首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Responses to clipping and bison grazing in different environmental contexts were examined in two perennial grass species, Andropogon gerardii and Panicum virgatum, on the Konza Prairie in northeastern Kansas. Grazed tillers had lower relative growth rates (RGR) than clipped tillers following defoliation but this difference was transient and final biomass was not affected by mode of defoliation. Grazed tillers of both species had higher RGR throughout the season than ungrazed tillers, resulting in exact compensation for tissue lost to defoliation. However, A. gerardii tillers which had been grazed repeatedly the previous year (1988) had reduced relative growth rates, tiller biomass and tiller survival in 1989. This suggests that the short-term increase in aboveground relative growth rates after defoliation had a cost to future plant growth and tiller survival.In general, the two species had similar responses to defoliation but their responses were altered differentially by fire. The increase in RGR following defoliation of A. gerardii was relatively greater on unburned than burned prairie, and was influenced by topographic position. P. virgatum responses to defoliation were similar in burned and unburned prairie. Thus grazing, fire, and topographical position all interact to influence tiller growth dynamics and these two species respond differently to the fire and grazing interaction. In addition, fire may interact with grazing pattern to influence a plants' grazing history and thus its long-term performance.  相似文献   

2.
M. Oesterheld 《Oecologia》1992,92(3):313-316
According to a simple growth model, grazed and ungrazed plants may have equal absolute growth rates provided that the relative growth rate (RGR) of grazed plants increases exponentially with grazing intensity (proportion of biomass removed). This paper reports results from an experiment designed to determine whether plants of two grass species subjected to a gradient of defoliation intensities, from 0 to 100% aboveground biomass removal, showed such a response. The relationship between aboveground RGR and defoliation intensity was exponential and closely matched the theoretical relationship of equal absolute growth rate. Thus, plants showed the same aboveground growth regardless of defoliation intensity thanks to an exponential stimulation of RGR by defoliation. Belowground RGR was depressed by defoliation of more than 20% of the above-ground biomass. In spite of the drastic modification imposed by the treatments on the relative proportions of different plant parts, after a 42-day recovery period basic allometric relationships, such as root:shoot and leafarea: weight ratios, were not affected by defoliation intensity. Exponential aboveground compensatory responses represent a key feedback process resulting in constant aboveground growth regardless of defoliation intensity and appear to be a simple consequence of strong commitments to certain allometric relationships.  相似文献   

3.
Summary The dwarf shrub Indigofera spinosa Forsk. (Papilionacea), a native forage species of arid Northwest Kenya, was propogated from seed, grown in a controlled environment, and subjected to three treatments of defoliation and watering frequencies in a factorial experimental design. Biomass production and nitrogen accumulation in tissue components were measured to determine defoliation responses in a water-limited environment. We hypothesized that plants would maintain biomass and nitrogen flows despite removal of aboveground meristems and tissues by defoliation. Principal experimental results included a slight reduction (11%; P=0.08) of total biomass production by clipping ca. 1/3 or 2/3 of new leaves and stems and all apical meristems every month. Total aboveground production was not affected by clipping, while final root biomass was reduced 17% by the 2/3 clipping. The least water stressed plants were affected most negatively by defoliation, and the unclipped plants responded more negatively to greater water limitation. Plants achieved partial biomass compensation through alterations in shoot activity and continued allocation of photosynthate to roots. A smaller fraction of leaf production was directed to litter in clipped plants although clipping only removed the youngest tissues, suggesting that clipping increased leaf longevity. In turn, each leaf probably contributed a greater total quantity of photosynthate. Photosynthetic rates were also likely to have been increased by clipping water-stressed plants. In contrast to biomass, plants overcompensated for nitrogen lost to defoliation. Total nitrogen uptake by individual plants was stimulated by defoliation, as there was more total nitrogen in leaves and stems. Increased nitrogen uptake was achieved by clipping stimulation of total uptake per unit of root rather than of total root mass.  相似文献   

4.
  • Human‐induced disturbances, including grazing and clipping, that cause defoliation are common in natural grasslands. Plant functional type differences in the ability to compensate for this tissue loss may influence interspecific competition.
  • To explore the effects of different intensities of clipping and nitrogen (N) addition on compensatory growth and interspecific competition, we measured accumulated aboveground biomass (AGB), belowground biomass (BGB), tiller number, non‐structural carbohydrates concentrations and leaf gas exchange parameters in two locally co‐occurring species (the C3 grass Leymus chinensis and the C4 grass Hemarthria altissima) growing in monoculture and in mixture.
  • For both grasses, the clipping treatment had significant impacts on the accumulated AGB, and the 40% clipping treatment had the largest effect. BGB gradually decreased with increasing defoliation intensity. Severe defoliation caused a significant increase in tiller number. Stored carbohydrates in the belowground biomass were mobilised and transported aboveground for the growth of new leaves to compensate for clipping‐induced injury. The net CO2 assimilation rate (A) of the remaining leaves increased with clipping intensity and peaked under clipping intensities of 20% or 40%. Nitrogen addition, at a rate of 10 g·N·m?2·year?1, enhanced A of the remaining leaves and non‐structural carbohydrate concentrations, which benefited plant compensatory growth, especially for the C3 grass. Under the mixed planting conditions, the clipping and N addition treatments lowered the competitive advantage of the C4 grass.
  • The results suggest that a combination of defoliation and N deposition have the potential to benefit the coexistence of C3 and C4 grasses.
  相似文献   

5.
刈割、施肥和浇水对矮嵩草补偿生长的影响   总被引:2,自引:0,他引:2       下载免费PDF全文
通过对青海海北高寒矮嵩草(Kobresia humilis)草甸进行为期3年的野外控制试验, 研究了刈割(留茬1 cm、3 cm及不刈割)、施肥(2.5 g·m-2尿素+ 0.6 g·m-2磷酸二胺、不施肥)和浇水(20.1 kg·m-2、不浇水)处理对矮嵩草补偿生长(包括分株密度、株高和分株地上生物量)的影响, 及其比叶面积、叶片净光合速率和相对增长率的变化, 探讨矮嵩草补偿生长的机制。研究结果表明: 刈割后, 矮嵩草的补偿生长高度和比叶面积显著降低; 分株密度有增加的趋势, 但会随刈割强度的增加而下降; 株高和生物量的相对增长率随刈割强度的增加而呈上升趋势; 补偿地上生物量在重度刈割处理下最高。施肥能显著增加矮嵩草的补偿高度、分株密度、补偿地上生物量、株高相对增长率、生物量相对增长率、比叶面积和净光合速率; 与不浇水处理相比, 浇水处理对重度刈割处理下的分株地上生物量、密度相对增长率、比叶面积和净光合速率无影响, 而显著降低了中度刈割处理下的补偿高度和株高相对增长率, 提高了不刈割处理下的分株密度和重度刈割处理下的生物量相对增长率。刈割、施肥和浇水处理的交互作用也显示出刈割与施肥对矮嵩草补偿生长具有拮抗效应, 而刈割与浇水具有协同效应。上述结果说明, 矮嵩草在刈割后可通过增加分株密度和相对增长率等途径来提高补偿能力, 弥补在生长高度上出现的低补偿, 而施肥可显著抵消刈割的不利影响, 提高矮嵩草的补偿能力。  相似文献   

6.
Summary The response to a single defoliation was studied on three clones of Themeda triandra collected in the short, mid, and tall grassland regions of the Serengeti National Park (Tanzania). These sites represent a gradient of decreasing grazing intensity. Growth, allocation pattern, and several morphometric traits were monitored during an 80-day period. Clipped plants of the short and medium clones fully compensated for the reduction of biomass, while plants of the tall clone showed overcompensation. During the first two weeks after clipping, clipped plants showed lower relative growth rates than unclipped ones, whereas the opposite was observed later on. Clipped plants compensated for the removal of leaf area by producing new leaves with lower specific weights and higher nitrogen content. They also produced more, smaller tillers. Although clipped plants mobilized nonstructural carbohydrates from roots and crowns, this did not account for a significant amount of growth. Relative growth rates of unclipped plants of the short clone were higher. The relative growth rate of the short clone diminished less after clipping, but also exhibited the lowest increase later. The tall clone was the most negatively affected early, but showed the highest compensation later. Compared to the other clones, the short ecotype showed many of the characteristics that defoliation induced in each individual of any clone: higher allocation to leaf area production, higher relative growth rate, higher number but smaller size of tillers, and lower leaf specific weights.  相似文献   

7.
Summary We report the results of a pot experiment that examined the effects of three ecologically important factors controlling plant growth rates in savanna grasslands: defoliation, soil nitrogen and soil water availability. The experiment was conducted in the Amboseli region in east Africa, and was designed to simulate natural conditions as far as possible, using local soils and a grass species that is heavily grazed by abundant large herbivores. Productivity by different plant components was reduced, stimulated or unchanged by defoliation, depending on specific watering and fertilization treatments. Total above-ground production was stimulated by defoliation and was maximized at moderate clipping intensities, but this was statistically significant only when plants were watered infrequently (every 8 days), and most important, periods between clipping events were extended (at least 24 days). Under these conditions, plant growth rates were limited by water availability at the time of clipping, and soil water conserved in clipped, compared to unclipped plants. Within a given fertilization treatment, whole-plant production was never stimulated by defoliation because root growth was unaffected or inhibited by clipping. However, when fertilization was coupled to defoliation, as they are in the field, whole-plant production by fertilized and moderately clipped plants exceeded production by infertilized, unclipped plants. Under this interpretation, maximum whole-plant production coincided with optimum conditions for herbivores (maximum nitrogen concentration in grass leaves) when watering was frequent, and plants were moderately defoliated. However, these conditions were not the same as those that maximized relative above-ground stimulation of growth (infrequent watering and clipping).The results indicate that above-ground grass production can be stimulated by grazing, and when that is likely to occur. However, the results emphasize that plant production responses to defoliation can vary widely, contigent upon a complex interaction of ecological factors.  相似文献   

8.
Large mammalian herbivores in grassland ecosystems influence plant growth dynamics in many ways, including the removal of plant biomass and the return of nutrients to the soil. A 10-week growth chamber experiment examined the responses of Sporobolus kentrophyllus from the heavily grazed short-grass plains of Serengeti National Park, Tanzania, to simulated grazing and varying nitrogen nutrition. Plants were subjected to two clipping treatments (clipped and unclipped) and five nitrogen levels (weekly applications at levels equivalent to 0, 1, 5, 10, and 40 g N m−2), the highest being equivalent to a urine hit. Tiller and stolon production were measured weekly. Total biomass at harvest was partitioned by plant organ and analyzed for nitrogen and mineral element composition. Tiller and stolon production reached a peak at 3–5 weeks in unclipped plants, then declined drastically, but tiller number increased continually in clipped plants; this differential effect was enhanced at higher N levels. Total plant production increased substantially with N supply, was dominated by aboveground production, and was similar in clipped and unclipped plants, except at high nitrogen levels where clipped plants produced more. Much of the standing biomass of unclipped plants was standing dead and stem; most of the standing biomass of clipped plants was live leaf with clipped plants having significantly more leaf than unclipped plants. However, leaf nitrogen was stimulated by clipping only in plants receiving levels of N application above 1 g N m−2 which corresponded to a tissue concentration of 2.5% N. Leaf N concentration was lower in unclipped plants and increased with level of N. Aboveground N and mineral concentrations were consistently greater than belowground levels and while clipping commonly promoted aboveground concentrations, it generally diminished those belowground. In general, clipped plants exhibited increased leaf elemental concentrations of K, P, and Mg. Concentrations of B, Ca, K, Mg, and Zn increased with the level of N. No evidence was found that the much greater growth associated with higher N levels diminished the concentration of any other nutrient and that clipping coupled with N fertilization increased the total mineral content available in leaf tissue. The results suggest that plants can (1) compensate for leaf removal, but only when N is above a critical point (tissue [N] 2.8%) and (2) grazing coupled with N fertilization can increase the quality and quantity of tissue available for herbivore removal. Received: 25 August 1997 / Accepted: 14 April 1998  相似文献   

9.
Urea as a promotive coupler of plant-herbivore interactions   总被引:1,自引:0,他引:1  
Summary Growth responses of Kyllinga nervosa Steud., a sedge from the Serengeti short-grass plains, were examined in a factorial experiment which included clipped and unclipped plants, and nitrogen supplied as either urea or ammonium nitrate. Results were expressed in relation to three transfer processes: flow to grazers, flow to producers and flow to reproduction. Clipping increased biomass and nitrogen flow to grazers by significantly increasing nitrogen uptake, aboveground nitrogen flow, and the weights of and proportional allocation to green leaf production. This was at the expense of flow to vegetative and sexual reproduction, since the weights and proportional investments in roots, crowns and reproductive structures were reduced. Urea nutrition increased flow to grazers and plant reproduction through increases in green leaf weight, flower weight, allocation to green leaves, flowers and stems, and aboveground: belowground biomass ratios. Stimulation of aboveground productivity by urea was a consequence of increased tillering rates.Interactive responses of clipping and nitrogen source regulated plant growth, thus controlling flow to each transfer process. Combined effects of clipping and urea resulted in compensatory production of both green leaves and flowers, and maximized biomass and nitrogen flow to grazers. Both urea and clipping tightened herbivore-producer recycling by significantly reducing litter nitrogen and carbon masses. In contrast, when plants were unclipped and grown on NH4NO3, biomass allocation and weights of roots and crowns were increased at the expense of aboveground tissues, thus increasing flow to primary producers. Plant growth responses to experimental treatment combinations simulating nutritional status of grazed and ungrazed field plants indicate that urea represents a potential importance beyond it nitrogen contribution by introducing a positive feedback to herbivores.  相似文献   

10.
Summary We tested the hypothesis that the amount of compensatory growth after defoliation is affected by the level of stress at which plants grow when defoliated and by the length of time for recovery. Growth response to defoliation went from partial compensation when plants were growing at high relative growth rates (RGR) to overcompensation when plants were more stressed and growing at low RGR. Defoliation released plants from the limitation imposed by the accumulation of old and dead tissue and this release overrode the negative effect of biomass loss. Compensatory growth resulted from a higher RGR aboveground that was not associated with a reduction in RGR belowground. Time available for recovery had a major impact on the outcome of defoliation. With a short time for recovery, RGR was decreased by defoliation because an immediate increase in net assimilation rate was overridden by a reduction in the ratio of leaf area to plant weight. After defoliation, this ratio increased quickly due to a larger allocation to leaf growth and lower leaf specific weights, resulting in higher RGR. We conclude that the compensatory response to grazing depends on the type and level of stress limiting growth. Allocation and physiological responses to stress may positively or negatively affect the response to grazing and, simultaneously, grazing may alleviate or aggravate the effects of different types of stress.  相似文献   

11.
Resource availability is an important factor affecting the capacity of compensatory growth after grazing. We performed a greenhouse experiment with Poa bulbosa, a small perennial grass of the Mediterranean and Central Asian grasslands, to test the importance of nutrient availability for compensatory growth after clipping. We also compared the results with predictions of the limited resource model (LRM). Plants were grown at low and high fertilization levels and subjected to a clipping treatment. Contrary to the LMR, we found that in Poa plants compensatory growth occurred under the high fertilization level, while it did not occur under the low level. The LMR predicts a higher tolerance for grazing in the stressful environment. Our plants showed a significant decrease in their relative growth rates (RGR) after clipping. Although the plants allocated a 32–188% greater fraction of the mass to lamina growth after clipping, this greater allocation to the leaves did not fully compensate for the initial reduction in leaf area ratio (LAR). A sensitivity analysis showed for the clipped plants under the high fertilization treatment, that changes in leaf allocation (f lam) enabled the plants to compensate for a part of the potential loss caused by defoliation. Probably, the increased biomass allocation comes largely from the bulbs. We conclude that the inconsistency of the LRM with our results originates in the lack of compensatory mechanisms in the model. To better understand how environmental conditions affect tolerance to herbivory, the effects of compensatory growth should be taken into account.  相似文献   

12.
S. J. McNaughton 《Oecologia》1985,65(4):478-486
Summary Clones of 2 C4 grass species, Sprobolus ioclados and S. pyramidalis, were obtained from more and less heavily grazed grasslands, respectively, in Tanzania's Serengeti National Park. Plants were grown in a factorial experiment to determine the effects of severe defoliation, nutrient limitation, and a salivary chemical (thiamine) on plant growth, nitrogen content, and non-structural carbohydrate content. The experimental design included: (1) species; (2) clipping, with plants either unclipped or clipped weekly to a height of 5 cm; (3) 0.2 ml of distilled water of 0.2 ml of 10 ppb aqueous thiamine sprayed on plants from an atomizer after clipping and identical treatments at the same time to unclipped plants; (4) phosphorus (P) at 0.2 or 1 mM; (5) nitrogen (N) at 3 or 15 mM. Clipping was the major variable affecting plant growth. Total and litter yields were reduced to half and residual plant yield was reduced to 30% of the values for unclipped plants. Clipping interacted strongly with other variables since they commonly had minor effects on clipped plants and major effects on unclipped plants. Exceptions to this generalization were generally due to better performance by S. ioclados under clipping. Compared to lower treatment levels, higher treatment levels promoted total yield of unclipped plants by 52% for N, 43% for thiamine, and 33% for P. In general, thiamine had greater effects than P but lesser effects than N. Thiamine promoted yield and modified the chemical balance of plants by promoting carbohydrate (CHO) concentrations and reducing N concentrations. N and P deficiencies promoted CHO accumulation. Clipping promoted the N of leaves and crowns and reduced the N levels in roots. Leaf blade water and N contents were positively correlated with very little scatter. The slope of the line was different for S. ioclados and S. pyramidalis. Leaf blade water and CHO contents were negatively related but there was more scatter and the species could not be distinguished. The species from more heavily grazed grasslands was conspicuously more sensitive to thiamine application. The results indicated that leaf treatment with thiamine, the only likely source of which in natural grasslands is saliva deposited by feeding herbivores, can have major effects on plant yield and metabolic balances at very low application levels. But under defoliation levels as severe as those imposed in this experiment, which reduced above ground plant biomass to a fourth of the level produced by unclipped plants, growth was so strongly limited by defoliation that neither thiamine nor inorganic nutrients affected plant yield residual from clipping. Therefore, whether chemicals such as thiamine that may be introduced onto grass foliage by grazing ungulates and other herbivores will influence the growth of grazed plants will depend upon the grazing intensity associated with the transfer.  相似文献   

13.
Summary The effect of full sunlight, 60%, or 90% attenuated light on photosynthetic rate, growth, leaf morphology, dry weight allocation patterns, phenology, and tolerance to clipping was examined in the glasshouse for steppe populations of the introduced grass, Bromus tectorum. The net photosynthetic response to light for plants grown in shade was comparable to responses for plants grown in full sunlight. Plants grown in full sunlight produced more biomass, tillers and leaves, and allocated a larger proportion of their total production to roots than plants grown in shade. The accumulation of root and shoot biomass over the first two months of seedling growth was primarily responsible for the larger size at harvest of plants grown in full sunlight. Plants grown under 60% and 90% shade flowered an average of 2 and 6 weeks later, respectively, than plants grown in full sunlight. Regrowth after clipping was greater for plants grown in full sunlight compared to those grown in shade. Even a one-time clipping delayed flowering and seed maturation; the older the individual when leaf area was removed, the greater the delay in its phenology. Repeated removal of leaf area was more frequently fatal for plants in shade than in full sunlight. For plants originally grown in full sunlight, regrowth in the dark was greater than for shaded plants and was more closely correlated to non-flowering tiller number than to plant size. This correlation suggests that etiolated regrowth is more likely regulated by the number of functional meristems than by differences in the size of carbohydrate pools. Thus, shading reduces the rate of growth, number of tillers, and ability to replace leaf area lost to herbivory for B. tectorum. These responses, in turn, intensify the effect of competition and defoliation for this grass in forests. B. tectorum is largely restricted to forest gaps at least in part because of its inability to acclimate photosynthetically, the influence of shade on resource allocation, and the role of herbivory in exacerbating these effects.  相似文献   

14.
The seasonal variation of total nonstructural carbohydrates (TNC) concentration in crowns and roots of Kobresia humilis were determined during 1993~ 1994. The effects of defoliation on TNC concentration and the relationship between the aboveground growth and TNC concentration in crown were analysed. TNC were mostly stored in crowns exhibiting great seasonal fluctuations with narrow V-shaped cycle. TNC concentration of crown varied inversely with the net increased of leaf number in the entire growing season, but it dependedlargely on the dead to survival leaf ratio in the early growth season, with a constant of 20.59% at a ratio of 0.16, either decreased or increased when the ratio was greater or less than 0.16 respectively. In the later, there was a significant positive correlation between the TNC concentration of crowns and the cumulative leaves. However, in mid-season, no significant correlation was found between the aboveground growth and the TNC concentration of crowns. The reserve pools (concentration X crown biomass) had no significant differences among various grazing treatments. Intense clipping at two phenological stages caused reduction of reserves during regeneration, but at the end of the growth season, there was no significant difference between clipped and unclipped plants, as well as between clipping intensities.TNC concentration of crowns and roots significantly decreased following early heavy clipping, but it recovered rapidly in crowns. Clipping at mid-stage affected greatly on TNC con-centration of roots. Clipping influenced more on TNC concentration of roots but grazing had more influence on that of crowns.  相似文献   

15.
We compared the potential for compensatory growth of two grass species from the Mongolian steppe that differ in their ability to persist under grazing: the rhizomatous Leymus chinensis and the caespitose Stipa krylovii, and investigated how this ability might be affected by drought. Plants were grown in a greenhouse under wet and dry conditions and subjected to a clipping treatment (biweekly removal of 75–90% of the aerial mass). Leymus exhibited a much stronger compensatory growth after clipping than Stipa. Leymus showed a significant increase in its relative growth rate (RGR) after clipping, while for Stipa RGR was negatively affected. Clipped Leymus plants maintained leaf productivity levels that were similar to undamaged individuals, while leaf-productivity in clipped Stipa dropped to less than half of that of the controls. In Leymus, there was less compensatory growth under dry than under wet conditions, while in Stipa the compensation was increased under drought. This difference probably reflects the fact that Stipa is more drought-tolerant than Leymus. The greater compensatory growth of Leymus compared to Stipa mainly resulted from a greater stimulation of its net assimilation rate (NAR), and its greater capacity to store and reallocate carbohydrates by clipping. The greater increase in NAR was probably the result of a stronger reduction in self-shading, because Leymus shoots were much denser than those of Stipa, which resulted in a higher increase in light penetration to remaining leaves after clipping. The results of this study suggest that the greater ability of Leymus to persist under grazing is the result of its larger capacity for compensatory growth.  相似文献   

16.
This study experimentally analyses the response to simulated herbivory of juvenile Scots pine of two different ages in contrasting abiotic scenarios, focusing on the potential dual role of browsing ungulates: negative, by removing aerial biomass, and positive, by stimulating compensation capacity and providing nutrients by depositing their excrement. Compensation against herbivory was investigated by experimentally clipping a set of Scots pine (Pinus sylvestris L. nevadensis) juveniles, grown under different levels of light and nutrient availability. The responses analysed were survival, trunk-diameter growth, leader-shoot growth, increment in number of meristems, RGR, biomass of needles, shoots, root and whole plant, and root-to-shoot ratio. Clipping consistently resulted in a worse survival and performance of pines with respect to unclipped ones. From the factors analysed, light availability was responsible mainly for the variations in plant performance, while the addition of nutrients was much less important. Age was also important, with older pines showing in general better performance after clipping. Overall, clipping invariably had a negative effect on Scots pine, since none of the combinations of abiotic factors used resulted in overcompensation. However, the intensity on this negative effect proved quite variable, from almost an exact compensation in clipped older pines under full sunlight availability to very poor performance and high death probability in younger pines in shade. Scots pine cannot overcompensate after clipping, but, depending of the environmental conditions, the negative result of clipping varies from severe undercompensation to almost exact compensation. Also, small differences in sapling age can promote significant differences in sapling response to clipping and light environment.  相似文献   

17.
通过野外控制实验,研究了刈割(留茬3 cm、留茬1 cm及不刈割)、施肥(施肥、不施肥)和浇水(浇水、不浇水)处理对高寒草甸矮嵩草(Kobresia humilis)和垂穗披碱草(Elymus nutans)补偿高度、株高相对生长率、比叶面积、叶片净光合速率和地上总生物量的影响.结果表明:2物种的株高和地上总生物量在刈割后均为低补偿响应,但其株高相对生长率显著提高,并均随年份而增加;垂穗披碱草比叶面积、叶片净光合速率和地上总生物量对刈割损伤更加敏感;尽管施肥能显著提高2物种上述各项指标,但在不同处理条件下矮嵩草的耐牧性指数均小于垂穗披碱草;浇水的作用不显著.说明2物种的耐牧性依赖于土壤养分资源获得性,矮嵩草的耐牧性强于垂穗披碱草.  相似文献   

18.
In this study we evaluated (1) the combined effects of simulated defoliation and below-ground herbivory (BGH) on the biomass and nitrogen content of tillers and roots of the bunchgrass Muhlenbergia quadridentata and (2) the effect of defoliation on the survival of third-instar root-feeder larvae of Phyllophaga sp. The experiment was performed in a pine forest area at an altitude of 3200 m above sea level. The grass and the root-feeder species were native and dominant in the understory and in the macroarthropod root-feeder communities, respectively. Plants were established in pots in the field and were subjected to the following treatments in a factorial design: simulated defoliation (three levels) and BGH (with or without root-feeder larvae) with ten replicates per treatment. Plants were defoliated three times at 2-month intervals. The interaction between defoliation and root herbivory was significant for all components of plant biomass. In every case, light defoliation with BGH decreased live above-ground, root and total plant biomass, and the number of live tillers by more than 50% with respect to the same defoliation level without root-feeders. Plants apparently did not compensate for the carbon drain by root-feeders when a high proportion of older leaves were not removed by defoliation. Plants under heavy defoliation were not affected by the presence of root-feeders and showed a greater live/dead above-ground biomass ratio than lightly defoliated and control plants. Defoliation and BGH did not change tiller and root N concentrations but root herbivores did decrease live-tiller N content in lightly defoliated plants. Root-feeders but not defoliation decreased the root/shoot ratio by 40% and the live/dead above-ground biomass ratio by 45% through increased tiller mortality. Survivorship and final biomass of Phyllophaga sp. larvae were not affected by defoliation treatments during the 6-month study period. Received: 17 May 1996 / Accepted: 1 November 1996  相似文献   

19.
Summary Net photosynthesis (PN), root respiration (RR), and regrowth of Bouteloua gracilis (H.B.K.) Lag. were examined in the laboratory over a 10-day period following clipping to a 4-cm height to simulate grazing by large herbivores. Net photosynthesis rates of tissue remaining immediately following defoliation were only about 40% as great as preclipping rates. Three days after clipping, PN rates of defoliated plants had increased to values about 21% greater (per unit leaf area) than those of unclipped controls and remained at that level through Day 10. No statistically significant changes in RR occurred following defoliation. Biomass of unclipped plants nearly doubled during the 10-day study period, while that of defoliated plants increased 67%. Over half the new growth of defoliated plants was allocated to new leaf blades and only 18% to new roots, while only 33% of the new growth of control plants was allocated to new leaf blades but 29% went to new roots. As a consequence of increased PN rates and increased carbon allocation to synthesis of additional photosynthetic tissue following defoliation, net CO2 uptake per plant increased from 9% to 80% of that of the controls from Day 0 through Day 10.  相似文献   

20.
Summary Mycorrhizal and nonmycorrhizal plants of Panicum coloratum L. were grown in a factorial treatment design under two nitrogen levels and two clipping heights with an unclipped control. The nitrogen concentration in different plant components was determined following 9 weeks of growth under experimental conditions. Mycorrhizal infection increased green leaf and sheath nitrogen concentration by a relatively small, but significant percentage and had no effect on nitrogen allocation to the various plant components. Clipping increased leaf nitrogen concentration but inhibited growth to the extent that, when compared with the unclipped controls, less nitrogen remained in residual plant biomass with up to half of the total nitrogen allocated to offtake (the material removed by clipping). Plants receiving the higher nitrogen fertilization had higher tissue concentration of N and more N allocated to above-ground living tissues. Mycorrhizal infection interacted with clipping height and also with N availability significantly. Infection was unable to ameliorate the negative effects of the most severe clipping regime and of the low nitrogen availability on leaf and sheath N content. This is possibly due to mycorrhizal demand for carbohydrates competing with the carbohydrate requirement of roots for nitrogen uptake.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号