首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flavonoids (-)-epigallocatechin-3-gallate (EGCg) and (-)-epicatechin-3-gallate (ECg) are major components of green tea and show numerous biological effects. We investigated the glucuronidation of these compounds and of quercetin by microsomes. Quercetin was almost fully glucuronidated by liver microsomes after 3 h, whereas ECg and ECGg were conjugated to a lesser extent ([Formula: See Text] and [Formula: See Text] respectively). The intestinal microsomes also glucuronidated quercetin much more efficiently than ECg and EGCg. Although the rates were lower than quercetin, intestinal microsomes exhibited higher activity on the galloyl group of ECg and EGCg compared to the flavonoid ring, whereas hepatic glucuronidation was higher on the flavonoid ring of EGCg and ECg compared to the galloyl groups. The low glucuronidation rates could partially explain why these flavanols are present in plasma as unconjugated forms.  相似文献   

2.
The protective effect of ( -)-epicatechin 3- O -gallate (ECg) against peroxynitrite (ONOO -)-mediated damage was examined using an animal model and a cell culture system. In rats subjected to lipopolysaccharide (LPS) administration plus ischemia-reperfusion, the plasma 3-nitrotyrosine level, an indicator of ONOO - production in vivo , was elevated, whereas it declined significantly and dose-dependently after the oral administration of ECg at doses of 10 and 20 μmoles/kg body weight/day for 20 days prior to the process. Moreover, oral administration of ECg significantly enhanced the activities of the antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase, and the antioxidant glutathione, showing enhancement of the biological defense system against the damage induced by ONOO -. In addition, the significant increase in the renal mitochondrial thiobarbituric acid-reactive substance level of LPS and ischemic-reperfused control rats was attenuated in rats given ECg. Furthermore, the elevations in the plasma urea nitrogen and creatinine (Cr) levels and the urinary methylguanidine/Cr ratio induced by the procedure were attenuated markedly after oral administration of ECg, implying amelioration of renal impairment. The addition of ECg (25 or 125 μM) prior to 3-morpholinosydnonimine (SIN-1, 800 μM) exposure reduced ONOO - formation and increased the viability of cultured renal epithelial (LLC-PK 1 ) cells in a dose-dependent manner. In particular, ECg inhibited ONOO --mediated apoptotic cell death, which was confirmed by decreases in the DNA fragmentation rate and the presence of apoptotic morphological changes, i.e. small nuclei and nuclear fragmentation. Furthermore, adding ECg before SIN-1 treatment regulated the cell cycle by enhancing G 2 /M phase arrest. This study provides evidence that ECg has protective activity against the renal damage induced by excessive ONOO - in cellular and in vivo systems.  相似文献   

3.
表没食子儿茶素没食子酸酯(EGCC)是绿茶中含量最为丰富、性质最为活泼的儿茶索类物质.体内外转化研究发现,其在体内外可转化为多种产物,其中一些较EGCG具有更高的生物活性.这些研究对于明确茶的保健机理、开发新药具有重要意义.  相似文献   

4.
Xu Z  Chen S  Li X  Luo G  Li L  Le W 《Neurochemical research》2006,31(10):1263-1269
The purpose of this study is to evaluate neuroprotective effects of (-)-Epigallocatechin-3-gallate (EGCG) in a transgenic mouse model of Amyotrophic lateral sclerosis (ALS). SOD1-G93A transgenic mice and wild-type mice were randomly divided into EGCG-treated groups (10 mg/kg, p.o) and vehicle-treated control groups. Rotarod measurement was performed to assess the motor function of mice starting at the age of 70 days. Nissl staining to examine the number of motor neurons and CD11b immunohistochemical staining to evaluate activation of microglia in the lumbar spinal cords were conducted at the age of 120 days. In addition, for further observation of regulation of cell signaling pathways by EGCG, we used immunohistochemical analysis for nuclear factor kappa B (NF-κB) and cleaved caspase-3 as well as western blot analysis to determine the expression of nitric oxide synthase (iNOS) and NF-κB in the spinal cord. This study demonstrated that oral administration of EGCG beginning from a pre-symptomatic stage significantly delayed the onset of disease, and extended life span. Furthermore, EGCG-treated transgenic mice showed increased number of motor neurons, diminished microglial activation, reduced immunohistochemical reaction of NF-κB and cleaved caspase-3 as well as reduced protein level of iNOS and NF-κB in the spinal cords. In conclusion, this study provides further evidences that EGCG has multifunctional therapeutic effects in the mouse model of ALS.  相似文献   

5.
生物体内的活性氧(Reactive oxygen species,ROS)过量引起氧化应激将导致脂质、DNA和蛋白质氧化损伤,从而引发一系列生理和病理反应。绿茶中茶多酚的主要成分表没食子儿茶素没食子酸酯((-)-Epigallocatechin-3-gallate,EGCG)具有强抗氧化性,能有效抑制ROS。本文简要介绍了生物体内ROS的来源和EGCG的特性及其对ROS的抑制作用。通过检测玫瑰红水溶液在光敏化时所产生~1O_2的1 270 nm近红外发光,分析比较了EGCG和迭代钠(NaN_3)对~1O_2发光的淬灭过程,发现EGCG对~1O_2的淬灭效果比NaN_3更好,为EGCG淬灭~1O_2的定量研究提供理论依据。  相似文献   

6.
《Free radical research》2013,47(8):946-953
Abstract

(-)-Epigallocatechin-3-gallate (EGCg) is a naturally occurring polyphenol found in plant-based foods and beverages such as green tea. Although EGCg can eliminate carbonyl species produced by glucose autoxidation and thus can inhibit protein glycation, it is also reported to be a pro-oxidant that stimulates protein glycation in vitro. To better understand the balance between antioxidant and pro-oxidant features of EGCg, we evaluated EGCg-mediated bioactivities in a human serum albumin (HSA)/glucose model by varying three different parameters (glucose level, EGCg concentration, and time of exposure to EGCg). Measurements of glycation-induced fluorescence, protein carbonyls, and electrophoretic mobility showed that the level of HSA glycation was positively related to the glucose level over the range 10–100 mM during a 21-day incubation at 37°C and pH: 7.4. Under mild glycemic pressure (10 mM), long exposure to EGCg enhanced HSA glycation, while brief exposure to low concentrations of EGCg did not. Under high glycemic pressure (100 mM glucose), long exposure to EGCg inhibited glycation. For the first time we showed that brief exposure to EGCg reversed glycation-induced fluorescence, indicating a restorative effect. In conclusion, our research identified glucose level, EGCg concentration, and time of exposure as critical factors dictating EGCg bioactivities in HSA glycation. EGCg did not affect HSA glycation under normal physiological conditions but had a potential therapeutic effect on HSA severely damaged by glycation.  相似文献   

7.
The objective of this paper is to assess the gelatinase production by some ocular pathogenic bacterial strains, and evaluate the ability of (-)epigallocatechin-3-gallate (EGCg) to inhibit this gelatinase activity and thus limit bacterial invasion. The effect of EGCg on bacterial gelatinase activity was tested by classic zymography methods, while its effect on bacterial invasion was evaluated through the ability of growing bacteria to liquefy and thus penetrate a semisolid gelatine substrate. It was found that EGCg inhibits bacterial gelatinases with an IC(50) of about 0.2 mM, and limits invasion of gelatinase-positive bacteria at concentrations above 2 mM. These results show for the first time that EGCg, as well as having direct antibacterial activity, can also inhibit bacterial gelatinases, thus limiting their invasion on gelatine. Possible use of EGCg is thus suggested as an adjuvant in antibacterial chemotherapy.  相似文献   

8.
We measured time course and extent of xanthine dehydrogenase (XD) to xanthine oxidase (XO) conversion in ischemic human and rat intestine. To model normothermic no-flow ischemia, we incubated fresh biopsies for 0, 2, 4, 8 and 16 h. At [Formula: See Text] XO was less in humans than in rats [Formula: See Text] while XD was essentially the same [Formula: See Text] After 16 h incubation at 37°C, there was no appreciable XD-to-XO conversion and no change in neither XO nor XD activity in human intestine. In contrast, the rat intestine had [Formula: See Text] ratio doubled in the first 2 h and then maintained that value until [Formula: See Text] In conclusion, no XO-to-XD conversion was appreciable after 16 h no-flow normothermic ischemia in human intestine; in contrast, XO activity in rats increased sharply after the onset of ischemia. An immunohistochemical labelling study shows that, whereas [Formula: See Text] expression in liver tissue is localised in both hepatocytes and endothelial cells, in the intestine that expression is mostly localised in epithelial cells. We conclude that XO may be considered as a major source of reactive oxygen species in rats but not in humans.  相似文献   

9.
In order to eliminate the possibility that diet may influence urinary oxidative DNA lesion levels, in our experiments we used a recently developed technique involving HPLC pre-purification followed by gas chromatography with isotope dilution mass spectrometric detection. This methodology was applied for the determination of the lesions: 8-oxo-7,8-dihydroguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and 5-(hydroxymethyl)uracil (5HMUra) in the urine of mice fed with nucleic acid free diet and normal, unrestricted diet. The mean levels of 8-oxoGua, 8-oxodGuo and 5HMUra of the animals fed the normal diet reached the mean values of [Formula: See Text], [Formula: See Text] and [Formula: See Text] After feeding the mice for 12 days with nucleic acid free diet the respective values were [Formula: See Text], [Formula: See Text] and [Formula: See Text] respectively. The results clearly demonstrate that irrespective of the diet, the excretion rates were not statistically different during the course of feeding. The respective p values for the differences between lesions in the two types of diets were: 0.13 (8-oxoGua), 0.16 (8-oxodGuo), 0.18 (5-HMUra). Our results clearly indicate that diet does not contribute to urinary excretion of the lesions in mouse model.  相似文献   

10.
In the present study we demonstrate neuroprotective property of green tea extract and (-)-epigallocatechin-3-gallate in N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice model of Parkinson's disease. N-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxin caused dopamine neuron loss in substantia nigra concomitant with a depletion in striatal dopamine and tyrosine hydroxylase protein levels. Pretreatment of mice with either green tea extract (0.5 and 1 mg/kg) or (-)-epigallocatechin-3-gallate (2 and 10 mg/kg) prevented these effects. In addition, the neurotoxin caused an elevation in striatal antioxidant enzymes superoxide dismutase (240%) and catalase (165%) activities, both effects being prevented by (-)-epigallocatechin-3-gallate. (-)-Epigallocatechin-3-gallate itself also increased the activities of both enzymes in the brain. The neuroprotective effects are not likely to be caused by inhibition of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine conversion to its active metabolite 1-methyl-4-phenylpyridinium by monoamine oxidase-B, as both green tea and (-)-epigallocatechin-3-gallate are very poor inhibitors of this enzyme in vitro (770 microg/mL and 660 microM, respectively). Brain penetrating property of polyphenols, as well as their antioxidant and iron-chelating properties may make such compounds an important class of drugs to be developed for treatment of neurodegenerative diseases where oxidative stress has been implicated.  相似文献   

11.
Green tea catechins (GTCs) are polyphenolic flavonoids formerly called vitamin P. GTCs, especially (-)-epigallocatechin-3-gallate (EGCG), lower the incidence of cancers, collagen-induced arthritis, oxidative stress-induced neurodegenerative diseases, and streptozotocin-induced diabetes. Also, inhibition of adipogenesis by green tea and green tea extract has been demonstrated in cell lines, animal models, and humans. The obesity-preventive effects of green tea and its main constituent EGCG are widely supported by results from epidemiological, cell culture, animal, and clinical studies in the last decade. Studies with adipocyte cell lines and animal models have demonstrated that EGCG inhibits extracellular signal-related kinases (ERK), activates AMP-activated protein kinase (AMPK), modulates adipocyte marker proteins, and down-regulates lipogenic enzymes as well as other potential targets. Also, the catechin components of green tea have been shown to possess anti-carcinogenic properties possibly related to their anti-oxidant activity. In addition, it was shown that dietary supplementation with EGCG could potentially contribute to nutritional strategies for the prevention and treatment of type 2 diabetes mellitus. In this review, the biological activities and multiple mechanisms of EGCG in cell lines, animal models, and clinical observations are explained.  相似文献   

12.
The flavonoid rich grain of buckwheat (Fagopyrum esculentum Moench, Fam. Polygonaceae) is of high nutritional value. With the aim to improve its agronomic productivity, cultivars were crossed with the wild species F. homotropicum which, however, differs in its flavonoid content. The intention of this work was to determine the flavonoid composition in developed interspecific hybrids and to elucidate the proanthocyanidin structures. Seven compounds were purified from methanol extracts of buckwheat (Fagopyrum esculentum Moench) grains by Sephadex LH-20 column chromatography. Beside the procyanidin epicatechin-[4-8]-epicatechin-3-O-(3,4)-dimethylgallate the following propelargonidins were identified: epiafzelechin-[4-6]-epicatechin, epiafzelechin-[4-8]-epiafzelechin-[4-8]-epicatechin, epiafzelechin-[4-8]-epicatechin-3-O-(3,4-dimethyl)-gallate, epiafzelechin-[4-8]-epiafzelechin-[4-8]-epicatechin-3-O-(3,4-dimethyl)-gallate, epiafzelechin-[4-8]-epicatechin-3-O-4-methyl-gallate and epiafzelechin-[4-8]-epicatechin-p-OH-benzoate on the basis of HPLC and LC-MS/MS.  相似文献   

13.
The protective effect of ( &#109 )-epicatechin 3- O -gallate (ECg) against peroxynitrite (ONOO &#109 )-mediated damage was examined using an animal model and a cell culture system. In rats subjected to lipopolysaccharide (LPS) administration plus ischemia-reperfusion, the plasma 3-nitrotyrosine level, an indicator of ONOO &#109 production in vivo, was elevated, whereas it declined significantly and dose-dependently after the oral administration of ECg at doses of 10 and 20 &#119 moles/kg body weight/day for 20 days prior to the process. Moreover, oral administration of ECg significantly enhanced the activities of the antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase, and the antioxidant glutathione, showing enhancement of the biological defense system against the damage induced by ONOO &#109 . In addition, the significant increase in the renal mitochondrial thiobarbituric acid-reactive substance level of LPS and ischemic-reperfused control rats was attenuated in rats given ECg. Furthermore, the elevations in the plasma urea nitrogen and creatinine (Cr) levels and the urinary methylguanidine/Cr ratio induced by the procedure were attenuated markedly after oral administration of ECg, implying amelioration of renal impairment. The addition of ECg (25 or 125 &#119 M) prior to 3-morpholinosydnonimine (SIN-1, 800 &#119 M) exposure reduced ONOO &#109 formation and increased the viability of cultured renal epithelial (LLC-PK 1 ) cells in a dose-dependent manner. In particular, ECg inhibited ONOO &#109 -mediated apoptotic cell death, which was confirmed by decreases in the DNA fragmentation rate and the presence of apoptotic morphological changes, i.e. small nuclei and nuclear fragmentation. Furthermore, adding ECg before SIN-1 treatment regulated the cell cycle by enhancing G 2 /M phase arrest. This study provides evidence that ECg has protective activity against the renal damage induced by excessive ONOO &#109 in cellular and in vivo systems.  相似文献   

14.
Capsaicin and the principal green tea catechin, (-)-epigallocatechin-3-gallate (EGCg), target tNOX, a tumor (cancer)-specific surface hydroquinone (NADH) oxidase with protein disulfide-thiol interchange activity (ECTO-NOX protein). Accordingly vector-forced over expression of tNOX in MCF-10A mammary epithelia or COS cells that lack tNOX or in COS cells that underexpress tNOX enhanced the susceptibility of growth and apoptosis to both EGCg and capsaicin. Additionally, the tNOX-transfected MCF-10A cells proliferated in Matrigel, a measure of invasiveness. In contrast, oligomeric antisense tNOX DNA abrogated growth inhibition by EGCg and capsaicin and reduced anchorage-dependent growth of HeLa (human cervical carcinoma) cells that naturally overexpress tNOX. The findings show cell surface expression of tNOX as both necessary and sufficient for the cellular anticancer activities attributed to both EGCg and capsaicin.  相似文献   

15.
We demonstrate that the tea polyphenol, epigallocatechin-3-gallate, is an efficient inhibitor of human dihydrofolate reductase. Like other antifolate compounds, epigallocatechin-3-gallate acts by disturbing folic acid metabolism in cells, causing the inhibition of DNA and RNA synthesis and altering DNA methylation. Epigallocatechin-3-gallate was seen to inhibit the growth of a human colon carcinoma cell line in a concentration and time dependent manner. Rescue experiments using leucovorin and hypoxanthine–thymine medium were the first indication that epigallocatechin-3-gallate could disturb the folate metabolism within cells. Epigallocatechin-3-gallate increased the uptake of [3H]-thymidine and showed synergy with 5-fluorouracil, while its inhibitory action was strengthened after treatment with hypoxanthine, which indicates that epigallocatechin-3-gallate decreases the cellular production of nucleotides, thus, disturbing DNA and RNA synthesis. In addition to its effects on nucleotide biosynthesis, antifolate treatment has been linked to a decrease in cellular methylation. Here, we observed that epigallocatechin-3-gallate altered the p16 methylation pattern from methylated to unmethylated as a result of folic acid deprivation. Finally, we demonstrate that epigallocatechin-3-gallate causes adenosine to be released from the cells because it disrupts the purine metabolism. By binding to its specific receptors, adenosine can modulate different signalling pathways. This proposed mechanism should help us to understand most of the molecular and cellular effects described for this tea polyphenol.  相似文献   

16.
17.
(2S,3S)-3-methyl- and 3-isopropylaspartic acids were synthesized by bioconversion of the corresponding alkylfumarates (mesaconate and 3-isopropylfumarate) using β-methylaspartase from cell-free extracts of Clostridium tetanomorphum. Optically pure (2S,3S)-3-alkylaspartic acids were transformed in several steps to benzyl (3S,4R)-3-alkylmalolactonates without any racemization of the two chiral centers. These optically active α,β-substituted-β-lactones were polymerized by anionic ring opening polymerization yielding optically active semi-crystalline polyesters. 13C NMR analysis of poly[benzyl β-3-isopropylmalate] in CDCl3 has shown that only the iso-type stereosequence is present in the polymer, indicating that the macromolecular chain is constituted by the only units of benzyl β-(2S,3S)-3-isopropylmalate monomer. The polymerization reaction was done without any racemization of the two stereogenic centers as in the case of benzyl (3S,4R)-3-methylmalolactonate. © 1996 Wiley-Liss, Inc.  相似文献   

18.
(-)-Epigallocatechin-3-gallate (EGCg) has been implicated in cancer chemo-prevention in studies using many different kinds of cancer cells. The present study measured cell viability, osteopontin (OPN) secretion, fatty acid synthase (FAS) expression, and cytosolic Ca(2+) and verified the anti-cancer activities of EGCg in MCF-7 human breast cancer cells. EGCg-induced apoptosis was evidenced by nuclear condensation, increased protein levels of activated caspase-3, down-regulation of gelsolin and tropomyosin-4 (Tm-4), and up-regulation of tropomyosin-1(Tm-1). By disrupting adherens junction formation, EGCg caused accumulation of extra-nuclear β-catenin aggregates in the cytosol and alterations of the protein content and mRNA expression of E-cadherin and β-catenin, but not N-cadherin, in MCF-7 cells. To identify the putative mechanisms underlying the EGCg signaling pathways, EGFP (enhanced green fluorescence protein) was ectopically expressed in MCF-7 cells. This allowed us to monitor the EGCg-induced fluorescence changes associated with the effects of Triton X-100 (to remove plasma membrane) or the addition of laminin, anti-laminin receptor (LR) antibody, epidermal growth factor (EGF), and genistein on the cells. Our results indicated that EGCg acts via the signaling pathways associated with cell membrane to suppress cell proliferation, provoke apoptosis, and disturb cell-cell adhesion in MCF-7 cells. The altered events include the EGFR, LR, FAS, intracellular Ca(2+) , OPN secretion, caspace-3, gelsolin, Tm-4, Tm-1, and adherens junction proteins, E-cadherin and β-catenin.  相似文献   

19.
The dietary bioavailability of the isoflavone genistein is decreased in older rats compared to young adults. Since flavonoids are metabolized extensively by the UDP-glucuronosyltransferases (UGTs), we hypothesized that UGT flavonoid conjugating activity changes with age. The effect of age on flavonoid glucuronidation was determined using hepatic microsomes from male F344 rats. Kinetic models of UGT activity toward the flavonol quercetin and the isoflavone genistein were established using pooled hepatic microsomal fractions of rats at different ages, and glucuronidation rates were determined using individual samples. Intrinsic clearance (Vmax/Km) values in 4-, 18- and 28-month-old rats were 0.100, 0.078 and 0.087 ml/min/mg for quercetin-7-O-glucuronide; 0.138, 0.133 and 0.088 for quercetin-3′-O-glucuronide; and 0.075, 0.077 and 0.057 for quercetin-4′-O-glucuronide, respectively. While there were no differences in formation rates of total quercetin glucuronides in individual samples, the production of the primary metabolite, quercetin-7-O-glucuronide, at 30 μM quercetin concentration was increased from 3.4 and 3.1 nmol/min/mg at 4 and 18 months to 3.8 nmol/min/mg at 28 months, while quercetin-3′-O-glucuronide formation at 28 months declined by a similar degree (P≤.05). At 30 and 300 μM quercetin concentration, the rate of quercetin-4′-O-glucuronide formation peaked at 18 months at 0.9 nmol/min/mg. Intrinsic clearance values of genistein 7-O-glucuronide increased with age, in contrast to quercetin glucuronidation. Thus, the capacity for flavonoid glucuronidation by rat liver microsomes is dependent on age, UGT isoenzymes and flavonoid structure.  相似文献   

20.
β-methylaspartate ammonia-lyase, EC 4.3.1.2, (β-methylaspartase) from Clostridium tetanomorphum was used to produce a 40/60 molar ratio of (2S,3R) and (2S,3S)-3-methylaspartic acids, 2a and 2b , respectively, from mesaconic acid 1 as substrate, on a large scale. To prepare (3R,4R)-3-methyl-4-(benzyloxycarbonyl)-2-oxetanone (benzyl 3-methylmalolactonate) 6, 2a and 2b were transformed, in the first step, into 2-bromo-3-methylsuccinic acids 3a and 3b and separated. After three further steps, (2S,3S)- 3a yielded the α,β-substituted β-lactone (3R,4R) 6 with a very high diastereoisomeric excess (>95% by chiral gas chromatography). The corresponding crystalline polymer, poly[benzyl β-(2R,3S)-3-methylmalate] 8 , prepared by an anionic ring opening polymerization, was highly isotactic as determined by 13C NMR. Catalytic hydrogenolysis of lactone 6 yielded (3R,4R)-3-methyl-4-carboxy-2-oxetanone (3-methylmalolactonic acid) 7 , to which reactive, chiral, or bioactive molecules can be attached through ester bonds leading to polymers with possible therapeutic applications. Because of the ability of β-methylaspartase to catalyse both syn- and anti-elimination of ammonia from (2S,3RS)-3-methylaspartic acid 2ab at different rates, the (2S,3R)-stereoisomer 2a was retained and isolated for further reactions. These results permit the use of the chemoenzymatic route for the preparation of both optically active and racemic polymers of 3-methylmalic acid with well-defined enantiomeric and diastereoisomeric compositions. Chirality 10:727–733, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号