首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
西藏扎布耶盐湖地区现代花粉雨的初步研究   总被引:20,自引:0,他引:20  
从扎布耶盐湖和藏南地区采集的21块表土花粉分析结果,提供了花粉与植被,花粉与亚环境之间的定性关系,在扎耶盐湖,a泉水沼泽,以莎草科花粉占优势。b.盐盘,藜科和麻黄属花粉含量高。c.山坡,分布变色锦鸡儿灌丛,表土花粉以蒿属和藜科为优势。d.河流沙滩,以蒿属和禾本科花粉为主,e.常年盐湖,以蒿属占优势,松属、云杉属、冷杉属、铁杉属、桦属和桤木属等乔木植物花表土中普遍存在。以松粉百分含量最高(平均26.  相似文献   

2.
Modern pollen samples from alpine vegetation on the Tibetan Plateau   总被引:6,自引:0,他引:6  
  • 1 A set of 316 modern surface pollen samples, sampling all the alpine vegetation types that occur on the Tibetan Plateau, has been compiled and analysed. Between 82 and 92% of the pollen present in these samples is derived from only 28 major taxa. These 28 taxa include examples of both tree (AP) and herb (NAP) pollen types.
  • 2 Most of the modern surface pollen samples accurately reflect the composition of the modern vegetation in the sampling region. However, airborne dust‐trap pollen samples do not provide a reliable assessment of the modern vegetation. Dust‐trap samples contain much higher percentages of tree pollen than non‐dust‐trap samples, and many of the taxa present are exotic. In the extremely windy environments of the Tibetan Plateau, contamination of dust‐trap samples by long‐distance transport of exotic pollen is a serious problem.
  • 3 The most characteristic vegetation types present on the Tibetan Plateau are alpine meadows, steppe and desert. Non‐arboreal pollen (NAP) therefore dominates the pollen samples in most regions. Percentages of arboreal pollen (AP) are high in samples from the southern and eastern Tibetan Plateau, where alpine forests are an important component of the vegetation. The relative importance of forest and non‐forest vegetation across the Plateau clearly follows climatic gradients: forests occur on the southern and eastern margins of the Plateau, supported by the penetration of moisture‐bearing airmasses associated with the Indian and Pacific summer monsoons; open, treeless vegetation is dominant in the interior and northern margins of the Plateau, far from these moisture sources.
  • 4 The different types of non‐forest vegetation are characterized by different modern pollen assemblages. Thus, alpine deserts are characterized by high percentages of Chenopodiaceae and Artemisia, with Ephedra and Nitraria. Alpine meadows are characterized by high percentages of Cyperaceae and Artemisia, with Ranunculaceae and Polygonaceae. Alpine steppe is characterized by high abundances of Artemisia, with Compositae, Cruciferae and Chenopodiaceae. Although Artemisia is a common component of all non‐forest vegetation types on the Tibetan Plateau, the presence of other taxa makes it possible to discriminate between the different vegetation types.
  • 5 The good agreement between modern vegetation and modern surface pollen samples across the Tibetan Plateau provides a measure of the reliability of using pollen data to reconstruct past vegetation patterns in non‐forested areas.
  相似文献   

3.
阴山山脉东段花粉通量及其与表土花粉比较研究   总被引:1,自引:0,他引:1  
阴山山脉东段蛮汉山和大青山山顶草甸、桦木林、虎榛子灌丛、人工油松林及杂草草原5个植被类型花粉通量与表土花粉对比研究发现,不同植被类型及同一植被类型不同样点花粉通量和花粉浓度差异明显,捕捉器样品花粉源区面积小于表土样品,能较好地反映样品点周围植被组成,但受虫媒植物和局地植物花粉影响,与表土样品花粉组合差异明显;表土样品中松属、桦属、蒿属及藜科花粉含量多高于捕捉器样品,表明这些花粉不仅易于传播,而且在表土中具有较强的保存能力;禾本科花粉具低代表性,花粉保存能力较低.地层花粉分析中应引起注意.  相似文献   

4.
The paper deals with features of pollen assemblages and their relationship to vegetation by comparing the results from surface pollen analysis with that from sample determination. It showed that Chenopodiaceae dominate with some Artemisia and a few Ephedra in steppe area. Although A/C (Artemisia/Chenopodiaceae) value was lower and more complicated than arid steppe area, it could reflect the humidity and the level of grass degeneration. The much more Pinus and Betula pollen percentage might be the main environmental noise source produced as statistical error. There were no obvious difference on pollen assemblage among the steppe types as Stipa gobica, S. krylovii, Peganum-Achnatherum except Artemisia and Chenopodiaceae pollen. However, there were some difference among meadow steppe, viz. sparse Ulmus pumila and Salisc tree, Aneurolepidium chinense and also the types like Salisc flavida, Stipa gobica, S. krylovii, Peganum-Achnatherum. Features of pollen assemblage in steppe degeneration and applications of PCA (principal component analysis) and method on surface pollen analysis were discussed.  相似文献   

5.
Aim Pollen ratios are widely used to gain palaeovegetation and palaeoclimatic information from fossil pollen spectra, although their applicability has seldom been tested with modern pollen data. I used a data set of 113 lake‐surface sediments from the eastern Tibetan Plateau to test the reliability of several pollen ratios. Location The lake‐surface pollen spectra cover a wide range of vegetation types (temperate desert, temperate steppe, alpine desert, alpine steppe, high‐alpine meadow, sub‐alpine shrub, coniferous and mixed forest) and climatic conditions (mean July temperature, TJuly: 4.0–17.4°C; mean annual precipitation, Pann: 104–670 mm). Methods Lake‐surface sediments were analysed palynologically, and several pollen ratios were calculated. These ratios were interpreted with respect to vegetation and climatic conditions. Results The arboreal pollen sum (AP) was highest in samples from forested areas and was significantly correlated with Pann (r2 = 0.44). In non‐forested areas, samples from large lakes and from lakes surrounded by sparse vegetation had increased AP values, suggesting that AP is a useful vegetation density indicator. Artemisia/Chenopodiaceae (A/C) ratios were lowest in desert areas and were positively correlated with Pann (r2 = 0.25). The aridity pollen index was inappropriate for inferring (palaeo‐)climatic information from samples on the eastern Tibetan Plateau as it had no significant correlation with the environmental factors. Artemisia/Cyperaceae (A/Cy) ratios had a significant correlation with TJuly (r2 = 0.23), but only a weak correlation with Pann, which indicates that the A/Cy ratio is applicable as a temperature indicator. Furthermore, it is a valuable tool for the differentiation of high‐alpine meadow from steppe vegetation. Main conclusions AP sum, A/C ratio and A/Cy ratio are useful tools for qualitative and semi‐quantitative palaeoenvironmental reconstruction on the Tibetan Plateau; however, the results obtained should not be interpreted quantitatively.  相似文献   

6.
本文利用新疆东部巴里坤盆地内巴里坤湖的地层孢粉记录,结合14C定年,重建了该地区8.8cal.kaBP以来植被的演化历史.结果表明在8.8-8.0cal.kaBP、8.0-4.3cal.kaBP、4.3-3.8cal.kaBP、3.8-0.6cal.kaBP以及0.6cal kaBP至今,植被分别经历了荒漠、荒漠草原/草原、荒漠、荒漠草原/草原再到荒漠的演化过程.研究区中全新世以来的这种植被变化模式与亚洲中部干旱区的其它研究记录具有很好的一致性.  相似文献   

7.
We use a data set of 35 surface pollen samples from lake sediments, moss polsters and top soils on the north-eastern Tibetan Plateau to explore the relationship between modern pollen assemblages and contemporary vegetation patterns. The surface pollen transect spanned four vegetation zones––alpine meadow, steppe, steppe desert and desert––under different climatic/elevational conditions. Relative representation (R rel) values and Principal Components Analysis (PCA) were used to determine the relationships between modern pollen and vegetation and regional climate gradients. The results show that the main vegetation zones along the regional and elevational transects can be distinguished by their modern pollen spectra. Relative to Poaceae, a high representation of Artemisia, Nitraria and Chenopodiaceae was found, while Cyperaceae and Gentiana showed values in the middle range, and Ranunculaceae, Asteraceae, Ephedra and Fabaceae had low relative representation values. PCA results indicate a high correlation between the biogeoclimatic zones and annual precipitation and annual temperature and July temperature. The Artemisia/Chenopodiaceae ratio and the Artemisia/Cyperaceae ratio are useful tools for qualitative and semi-quantitative palaeoenvironmental reconstruction on the north-eastern Tibetan Plateau. Surface lake sediments are found to have different palynomorph spectra from moss cushion and soil samples, reflecting the larger pollen source area in the contemporary vegetation for lakes.  相似文献   

8.
内蒙古中部表土花粉研究   总被引:49,自引:0,他引:49  
采用花粉百分含量分析和主成分分析方法对内蒙古中部表土花粉与植被的关系进行了对比研究 ,探讨了草原花粉组合的特点及其形成原因。研究发现 ,草原区表土花粉以藜科和蒿属 ( Artemisia)为主 ,并以前者占优势地位 ,麻黄属 ( Ephedra)亦较常见。草原区植被的 A/C(蒿属 /藜科 )值较干旱区草原植被为低 ,分布规律也较干旱区复杂 ,但仍能反应干旱程度的差别 ,而且还反映了草原植被的退化程度。松属 ( Pinus)和桦属 ( Betula)的花粉在个别样品中占有较大比例 ,是环境噪音 (指外源性的、超代表性的花粉 )的主要来源。不同植被类型在花粉组合上各有特点 ,可以从花粉百分含量的数量特征上进行区分。在研究中还发现草原区的严重退化在花粉组合上具有明显表现  相似文献   

9.
Previous studies based on fossil pollen data have reported significant changes in vegetation on the alpine Tibetan Plateau during the Holocene. However, since the relative proportions of fossil pollen taxa are largely influenced by individual pollen productivities and the dispersal characteristics, such inferences on vegetation have the potential to be considerably biased. We therefore examined the modern pollen–vegetation relationships for four common pollen species on the Tibetan Plateau, using Extended R-value (ERV) models. Assuming an average radius of 100 m for the sampled lakes, we estimated the relevant source area of pollen (RSAP) to be 2200 m (which represents the distance from the lake). Using Poaceae as the reference taxa (Pollen Productivity Estimate, PPE = 1), ERV Submodel 2 derived relative high PPEs for the steppe and desert taxa: 2.079 ± 0.432 for Artemisia and 5.379 ± 1.077 for Chenopodiaceae. Low PPEs were estimated for the Cyperaceae (1.036 ± 0.012), whose plants are characteristic of the alpine Kobresia meadows. Applying these PPEs to four fossil pollen sequences since the Late Glacial, the plant abundances on the central and north-eastern Tibetan Plateau were quantified using the “Regional Estimates of Vegetation Abundance from Large Sites” (REVEALS) model. The proportions of Artemisia and Chenopodiaceae were greatly reduced compared to their original pollen percentages in the reconstructed vegetation, owing to their high productivities and their dispersal characteristics, while Cyperaceae showed a relative increase in the vegetation reconstruction. The reconstructed vegetation assemblages of the four pollen sequence sites always yielded smaller compositional species turnovers than suggested by the pollen spectra, as revealed by Detrended Canonical Correspondence Analyses (DCCA) of the Holocene sections. The strength of the previously reported vegetation changes may therefore have been overestimated, which indicates the importance of taking into account pollen–vegetation relationships when discussing the potential drivers (such as climate, land use, atmospheric CO2 concentrations) and implications (such as for land surface–climate feedbacks, carbon storage, and biodiversity) of vegetation change.  相似文献   

10.
通过对西天山南坡不同植被带52个表土花粉样品的鉴定,研究表土花粉组合与现代植被分布的关系,分析蒿属/藜科比值(A/C)在该区域的指示意义.结果表明:山顶至山底可以划分为5个植被带,分别为高山荒漠带、高山草甸带、草甸草原带、山地荒漠带、典型荒漠带,代表性科属为蒿属、藜科、禾本科和麻黄属,该区域不同植被类型表土样品花粉组合差异明显.西天山南坡表土花粉在一定程度上受到北坡的影响,海拔越高影响越大.A/C值随海拔升高而先升高再降低,在高山草甸区域达到最高,可以作为反映山地垂直方向气候干湿变化的有效指标.由于A/C值波动较大,利用该比值进行气候环境重建时,需注意受人类活动等因素影响所产生的高值可能带来误判.  相似文献   

11.
滦河流域及周边地区花粉与植被关系的研究   总被引:3,自引:0,他引:3       下载免费PDF全文
滦河流域及周边地区空气中的花粉组合基本上反映了当地的植被面貌, 与植物的花期相对应, 乔木植物的花期多在春季, 草本植物的花期多在夏秋季, 该地冬季基本上无植物开花, 冬季空气中的花粉应是当年或多年春、夏、秋季散落在地上又被风吹到空气中的表土花粉和一些外来花粉 ;表土花粉随海拔高程的降低依次出现山地草甸、针阔混交林或以针叶树为主的针阔混交林、山地灌草丛、滨海平原草甸和滨海草甸或滨海盐生草甸的等 5个花粉组合带, 分别为蒿 (Artemisia)唐松草 (Thalictrum)松(Pinus)桦 (Betula) 孢粉组合带、松桦栎 (Quercus) 蒿孢粉组合带、藜科 (Chenopodiaceae)蒿禾本科 (Gramineae)中华卷柏 (Selaginellasinensis) 孢粉组合带、藜科蒿菊科 (Com positae)香蒲 (Typha) 孢粉组合带和藜科蒿莎草科 (Cyperaceae)禾本科孢粉组合带 ;由于花粉在河水中是以悬移质颗粒被搬运, 因此在不同时期沉积物花粉组合存在着一定的差异, 其中洪水期间河水对孢粉的分选作用最为明显。  相似文献   

12.
Aim This modern pollen‐rain study documents the spatial and quantitative relationships between modern pollen and vegetation in Mongolia, and explores the potential for using this relationship in palaeoclimatic reconstructions. Location East‐central Mongolia. Methods We collected 104 pollen surface samples along a south–north transect across five vegetation zones in Mongolia. Discriminant analysis was used to classify the modern pollen spectra into five pollen assemblages corresponding to the five vegetation zones. Hierarchical cluster analysis was used to divide the main pollen taxa into two major groups and seven subgroups representing the dry and moist vegetation types and the main vegetation communities within them. Results Each vegetation zone along the transect can be characterized by a distinctive modern pollen assemblage as follows: (1) desert zone: Chenopodiaceae–Zygophyllaceae–Nitraria–Poaceae pollen assemblage; (2) desert‐steppe zone: Poaceae–Chenopodiaceae pollen assemblage; (3) steppe zone: ArtemisiaAster‐type–Poaceae–Pinus Haploxylon‐type pollen assemblage; (4) forest‐steppe zone: Pinus Haploxylon‐type–PiceaArtemisiaBetula, montane forb/shrub and pteridophyte pollen assemblage; and (5) mountain taiga zone: Pinus Haploxylon‐type–Picea–Poaceae–Cyperaceae, montane forb/shrub and Pteridophyte pollen assemblage. Main conclusions Based on the ratio between the major pollen taxon groups and subgroups, we propose two pollen–climate indices that represent the precipitation and temperature conditions in the study region. When plotted along our south–north transect, the moisture indices (M) and temperature indices (T) mimic the regional gradients of precipitation and temperature across Mongolia very closely. These pollen–climate indices can be used for palaeoclimatic reconstruction based on fossil pollen data.  相似文献   

13.
Qinghai‐Tibetan Plateau is one of the most sensitive areas to climate change of the earth, owing to its unique topographic features and ecosystem. Soil pollen analysis is an important component of palaeo‐ecological research, while pollen preservation and the relationship between pollen and vegetation can influence the correct interpretation of fossil pollen spectra. In this paper, 36 pollen samples, which come from four meadows and two forest soil pollen profiles, have been analyzed to determine relationships between pollen and vegetation and pollen preservation on the northeastern Qinghai‐Tibetan Plateau. The relationship between pollen and vegetation shows that the surface pollen assemblages can represent regional vegetation characteristics moderately, while Betula and Populus pollen is absent in the soil surface for Betula and Populus mixed forest. Artemisia, Chenopodiaceae, Ephedra, Pinus, Hippophae etc. are over‐represented pollen taxa, Leguminosae, Ranunculaceae, Rosaceae, Gramineae etc. are under‐represented pollen taxa. The study of pollen preservation indicates that pollen concentrations decrease with the increase of soil depths, more pollen taxa are present in surface soils than in deep levels, and more than 75% pollen grains will be lost from the surface soils to deep levels. Pollen sorting preservation function should be noticed. Artemisia and Chenopodiaceae can be preserved well and have higher pollen percentages in deeper levels. Cyperaceae and Populus are preserved worse, Populus pollen is absent and Cyperaceae has higher pollen percentages in the surface soil than in the deep levels. The high soil pH values are the most destructive factors for pollen preservation on the northeastern Qinghai‐Tibetan Plateau. Pollen concentrations decrease sharply when the soil pH values are over 7.6. Downward leaching of pollen is unimportant in this study.  相似文献   

14.
Members of the Chenopodiaceae are the most dominant elements in the central Asian desert. The different genera and species within this family are common in desert vegetation types. Should it prove possible to link pollen types in this family to specific desert vegetation, it would be feasible to trace vegetation successions in the geological past. Nevertheless, the morphological similarity of pollen grains in the Chenopodiaceae rarely permits identification at the generic level. Although some pollen classifications of Chenopodiaceae have been proposed, none of them tried to link pollen types to specific desert vegetation types in order to explore their ecological significance. Based on the pollen morphological characters of 13 genera and 24 species within the Chenopodiaceae of eastern central Asia, we provide a new pollen classification of this family with six pollen types and link them to those plant communities dominated by Chenopodiaceae, for example, temperate dwarf semi‐arboreal desert (Haloxylon type), temperate succulent halophytic dwarf semi‐shrubby desert (Suaeda, Kalidium, and Atriplex types), temperate annual graminoid desert (Kalidium type), temperate semi‐shrubby and dwarf semi‐shrubby desert (Kalidium, Iljini, and Haloxylon types), and alpine cushion dwarf semi‐shrubby desert (Krascheninnikovia type). These findings represent a new approach for detecting specific desert vegetation types and deciphering ecosystem evolution in eastern central Asia.  相似文献   

15.
孢粉是重建古植被、古气候的重要基础数据。孢粉数据库对研究样点至区域和全球尺度上的古环境演变规律、古气候变化特征反演和古生物地球化学循环模拟等具有重要意义。该文收集整理了中国1960-2020年间发表和部分未发表的现代花粉数据记录, 包括样品编号、采样位置、采样地经纬度和海拔高度、样品类型、数据来源、数据类型、周边植被信息、参考文献、花粉类群及其含量等信息; 并对数据进行筛选和标准化等处理, 由此整合为中国现代花粉数据集。该数据集由4 497个现代花粉采样点的数据信息组成, 包括660个来自中国第四纪孢粉数据库数据, 1 763个前期整理发表的数据和2 074个近期收集的数据, 涵盖772个花粉类群。样品类型以土壤表层样品(3 332个)为主, 苔藓样品以及湖泊、海洋表层样品等为辅, 广泛分布于全国不同地理区域和植被类型中, 其中以温带荒漠区域(24.91%)和亚热带常绿阔叶林区域(24.02%)最丰富, 其次为温带草原区域(16.14%)和青藏高原高寒植被区域(15.83%)。数据按照来源可分为原始数据(58%)和数值化数据(42%); 按照数据类型可分为原始统计粒数的样点(59%)和以花粉百分比表达的样点(41%)。半个多世纪以来, 科研人员开展了大量的表层现代花粉取样和研究。本数据集虽然仅获取部分记录, 但样点覆盖了我国绝大多数地区, 可有效地用于古植被与古气候重建的现代孢粉与现代植被校验, 并将为中国孢粉数据库的建立与更深入的孢粉研究提供数据支撑。  相似文献   

16.
Two sites from the East Asian steppe, the Mu Us Sandland as a regional case and the Anguli Nuur catchment as a local one, were chosen to detect roles of vegetation, climate, landform, and human disturbance on pollen dispersal. 1) Vegetation: The semi-arid steppe vegetation is characterized by Artemisia and Chenopodiaceae pollen under various vegetation conditions; however, no evident correlation between pollen percentages and corresponding plant species cover is found. 2) Climate: Samples under different Mean Annual Precipitations (MAPs) clearly distinguish themselves in the Mu Us Sandland, implying MAP-determined surface pollen spectra in regional scale. 3) Landform: Surface pollen assemblages in the azonal psammophytic vegetation and lowland meadow, show insignificant variance from the zonal steppe vegetation. The azonal halophilous vegetation, mostly distributed in the lowland or near the lake shore, leads to higher than average percentages of Chenopodiaceae pollen. Signal of exotic Pinus pollen is also strengthened in the lowland and lake sediment. 4) Human disturbance: The role of human disturbance on surface pollen assemblages is weak, as shown in the Mu Us Sandland.

This study also provides theoretical bases for quantitative reconstructions of palaeoclimate and palaeovegetation based on fossil pollen spectra from lake sediments and lowland soils in the semi-arid East Asian steppe. We suggest that calibration against locally dispersed pollen taxa is necessary to reliably reconstruct changes in vegetation pattern through time, for example, a factor of 1.75 for the widely used A/C (Artemisia/Chenopodiaceae) ratio is suggested according to the pollen assemblages in the surface layers of the lake sediment vs. slope soil in Anguli Nuur. However, uncertainties also exist for such calibration considering the dynamics of local-scale azonal vegetation.  相似文献   


17.
Aim To understand the scenarios of ‘anthropogenic biomes’ that integrate human and ecological systems, we need to explore the impacts of climate and human disturbance on vegetation in the past and present. Interactions among surface pollen, modern vegetation and human activities along climate and land‐use gradients are tested to evaluate the natural and anthropogenic forces shaping the modern vegetation, and hence to aid the reconstruction of vegetation and climate in the past. This in turn will help with future predictions. Location The North‐east China Transect (NECT) in north‐eastern China. Methods We analysed 33 surface pollen samples and 213 quadrats across four vegetation zones along the moisture/land‐use gradients of the NECT. Detrended correspondence analysis (DCA) and redundancy analysis (RDA) of 52 pollen taxa and three environmental variables were used to distinguish anthropogenic and climatic factors that affect surface pollen assemblages along the NECT. Results The 33 surface samples are divided into four pollen zones (forest, meadow steppe, typical steppe and desert steppe) corresponding to major vegetation types in the NECT. Variations in pollen ratios of fern/herb (F/H), Artemisia/Chenopodiaceae (A/C) and arboreal pollen/non‐arboreal pollen (AP/NAP) represent the vegetation and precipitation gradient along the NECT. DCA and RDA analyses suggest that surface pollen assemblages are significantly influenced by the precipitation gradient. Changes in the abundance of Chenopodiaceae pollen are related to both human activities and precipitation. Main conclusions Surface pollen assemblages, fossil pollen records, archaeological evidence and historical documents in northern China show that a large increase of Chenopodiaceae pollen indicates human‐caused vegetation degradation in sandy habitats. The A/C ratio is a good indicator of climatic aridity, but should be used in conjunction with multiple proxies of human activities and climate change in the pollen‐based reconstruction of anthropogenic biomes.  相似文献   

18.
Qinghai Lake is the largest inland saline lake in China. it is situated in the northeastern part of the Qinghai Xizang Plateau. This paper is based on the information of the sporo-pollen assemblages of 47 samples from the drill core and surface samples. The general treads of vegetational and climatic changes since 11,000 years B. P. may be subdivided in ascending order as follows: In the first stage which corresponds to zone Ⅰ of the sporo-pollen assemlage, the vegetation during the past of 11,000–10,000 years was represented by a temperate shrub, semi-shrub and steppe, consisting of Chenopodiaceae. Artemisia, Nitraria, Ephedra and Gramineae were predominant. At the same time, some subalpine conifers, Pinus, Picea and Betula, would grow by the side of rivers and lakes, the climate was warmer and wetter than that of the Late Pleistocene. Due to the rising temperature in this zone, the Pleistocene-Holocene boundary might be estimated at about 11,000 years B. P.. The vegetation of the first stage belonges to temperate steppe with a few trees: In the second stage (ZoneⅡ of pollen), the vegetation was characterized by a temperate forest steppe during this period of 10,000 to 8,000 years B. P. Forest area apparently increased and some broadleaf deciduous and need leaf evergretn trees, such as Quercus, Betula, Pinus and Picea, grew by lakes and on mountains. At this time, the climate was warmer and wetter than that of the first stage. In the third stage (Zone Ⅲ) between B,000 and 3,500 years B. P, The vegetation was composed of a temperate mixed broad-leaf deciduous and needle-leaf evtrgreen forest. The needle-leaf evergreen forest consisting of Picea, Pinus, Abies, Betula grew in temperate zone mountains. The climate was relatively warm and wet. The fouth stage (zone IV), the vegetation was dominated by shrub semishrub, dwarf semishrubs, steppe and semi-arbors. Some trees consisting of Betula, Picea, and Pinus decreased in number in the lake regions. Some subalpine cold temperature evergreen trees, such as Abies and picea disappeared from the lake region. This indicated that the climate was warmer and drier during the past 3500–1500 years B. P. than the third zone. In the fifth stage (pollen zone V), the vegetation comprised steppe and desert from 1500 years ago to the present time. Some arborealtrus such as Betula and Pinus were less increased about 500 years B. P. at this time the temperate and wet slightly, rose up. From the above analysis, it is clear that the Qinghai lake region has been confronted with the vegetational and climatic changes since ll,000 years B. P. Therefore, the palynoflora of the Qinghai lake has its significance in Geography and vegetational history.  相似文献   

19.
西北干旱区河西走廊东段、石羊河终闾湖泊边缘的三角城剖面全新世早期至末次冰消期 2 92— 6 0 0cm处 15 5个样孢粉组合 ,显示云杉、圆柏属含量极高 ,两者之和达 40 %— 6 0 % ,且百分比互为消长。云杉百分比与孢粉浓度、植被分异度成正比。通过对云杉、圆柏属生态习性、传播性能、与其它组分关系、当地特殊的自然地理条件的综合分析 ,笔者认为剖面中高含量的云杉、圆柏属来自流域上游祁连山 ,是石羊河搬运的结果 ,孢粉组合中其它成分有当地的 ,也有来自山上的。剖面附近表土花粉分析支持这种观点。云杉、圆柏属是判断流域环境变化的主要因子 ,孢粉组合中其它成分可辅助判断环境变化的细节。流域环境重建模式和具体的变化过程是 :孢粉组合中的主要成分指示流域山上的植被状况 ;云杉花粉含量高时 ,流域有效湿度大 ,山上云杉林范围扩大 ,终闾区湖泊发育 ,整个流域生物分异度、密度 ,孢粉浓度都大 ;圆柏属花粉含量高 ,流域干旱 ,山上云杉林范围急剧减少 ,整个流域生物分异度、密度减小 ,孢粉浓度降低。圆柏属受干旱影响较小 ,数量有所减少 ,但因补偿递减率的作用 ,百分比增加。这可为重建我国西部干旱区湖泊孢粉记录的古环境作参考。  相似文献   

20.
This paper describes the pollen representation of vegetation patterns along an altitudinal transect in the South Caucasus region. Surface sediments from eight small- to medium-sized lakes and wetlands were analysed for modern pollen, and the results analysed numerically using detrended correspondence analysis (DCA) and dichotomised ordination (TWINSPAN). Pollen spectra from the semidesert region have a clear palynological signal characterised by an abundance of Chenopodiaceae. Differentiation of oak forest, upper tree-line and subalpine communities is more difficult: all are dominated by arboreal pollen (AP) types. The authors propose a number of indicator pollen types and pollen threshold values that may assist in detecting tree-line variations and deforestation events in Holocene pollen diagrams.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号