring tall thistle rosettes in restored tallgrass prairie. Clipping neighbors at the soil surface within 40 cm of tall thistle rosettes increased light availability to rosettes, rosette growth, and the transition rate of 2007 rosettes to reproductive adults in 2008. Folivores’ and neighbor plants’ effects acted independently upon rosette growth. By contrast, folivory reduced the rate at which 2007 rosettes transitioned to reproductive adults in 2008 only where neighbor plants were unclipped, indicating a possible synergistic interaction of neighbor plants and folivores in suppressing tall thistle performance. Our results suggest that (1) promoting neighbor plant aboveground biomass should suppress rosette-forming weeds, and (2) folivory, which reduces light acquisition by rosettes, may generate synergistic herbivory × neighbor plant interaction effects on rosettes in grasslands, where light often limits rosettes.  相似文献   

14.
Summary Two shortgrass species (Sporobolus ioclados and Eustachys paspaloides) and two midgrass species (E. paspaloides and Pennisetum mezianum) from the Serengeti grasslands of Tanzania were grown under conditions of extreme phosphorus (P) deficiency. Production of each of these species is maintained or enhanced by defoliation under adequate nutrient supply (McNaughton et al. 1983). However, under the P-deficient conditions of our experiment, defoliation caused a reduction in biomass of all plant parts of each species. Green leaf biomass was reduced most strongly by defoliation, and crowns were least affected. Yield of biomass and nutrients to grazers (green leaves+clipped material) was enhanced by weekly defoliation in the shortgrass grazing-adapted species, whereas yield to producers (live biomass and nutrients retained by the plant) and yield to decomposers (litter) were strongly reduced by defoliation in all species. Phosphate absorption capacity (V max) measured on excised roots was enhanced by defoliation in the grazing-adapted Sporobolus, but, due to low affinity (high K m) of roots of defoliated plants for phosphate, absorption rate was not greatly altered at low solution concentrations. Phosphate absorption capacity was reduced or unaffected by defoliation in other species. We conclude that under conditions of P deficiency, plants are unable to acquire the nutrients necessary to replenish large nutrient losses to grazers. In low-nutrient environments, compensatory growth (stimulation of production by grazing) is not a viable strategy. Therefore, in these environments plants respond evolutionarily to herbivores by developing chemical or morphological defenses.  相似文献   

15.
The ten year cycle of the willow grouse of Lower Kolyma   总被引:1,自引:0,他引:1  
A. Andreev 《Oecologia》1988,77(2):261-267
Summary The effects of defoliation on growth and nitrogen (N) nutrition were examined in populations of Agropyron smithii (western wheatgrass) collected from a heavily grazed black-tailed prairie dog (Cynomys ludovicianus) colony (ON-colony) and a nearby lightly grazed, uncolonized area (OFF-colony). Defoliated and nondefoliated plants were grown at low soil N availability with similar sized defoliated individuals of A. smithii from a grazing-exclosure population as a common competitor. Sequential harvests were made over 24 days following defoliation. Growth analysis plus biomass and N yield and distribution data were used to identify features which may contribute to plant defoliation tolerance. Defoliation reduced total production 34% across populations. Defoliated plants produced as much new blade tissue, but only 67% as much new root biomass as did nondefoliated controls. Plants from prairie dog colonies accumulated biomass at a faster relative rate than did plants from uncolonized sites, in part, because of a 250% greater mean relative growth rate of blades and more than 200% greater rate of biomass production per unit blade biomass. Total N accumulation was significantly greater in defoliated ON- than OFF-colony individuals. The mean relative accumulation rate of N was increased by defoliation in ON-colony plants, but reduced by defoliation in OFF-colony plants. The mean rate of N accumulation per unit root biomass was more than 300% greater in the ON- than OFF-colony population. Colony plants initially had a greater proportion of biomass and N remaining after defoliation in roots. Initial differences between populations in the distribution of biomass and N were eliminated as colony plants concentrated 24-day accumulation of biomass and N in aboveground structures. The data suggest that the combination of growth, N nutrition, and biomass and N distribution characteristics of the colony population likely confer a high rate of resource capture on heavily grazed prairie dog colonies.  相似文献   

16.
L. L. Wallace 《Oecologia》1981,49(2):272-278
Summary Root samples collected in grasslands of the Serengeti ecosystem, Tanzania, were found to be mycorrhizal and infection frequency was positively correlated with grazing intensity across sites. To examine the role of mycorrhizae in a grazing ecosystem, I analyzed the growth, morphology and gas exchange of mycorrhizal and nomycorrhizal plants of Panicum coloratum L. under different fertilization and clipping regimes. Both severe clipping and high nitrogen promoted more prostrate shoot growth but inhibited root growth. However, mycorrhizal infection promoted a prostrate shoot morphology and enhanced root growth. Photosynthesis was inhibited by clipping, however; at the most severe clipping and nitrogen regime, photosynthesis of the mycorrhizal plants was not affected whereas the largest inhibition of photosynthesis occurred in similarly treated nonmycorrhizal plants. Discussion of the putative roles of mycorrhizae in intensely grazed ecosystems is presented.  相似文献   

17.
The effects of simulated goose grazing on Phleum pratense plants were tested in an Iceland hayfield during the spring goose staging period (19 April–11 May 1997). Plants in an area exclosed from the influence of grazing and the nutrient effects of goose faeces were subject to the removal of the youngest lamina once, three and four times during this period. Clipping three and four times resulted in 25–41% increases in cumulative elongation of youngest laminae compared with unclipped plants. Total cumulative lamina growth of entire plants showed no significant difference between unclipped plants and those clipped three and four times, hence no overcompensation occurred. Sequential clipping elevated the protein content of the youngest laminae from 20% to 27–33%, whereas there was no change amongst shoots clipped only once. Because geese only consume the youngest lamina of each Phleum plant, measurements from this experiment showed that regular physical removal of growing biomass doubled the biomass of preferred tissue available to geese and increased the potential protein intake 3.5 times at experimental clipping frequencies similar to levels of sequential harvesting observed amongst staging geese compared to less frequent harvesting. These increases were achieved without any fertilising effects of goose faeces implicated in such effects in previous studies. Received: 26 January 1998 / Accepted: 20 March 1998  相似文献   

18.
Aims Woody plant-browser systems represent an understudied facet of herbivory. We subjected four genotypes of trembling aspen to artificial browsing, similar to that of a large mammalian herbivore, and applied deer saliva to clipped and unclipped trees to assess: (i) the effects of artificial browsing on aspen growth and phytochemistry of leaves and stems, (ii) genotypic variation in responses and (iii) potential alterations of responses by mammalian saliva.Methods Potted aspen trees were grown outdoors on the University of Wisconsin-Madison campus. The experiment consisted of a fully-crossed, 2 × 2 × 4 randomized complete block design, with two levels of artificial browsing (unclipped and clipped), two levels of saliva application (no saliva and saliva) and four aspen genotypes. To simulate ungulate browsing damage, we removed the upper 50% of the stem of half of the trees by pinching the stem with needle-nosed pliers and then separating it by tearing. For half of the damaged trees, we immediately swabbed the wound with deer saliva. Trees in the unclipped plus saliva treatment were swabbed with saliva at the 50% height mark. To assess the effects of clipping and saliva application, we harvested all trees after 2 months and measured various growth and chemical properties. Growth measurements included height, vertical growth, mass of leaves, stems and roots, leaf number and area and bud set. Chemical parameters included defensive, nutritional and structural components of both foliage and stems.Important findings Clipping affected most of the growth parameters measured, decreasing tree height, leaf, stem, root and total tree mass and leaf area. Clipped trees had greater vertical growth, more leaves and higher specific leaf area (SLA) than unclipped trees. Deer saliva had little to no effect on plant growth response to the clipping treatment. Terminal budset was delayed by clipping and varied among genotypes but not in response to saliva application. Clipping also affected most of the phytochemical variables measured, reducing defensive compounds (phenolic glycosides and condensed tannins (CTs)) and nutrients (N), but increasing structural components (cellulose and lignin) in both leaves and stems. Saliva had very little effect on tree chemistry, causing only a slight decrease in the amount of CTs in leaves. In general, leaves contained more defensive compounds and nutrients, but much less cellulose, compared with stems. Genotypes differed for all physical and chemical indices, and in tolerance to damage as measured by vertical growth. In addition, for most of the physical and chemical variables measured, genotype interacted with the clipping treatment, suggesting that in natural stands some genotypes will resist or tolerate browsing better than others, affecting forest genetic composition and ultimately forest dynamics.  相似文献   

19.
Summary The dwarf shrub Indigofera spinosa Forsk. (Papilionacea), a native forage species of arid Northwest Kenya, was propogated from seed, grown in a controlled environment, and subjected to three treatments of defoliation and watering frequencies in a factorial experimental design. Biomass production and nitrogen accumulation in tissue components were measured to determine defoliation responses in a water-limited environment. We hypothesized that plants would maintain biomass and nitrogen flows despite removal of aboveground meristems and tissues by defoliation. Principal experimental results included a slight reduction (11%; P=0.08) of total biomass production by clipping ca. 1/3 or 2/3 of new leaves and stems and all apical meristems every month. Total aboveground production was not affected by clipping, while final root biomass was reduced 17% by the 2/3 clipping. The least water stressed plants were affected most negatively by defoliation, and the unclipped plants responded more negatively to greater water limitation. Plants achieved partial biomass compensation through alterations in shoot activity and continued allocation of photosynthate to roots. A smaller fraction of leaf production was directed to litter in clipped plants although clipping only removed the youngest tissues, suggesting that clipping increased leaf longevity. In turn, each leaf probably contributed a greater total quantity of photosynthate. Photosynthetic rates were also likely to have been increased by clipping water-stressed plants. In contrast to biomass, plants overcompensated for nitrogen lost to defoliation. Total nitrogen uptake by individual plants was stimulated by defoliation, as there was more total nitrogen in leaves and stems. Increased nitrogen uptake was achieved by clipping stimulation of total uptake per unit of root rather than of total root mass.  相似文献   

20.
Forage nitrogen concentrations, nitrogen yields, and in vitro digestibilities were assessed in shortgrass steppe that had been ungrazed, lightly, or heavily grazed for 50 years. Caged plots were defoliated in amounts based upon removals observed in naturallygrazed reference plots or not defoliated. This was done in a year of average precipitation and with a supplemental water treatment to simulate a wet year. In general, current-year defoliation had positive effects, and longterm grazing and supplemental water had negative effects, on forage nitrogen concentrations and digestibilities. However, defoliation interacted with long-term grazing in determning forage nitrogen concentrations, and with grazing and with watering in determining digestibilities. Nitrogen concentration and digestibility increased with defoliation in lightly, but not in heavily, grazed treatments. The dilution effect of supplemental water an digestibilities through increased plant growth was offset by defoliation. The negative effects of long-term grazing on forage quality were small, equally or more than compensated for by defoliation in a year of average precipitation, but more pronounced in the simulated wet year. Nitrogen yields and digestible forage production were usually increased by defoliation, but this depended upon grazing and watering treatments. Increased nitrogen and digestible forage yields and concentrations in response to defoliation were greater than the biomass response in lightly grazed grassland. For both nitrogen and digestibility, yields were greater in grazed than ungrazed treatments in the year of average precipitation, but less in the simulated wet year. Optimizing quantity and year-to-year stability of nitrogen and digestible forage yield may best be achieved with light grazing rather than no or heavy grazing. Clipping was conducted in a manner closely resembling the natural pattern and intensity of defoliation by the cattle, and confirms the potential for a positive feedback of increased forage quality with defoliation observed in pot experiments. Long-term heavy grazing can diminish this response. Quantily (aboveground primary production, ANPP), quantity of quality (digestible and N yields), and quality (concentrations) do not necessarily respond similarly in interactions between current-year defoliation, long-term grazing history, and level of water resource.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号