首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The vermilion gene in Drosophila has extensively been used for the molecular analysis of mutations induced by chemicals in germ cells in vivo. The gene is located on the X-chromosome and is a useful target for the study of mutagenesis since all types of mutations are generated. We have critically evaluated this system with respect to sensitivity for mutation induction and selectivity for different types of mutations, using a database of more than 600 vermilion mutants induced in postmeiotic male germ cells by 18 mutagens. From most of these mutants the mutation has been analysed. These data showed 336 base substitutions, 96 intra-locus DNA rearrangements and 78 multi-locus deletions (MLD). Mutants containing a MLD were either heterozygous sterile or homozygous and hemizygous lethal. The distribution of both basepair (bp) changes and intra-locus rearrangements over the coding region of the vermilion gene was uniform with no preferences concerning 5' or 3' regions, certain exons, splice sites, specific amino acid changes or nonsense mutations. Possible hotspots for base substitutions seem to be related to the type of DNA damage rather than to the vermilion system. Gene mutations other than bp changes were examined on sequence characteristics flanking the deletion breakpoints. Induction frequencies of vermilion mosaic mutants were, in general, higher than those of vermilion complete mutants, suggesting that persistent lesions are the main contributors to the molecular spectra. Comparison of induction frequencies of vermilion mutants and sex-linked recessive lethal (SLRL) mutants for the 18 mutagens showed that the sensitivity of the vermilion gene against a mutagenic insult is representative for genes located on the X-chromosome. The effect of nucleotide excision repair (NER) on the formation of SLRL mutants correlated with an increase of transversions in the vermilion spectra under NER deficient conditions. Furthermore, the clastogenic potency of the mutagens, i.e., the efficiency to induce chromosomal-losses vs. SLRL forward mutations, shows a positive correlation with the percentage of DNA deletions in the molecular spectra of vermilion mutants.  相似文献   

2.
The role of a defect for nucleotide excision repair (NER) in oocytes on the repair of DNA ethyl adducts induced by diethyl sulfate (DES) in male germ cells of Drosophila was analysed. Frequencies of mutations at multiple loci (recessive lethal mutations) and at the vermilion gene induced in NER+ conditions (cross NER+ x NER+) were compared with those fixed in a NER- background (NER- x NER+). The M(NER-)/M(NER+) mutability ratios for two DES concentrations, 10 mM and 15 mM, were 2.21 and 1.49, respectively, indicating that NER repairs part of the DES-induced damage. The majority of 28 fertile vermilion mutations produced by DES in NER- are transitions, both GC-AT (46.4%) and AT-GC (21.4%) transitions are found, the consequences of O6-ethylguanine and O4-ethylthymine, respectively. Transversions (21.5%), one +1 frameshift mutation (3.6%) and two deletions (7.1%) are most likely the result of N-alkylation damage. Furthermore, the DES-induced mutation spectra show interesting differences in relation to the exposure dose. All 10 mutants isolated in this and a previous [L.M. Sierra, A. Pastink, M.J.M. Nivard, E.W. Vogel, DNA base sequence changes induced by DES in postmeiotic male germ cells of Drosophila melanogaster, Mol. Gen. Genet. 237 (1993) 370-374] study from experiments with low DES-effectiveness are exclusively transitions, independent whether the females were of the NER+ or NER-genotype. This indicates that at lower DES effectiveness only O-alkylation damage is relevant, and that N-alkylation damage is repaired. In experiments revealing high DES-effectiveness, vermilion mutations representing N-alkylation damage reached 43% (9/21) with NER- and 26% (7/27) with NER+ females, suggesting (i) that NER becomes involved at high adduct levels because then the base excision repair (BER) may be saturated, and (ii) that this involvement of NER causes the relative decrease from 43% to 26% N-alkylation mediated sequence changes.  相似文献   

3.
The white and vermilion loci in D. melanogaster were selected as target genes for the study of the mutational specificity of ionizing radiation and N-ethyl-N-nitrosourea (ENU) in a whole organism. Analysis of X-ray- and neutron-induced white mutants by a combination of genetic and molecular techniques showed that ionizing radiation induces primarily break-type mutations against a repair-proficient background, the majority of these alterations being deletions. Both very large multi-locus deficiencies and deletions of only a few base pairs were observed. These small deletions are flanked by repeats of 2-3 nucleotides, one copy of which is retained at the new junction. Presumably these small repeats are involved in the generation of the X-ray-induced deletions. In excision-repair-deficient mus201D1 flies, the frequency of whole-body white mutants recovered after X-ray irradiation is the same as in the wild-type strain. The percentage of mosaic mutations, however, is enhanced by a factor 3-4. Analysis by blot hybridization of ENU-induced white mutants strongly indicates that most mutations are due to base-pair changes. This was confirmed by sequence analysis of 25 ENU-induced vermilion mutants. In all mutants the alterations are due to base-pair changes, the majority being GC to AT transitions (61%).  相似文献   

4.
MJM. Nivard  A. Pastink    E. W. Vogel 《Genetics》1992,131(3):673-682
The nature of DNA sequence changes induced by methyl methanesulfonate (MMS) at the vermilion locus of Drosophila melanogaster was determined after exposure of postmeiotic male germ cell stages. MMS is a carcinogen with strong preference for base nitrogen alkylation (s = 0.86). The spectrum of 40 intralocus mutations was dominated by AT----GC transitions (23%), AT----TA transversions (54%) and deletions (14%). The small deletions were preferentially found among mutants isolated in the F1 (8/18), whereas the AT----GC transitions exclusively occurred in the F2 (6/22). The MMS-induced transversions and deletions are presumably caused by N-methyl DNA adducts, which may release apurinic intermediates, known to be a time-related process. Furthermore, MMS produces multilocus deletions, i.e., at least 30% of the F1 mutants analyzed were of this type. A comparison of the mutational spectra of MMS with that produced by ethylnitrosourea (ENU), also in the vermilion locus of Drosophila, reveals major differences: predominantly transition mutations (61% GC----AT and 18% AT----GC) were found in both the F1 and F2 spectrum induced by ENU. It is concluded that the mutational spectrum of MMS is dominated by nitrogen DNA adducts, whereas with ENU DNA sequence changes mainly arose from modified oxygen in DNA.  相似文献   

5.
6.
Nucleotide excision repair (NER) is one of the most important repair systems which counteracts different forms of DNA damage either induced by various chemicals or irradiation. At the same time, less is known about the functions of NER in repair of DNA that is not exposed to exogenous DNA-damaging agents. We have investigated the role of NER in mutagenesis in Pseudomonas putida. The genome of this organism contains two uvrA genes, uvrA and uvrA2. Genetic studies on the effects of uvrA, uvrA2, uvrB and UvrC in mutagenic processes revealed that all of these genes are responsible for the repair of UV-induced DNA damage in P. putida. However, uvrA plays more important role in this process than uvrA2 since the deletion of uvrA2 gene had an effect on the UV-tolerance of bacteria only in the case when uvrA was also inactivated. Interestingly, the lack of functional uvrB, uvrC or uvrA2 gene reduced the frequency of stationary-phase mutations. The contribution of uvrA2, uvrB and uvrC to the mutagenesis appeared to be most significant in the case of 1-bp deletions whose emergence is dependent on error-prone DNA polymerase Pol IV. These data imply that NER has a dual role in mutagenesis in P. putida-besides functioning in repair of damaged DNA, NER is also important in generation of mutations. We hypothesize that NER enzymes may initiate gratuitous DNA repair and the following DNA repair synthesis might be mutagenic.  相似文献   

7.
X-Ray- and neutron-induced mutations at the white locus of Drosophila melanogaster were used to study the nature of radiation-induced genetic damage. Genetic analysis showed the presence of multi-locus deficiencies in 15 out of 31 X-ray mutants and in 26 out of 35 mutants induced by neutrons. The DNA from 11 X-ray and 4 neutron mutants, which were not multi-locus deficiencies, was analyzed by Southern blot-hybridization. Deletions were observed in 2 X-ray and 1 neutron mutant. In combination with cytogenetic techniques, chromosomal rearrangements affecting the white locus (translocations, inversions, etc.) were identified in 3 X-ray and in 2 neutron mutants. A hot-spot for translocation breakpoints was identified in the left arm of the third chromosome. 5 X-ray mutants, which apparently did not contain large deletions, were subjected to further analysis by the nuclease S1 protection method, after cloning of the white gene. In 4 mutants a small deletion could indeed be detected in this way. Thus it seems that by far the main part of X-ray- and neutron-induced white mutants have arisen through large changes in the white gene, especially deletions.  相似文献   

8.
Xeroderma pigmentosum factor A (XPA) is one of the key proteins in the nucleotide excision repair (NER) process. The effects of point substitutions in the DNA-binding domain of XPA (positively charged lysine residues replaced by negatively charged glutamate residues: XPA K204E, K179E, K141E, and tandem mutant K141E/K179E) on the inter-action of the protein with DNA structures modeling intermediates of the damage recognition and pre-incision stages in NER were analyzed. All these mutations decreased the affinity of the protein to DNA, the effect depending on the substitution and the DNA structure. The mutant as well as wild-type proteins bind with highest efficiency partly open damaged DNA duplex, and the affinity of the mutants to this DNA is reduced in the order: K204E > K179E ? K141E = K141/179E. For all the mutants, decrease in DNA binding efficiency was more pronounced in the case of full duplex and single-stranded DNA than with bubble-DNA structure, the difference between protein affinities to different DNA structures increasing as DNA binding activity of the mutant decreased. No effect of the studied XPA mutations on the location of the protein on the partially open DNA duplex was observed using photoinduced crosslinking with 5-I-dUMP in different positions of the damaged DNA strand. These results combined with earlier published data suggest no direct correlation between DNA binding and activity in NER for these XPA mutants.  相似文献   

9.
B K?berle  G Speit 《Mutation research》1991,249(1):161-167
The molecular basis of bleomycin (BLM)-induced mutations in the absence and presence of inhibitors of DNA repair was investigated in V79 cells with Southern hybridization techniques. 43% of the BLM-induced thioguanine-resistant mutants suffer from large alterations of hprt DNA sequences. To understand the role of DNA repair in the process of mutagenesis, the effect of inhibitors of DNA repair on the frequency and types of BLM-induced mutations was tested. The inhibitors used were arabinofuranosyl cytosine (araC), didesoxythymidine (ddThd) and 3-aminobenzamide (3AB), which inhibit different steps of excision repair. Only 3AB caused a comutagenic effect. The increased mutation frequency was mainly due to additionally induced gene deletions. In the presence of 3AB, 70% of the HPRT-deficient mutants revealed partial or total deletions of the hprt coding sequences. Thus, it could be shown that BLM induces a broad range of types of mutation and that inhibited repair of BLM-induced DNA damage leads to specific types of mutations.  相似文献   

10.
11.
Repair of mismatched DNA occurs mainly by the long-patch mismatch repair (MMR) pathway, requiring Msh2 and Pms1. In Schizosaccharomyces pombe mismatches can be repaired by a short-patch repair system, containing nucleotide excision repair (NER) factors. We studied mismatch correction efficiency in cells with inactivated DNA repair nucleases Rad13, Rad2 or Uve1 in MMR proficient and deficient background. Rad13 incises 3' of damaged DNA during NER. Rad2 has a function in the Uve1-dependent repair of DNA damages and in replication. Loss of Rad13 caused a strong reduction of short-patch processing of mismatches formed during meiotic recombination. Mitotic mutation rates were increased, but not to the same extent as in the NER mutant swi10, which is defective in 5' incision. The difference might be caused by an additional role of Rad13 in base excision repair or due to partial redundancy with other 3' endonucleases. Meiotic mismatch repair was not or only slightly affected in rad2 and uve1 mutants. In addition, inactivation of uve1 caused only weak effects on mutation avoidance. Mutation rates were elevated when rad2 was mutated, but not further increased in swi10 rad2 and rad13 rad2 double mutants, indicating an epistatic relationship. However, the mutation spectra of rad2 were different from that of swi10 and rad13. Thus, the function of Rad2 in mutation avoidance is rather independent of NER. rad13, swi10 and rad2, but not uve1 mutants were sensitive to the DNA-damaging agent methyl methane sulphonate. Cell survival was further reduced in the double mutants swi10 rad2, rad13 rad2 and, surprisingly, swi10 rad13. These data confirm that NER and Rad2 act in distinct damage repair pathways and further indicate that the function of Rad13 in repair of alkylated bases is partially independent of NER.  相似文献   

12.
The mechanisms by which DNA interstrand cross-links (ICLs) are repaired in mammalian cells are unclear. Studies in bacteria and yeasts indicate that both nucleotide excision repair (NER) and recombination are required for their removal and that double-strand breaks are produced as repair intermediates in yeast cells. The role of NER and recombination in the repair of ICLs induced by nitrogen mustard (HN2) was investigated using Chinese hamster ovary mutant cell lines. XPF and ERCC1 mutants (defective in genes required for NER and some types of recombination) and XRCC2 and XRCC3 mutants (defective in RAD51-related homologous recombination genes) were highly sensitive to HN2. Cell lines defective in other genes involved in NER (XPB, XPD, and XPG), together with a mutant defective in nonhomologous end joining (XRCC5), showed only mild sensitivity. In agreement with their extreme sensitivity, the XPF and ERCC1 mutants were defective in the incision or "unhooking" step of ICL repair. In contrast, the other mutants defective in NER activities, the XRCC2 and XRCC3 mutants, and the XRCC5 mutant all showed normal unhooking kinetics. Using pulsed-field gel electrophoresis, DNA double-strand breaks (DSBs) were found to be induced following nitrogen mustard treatment. DSB induction and repair were normal in all the NER mutants, including XPF and ERCC1. The XRCC2, XRCC3, and XRCC5 mutants also showed normal induction kinetics. The XRCC2 and XRCC3 homologous recombination mutants were, however, severely impaired in the repair of DSBs. These results define a role for XPF and ERCC1 in the excision of ICLs, but not in the recombinational components of cross-link repair. In addition, homologous recombination but not nonhomologous end joining appears to play an important role in the repair of DSBs resulting from nitrogen mustard treatment.  相似文献   

13.
We report the use of the cross-linking drug hexamethylphosphoramide (HMPA), which introduces small deletions, as a mutagen suitable for reverse genetics in the model organism Drosophila melanogaster. A compatible mutation-detection method based on resolution of PCR fragment-length polymorphisms on standard DNA sequencers is implemented. As the spectrum of HMPA-induced mutations is similar in a variety of organisms, it should be possible to transfer this mutagenesis and detection procedure to other model systems.  相似文献   

14.
Myung K  Kolodner RD 《DNA Repair》2003,2(3):243-258
The accumulation of gross chromosomal rearrangements (GCRs) is a characteristic of many types of cancer cells, although it is unclear what defects cause these rearrangements and how the different types of GCRs observed are formed. In the present study, we have used a Saccharomyces cerevisiae system for measuring GCRs to analyze the ability of a variety of DNA damaging agents to induce GCRs. The two most potent inducers of GCRs observed were methyl methane sulfonate (MMS) and HO-endonuclease-induced double strand breaks (DSBs). Bleomycin, camptothecan and gamma-irradiation induced intermediate levels of GCRs and cisplatin induced very low levels of GCRs whereas N-methyl-NPRIME;-nitro-N-nitrosoguanidine (MNNG) and ethyl methane sulfonate (EMS) primarily induced base substitution mutations. MMS treatment primarily induced rearrangements in which the end of a chromosome was deleted and a new telomere was added (telomere additions) and also induced translocations. Consistent with this GCR spectrum, the formation of MMS-induced GCRs was primarily dependent on telomere maintenance functions and were completely eliminated in mutants that were defective for both telomere maintenance functions and non-homologous end joining (NHEJ). In contrast, HO-endonuclease DSBs induced mostly translocations and interstitial deletions whereas few telomere additions were observed. Genetic analysis indicated that HO DSB-induced GCRs were suppressed by a number of pathways including the DNA damage checkpoints, DSB repair pathways and NHEJ.  相似文献   

15.
All mutagenic agents induce lesions in the cellular DNA and they are repaired efficiently by different repair mechanisms. Un-repaired and mis-repaired lesions lead to chromosomal aberrations (CAs). Depending upon the mutagenic agents involved, different DNA repair pathways, such as nucleotide excision repair (NER), base excision repair (BER), non-homologous end joining (NHEJ), homologous recombination repair (HRR), cross-link repair (FANC), single strand annealing (SSA) etc., are operative. Following ionising radiation, DNA double strand breaks (DSBs, which are considered to be the most important leasion leading to observed biological effects) are repaired either by NHEJ and/or HRR. We have investigated the relative role of these two repair pathways leading to chromosomal aberrations using Chinese hamster ovary (CHO) mutant cells deficient in one of these two repair pathwatys. NHEJ operates both in G1 and G2 phases of the cell cycle, wheras HHR operates mainly in S and G2 phases of the cell cycle. In NHEJ-deficient mutant cells irradiated in G1, un-repaired double strand breaks reaching S phase are repaired (unexpectedly with a large mis-repair component) by HRR. In HRR-deficient mutant cells, un-repaired DSBs reaching S phase are repaired by NHEJ (unexpectedly with a low mis-repair component) as evidenced by the frequencies of chromatid type aberrations. Employing a similar approach, following treatment with benzo(alpha)pyrene-7,8diol-9,10epoxide (BPDE), the active metabolite of benzo(alpha)pyrene, NER and HRR seem to be the most important repair pathways protecting against chromosomal damage induced by this agent. In the case of acetaldehyde, (primary metabolite of alcohol in vivo) a DNA cross-linking agent, HRR and FANC pathways are important for protection against damage induced by this agent. Irrespective of the type of DNA lesions induced, ultimately they have to be converted to DSBs in order to give rise to CA. Therefore, both NHEJ and HRR are also involved to some extent in the origin of CA following treatment with S-dependent agents.The relative importance of different repair pathways in bestowing protection against DNA damage leading to chromosomal alterations is discussed.  相似文献   

16.
Vogel EW  Nivard MJ 《Mutation research》2001,476(1-2):149-165
DmXPF (mei9) and DmXPG (mus201) mutants are Drosophila homologs of the mammalian XPF and XPG genes, respectively. For Drosophila germ cells, causal correlations exist between the magnitude of a potentiating effect of a deficiency in these functions, measured as the M(NER-)/M(NER+) mutability ratio, and the type of DNA modification. M(NER-)/M(NER+) mutability ratios may vary with time interval between DNA adduct formation and repair, mutagen dose and depend also on the genetic endpoint measured. For forward mutations, there is no indication of any differential response of DmXPF compared to DmXPG.Subtle features appeared from a class-by-class comparison: (i) Methylating agents always produce higher M(NER-)/M(NER+) ratios than their ethylating analogs; (ii) M(NER-)/M(NER+) mutability ratios are significantly enhanced for cross-linking N-mustards, aziridine and di-epoxide compounds, but not for cross-linking nitrosoureas. The low hypermutability effects with bifunctional nitrogen mustards, aziridine and epoxide compounds are attributed to unrepaired mono-alkyl adducts; (iii) The efficient repair of mono-alkyl-adducts at ring nitrogens in wild-type germ cells is evident from the absence of a dose-response relationship for ethylene oxide, propylene imine and methyl methanesulfonate (MMS). These chemicals become powerful germline mutagens when the NER system is disrupted.Systematic studies of the type performed on germ cells are not available for somatic cells of Drosophila. The sparse data available show large differences in the response of germ cells and somatic cells. The bifunctional agent mechlorethamine (MEC) but not the monofunctional MMS or 2-chloroethylamine cause in NER(-) XXfemale symbol the highest potentiating effect on mitotic recombination. The causes of the discrepancy between the extraordinarily high activity of MEC in mus201 somatic cells and its low potentiating effect in germ cells is unknown at present.  相似文献   

17.
DNA interstrand cross-links (ICLs) are the most cytotoxic lesions to eukaryotic genome and are repaired by both homologous recombination-dependent and -independent mechanisms. To better understand the role of lesion bypass polymerases in ICL repair, we investigated recombination-independent repair of ICLs in REV3 and REV1 deletion mutants constructed in avian DT40 cells and mouse embryonic fibroblast cells. Our results showed that Rev3 plays a major role in recombination-independent ICL repair, which may account for the extreme sensitivity of REV3 mutants to cross-linking agents. This result raised the possibility that the NER gap synthesis, when encountering an adducted base present in the ICL repair intermediate, can lead to recruitment of Rev3, analogous to the recruitment of polymerase eta during replicative synthesis. Indeed, the monoubiquitination-defective Proliferating Cell Nuclear Antigen (PCNA) mutant exhibits impaired recombination-independent ICL repair as well as drastically reduced mutation rate, indicating that the PCNA switch is utilized to enable lesion bypass during DNA repair synthesis. Analyses of a REV1 deletion mutant also revealed a significant reduction in recombination-independent ICL repair, suggesting that Rev1 cooperates with Rev3 in recombination-independent ICL repair. Moreover, deletion of REV3 or REV1 significantly altered the spectrum of mutations resulting from ICL repair, further confirming their involvement in mutagenic repair of ICLs.  相似文献   

18.
A model system is developed to test oligonucleotide-directed mutations: T----C transition, T and C deletions (delta T and delta C), C insertion, double mutations (A----G, delta T), (T----C, A----G), and large oligonucleotide deletions (36 or 44 nucleotides). The system includes 9 variants of the phage M13 DNA carrying fragment of beta-galactosidase gene, and oligodeoxyribonucleotides partially noncomplementary to DNA sequence of this gene. Six variants are obtained by the site-localized mutagenesis, the other were described earlier. Induced mutations are easily tested by phenotype change of transformed bacteria (Lac+----Lac-); by formation or loss of the sites for BamHI and EcoRI restrictases; by DNA hybridization with 32P-labeled oligonucleotides; and by DNA sequencing by the Sanger method. The system is used to study the role of some factors, such as completeness of RF DNA synthesis, thermal stability of the oligonucleotide: DNA complex, quality of enzymes and substrates used in polymerase reaction, mutation type or the efficiency of mutagenesis. A number of unexpected mutations were observed in the course of oligonucleotide-directed mutagenesis. Lower yields of some mutants induced by oligonucleotides are shown to be due to the action of repair systems of bacteria.  相似文献   

19.
Nucleotide excision repair (NER), a highly versatile DNA repair mechanism, is capable of removing various types of DNA damage including those induced by UV radiation and chemical mutagens. NER has been well characterized in yeast and mammalian systems but its presence in plants has not been reported. Here it is reported that a plant gene isolated from male germline cells of lily (Lilium longiflorum) shows a striking amino acid sequence similarity to the DNA excision repair proteins human ERCC1 and yeast RAD10. Homologous genes are also shown to be present in a number of taxonomically diverse plant genera tested, suggesting that this gene may have a conserved function in plants. The protein encoded by this gene is able to correct significantly the sensitivity to the cross-linking agent mitomycin C in ERCC1-deficient Chinese hamster ovary (CHO) cells. These findings suggest that the NER mechanism is conserved in yeast, animals and higher plants.  相似文献   

20.
The capacity of the topoisomerase I inhibitor camptothecin (CPT) to induce single locus mutations at the hypoxanthine-guanine phosphoribosyltransferase (hprt) gene and the DNA changes underlying induced mutations were analysed in Chinese hamster ovary cells. Camptothecin treatments increased hprt mutations up to 50-fold over the spontaneous levels at highly cytotoxic doses. Genomic DNA was isolated from 6-thioguanine resistant clones and subjected to multiplex PCR to screen for gross alterations in the gene structure. The molecular analysis revealed that deletion mutants represented 80% of the analysed clones, including total hprt deletion, multiple and single exon deletions. Furthermore, a fraction of the analysed clones showed deletions of more than one exon that were characterised by the absence of non-contiguous exons. These data show that single locus mutations induced by camptothecin are characterised by large deletions or complex rearrangements rather than single base substitutions and suggest that the recombinational repair of camptothecin-induced strand breaks at replication fork may be involved in the generations of these alterations at the chromatin structure level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号