首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Whole plasmids are used in both Agrobacterium-mediated transformation and direct DNA transfer, generally leading to the integration of vector backbone sequences into the host genome along with the transgene(s). This is undesirable, as vector backbone sequences often have negative effects on transgene or endogenous gene expression, and can promote transgene rearrangements. We, therefore, bombarded rice tissue with two constructs: a plasmid containing the bar gene, and a linear DNA fragment isolated from the same plasmid, corresponding to the minimal bar gene expression cassette (promoter, open reading frame and terminator). We recovered phosphinothricin-resistant plants from both experiments, showing that the selectable marker was efficiently expressed. Transformation with such constructs resulted in predominantly 'simple' integration events (one or two bands on Southern blots), producing low-copy-number transgenic plants with a low frequency of transgene rearrangements. Conversely, transformation with supercoiled or linearized whole plasmids generated plants with 'complex' integration patterns, that is, higher copy numbers and frequent transgene rearrangements. We monitored transgenic lines through to the R4 generation and observed no silencing in plants carrying minimal constructs. We also carried out experiments in which rice tissue was simultaneously bombarded with minimal linear hpt and gusA cassettes. We observed robust GUS activity in hygromycin-resistant plants, confirming co-expression of the selectable and nonselectable markers. Furthermore, the efficiency of cotransformation using minimal constructs was the same as that using supercoiled plasmid cointegrate vectors.  相似文献   

2.
赵艳  钱前  王慧中  黄大年 《遗传学报》2007,34(9):824-835
基因枪介导基因表达盒(仅包括启动子、编码区和终止子)转化是基因枪转化植物的新趋势,它能消除质粒载体主干序列对转基因植物的不利影响。本文研究了基因枪转化的bar基因表达盒在转基因水稻T1~T3世代中的遗传行为。结果发现:作为筛选标记的bar基因表达盒在水稻基因组中多拷贝整合,遗传分离行为复杂,还出现了Basta抗感分离比在35:1~144:1之间的"假纯合体",但50%转基因株系中(5/10)bar基因可作为一个显性基因按孟德尔方式稳定遗传至自交T2代。虽然bar基因为多拷贝整合,30%的转基因株系(3/10)在自交低世代(T1)能获得纯合体。Southern杂交分析发现,多拷贝的bar基因表达盒倾向于连接成转基因串联子整合在水稻基因组内。我们发现在Basta抗性正常分离的株系后代中bar基因表达盒Southern杂交模式能稳定遗传,但异常分离的株系后代中bar基因表达盒的一些拷贝发生了丢失。我们推测,bar基因表达盒在水稻中遗传分离行为的复杂原因可能是bar基因表达盒多拷贝整合、基因丢失和基因表达互作。  相似文献   

3.
4.
The feasibility of map-based cloning in wheat has been demonstrated recently, opening new perspectives for a better understanding of wheat plant biology and for accelerating wheat improvement in the coming decades. To validate the function of candidate genes, an efficient transformation system is needed. Here, we have performed two methods for wheat transformation using particle bombardment that ensures the production of transgenic plants with simple integration patterns for research purposes and stable transgene expression for accurate and rapid validation of gene function. To establish this method, we used the bar and pmi selectable genes either as part of whole plasmids, gene cassettes (obtained by PCR or purified on agarose gels), or as dephosphorylated cassettes. The analysis of about 300 transgenic plants showed that the use of gene cassettes or dephosphorylated gene cassettes leads to a majority (50–60 %) of simple integration events. This is significantly higher than the number of simple events obtained with whole plasmids (9–25 %). Moreover, the decrease of the quantity of DNA from 500 to 5 ng/µl for PCR-amplified cassettes used for transformation increased the number of single integration events. The transformation efficiency remained stable at 2.5 %, and a higher number of plants expressing the transgenes were obtained with the dephosphorylated cassette. No correlation was observed between the complexity of the events and stability of expression of the transgene, suggesting that plasmid sequences could be involved on transgene silencing. The inheritability of the transgene was demonstrated in T1 and T2 generations. These results show that biolistic transformation of dephosphorylated gene cassettes provides an easy and efficient route to produce backbone vector-free transgenic wheat carrying and expressing intact and single transgenes.  相似文献   

5.
Alternative selection systems for plant transformation are especially valuable in clonal crops, such as potato (Solanum tuberosum L.), to pyramid transgenes into the same cultivar by successive transformation events. We have modified the pGPTV series of binary vectors to construct pMOA1 to pMOA5, resulting in a series of essentially identical binary vectors except for the presence of different selectable marker genes. These selectable marker genes are tightly inserted between the left and right T-DNA borders and confer resistance to kanamycin (nptII), hygromycin (hpt), methotrexate (dhfr), phosphinothricin (bar), or phleomycin (ble). The T-DNA of all the vectors is based on the minimal features necessary for plant transformation, with no extraneous DNA segments that may be unacceptable to regulatory authorities for general release of transgenic plants. A series of unique restriction sites exists between the right border and each selectable marker gene for subsequent insertion of useful genes. We have also developed improved culture procedures for potato transformation and used the pMOA1 to pMOA5 binary vectors to define stringent selection conditions for each marker gene. Combining these advances improved the frequency of recovering transformed potato plants while maintaining a low frequency of escapes. The relative efficiency of recovering transgenic potato lines with each selectable marker gene can be summarised as: kanamycin resistance>hygromycin resistance>phosphinothricin resistance>phleomycin resistance>methotrexate resistance.  相似文献   

6.
We report here a new selectable marker for tobacco immature pollen transformation based on the expression of dihydrofolate reductase (dhfr) gene which confers resistance to methotrexate (Mtx). Two immature pollen transformation approaches, i.e., male germ line transformation and particle bombardment of embryogenic mid-bicellular pollen have been used for the production of stable transgenic tobacco plants. In the first method, two methotrexate-resistant plants were selected from a total of 7161 seeds recovered after transformation experiments. In the second method, four methotrexate-resistant plants were obtained from 29 bombardments using 3.7×105 pollen grains per bombardment. Southern analysis confirmed the transgenic nature of T0 and T1 candidate transgenic plants, and a genetic analysis showed that the transgenes are transmitted to subsequent generations.  相似文献   

7.
Wang Y  Chen B  Hu Y  Li J  Lin Z 《Transgenic research》2005,14(5):605-614
In a plant transformation process, it is necessary to use marker genes that allow the selection of regenerated transgenic plants. However, selectable marker genes are generally superfluous once an intact transgenic plant has been established. Furthermore, they may cause regulatory difficulties for approving transgenic crop release and commercialization. We constructed a binary expression vector with the Cre/lox system with a view to eliminating a marker gene from transgenic plants conveniently. In the vector, recombinase gene cre under the control of heat shock promoter and selectable marker gene nptII under the control of CaMV35S promoter were placed between two lox P sites in direct orientation, while the gene of interest was inserted outside of the lox P sites. By using this vector, both cre and nptII genes were eliminated from most of the regenerated plants of primary transformed tobacco through heat shock treatment, while the gene of interest was retained and stably inherited. This autoexcision strategy, mediated by the Cre/lox system and subjected to heat shock treatment to eliminate a selectable marker gene, is easy to adopt and provides a promising approach to generate marker-free transgenic plants.  相似文献   

8.
A minimal gene cassette comprised of the ubiquitin (Ubi) promoter + green fluorescent protein (Gfp) gene + Nos terminator DNA sequences, derived from the plasmid vector pPZP201-Gfp was utilized for transformation of creeping bentgrass using particle bombardment. Bentgrass calli bombarded individually with equivalent amounts of the cassette or whole plasmid DNA were compared for Gfp expression and the GFP-positive calli were subsequently regenerated into plants. Percentage of GFP expressing calli and the number of GFP spots/calli were significantly higher in calli that were bombarded with the minimal gene cassette when compared to the whole plasmid. The Gfp expression was stable up to the T2 generation in minimal gene cassette transformants and there was a lower degree of gene silencing. Southern blot analysis of transgenic plants derived from minimum gene cassette bombardment revealed the presence of single or few copy of the transgene and fairly simple integration patterns. In comparison, whole plasmid transformants had multiple copies and complex integration patterns of the transgene. These results illustrate the advantages of using simple gene cassette for stable plant transformation in bentgrass with possible applications to other plant species.  相似文献   

9.
The main obstacle to genetic engineering of fruit tree species is the regeneration of transformed plantlets. Transformation events in peach (Prunus persica L.) have been reported using particle bombardment or Agrobacteriummediated transformation of immature embryos. However, the regeneration of plants from transgenic tissues is still difficult and the recovery of non-chimeric plants has not been reported to date. In this paper we describe an efficient, reliable transformation and regeneration system to produce transgenic peach plants using embryo sections of mature seeds as starting material. This represents an important advantage due to the availability of such material throughout the year. A. tumefaciens strain C58 (pMP90) containing the binary plasmid pBin19 was used as vector system for transformation. We used the Nospro-nptII-Noster cassette as a selectable marker and the CaMV35Spro-sgfp-CaMV35Ster cassette as a vital reporter gene coding for an improved version of the green fluorescent protein (sGFP). In vitro cultured embryo sections were Agrobacterium-cocultivated and, after selection, transgenic shoots were regenerated. Shoots that survived exhibited high-level of sGFP expression mainly visible in the young leaves of the apex. In vivo monitoring of GFP expression permitted an early, rapid and easy discrimination of both transgenic and escape buds. After elimination of escapes, transgenic shoots were rooted in vitro and the recovered plantlets were screened using PCR amplification. Southern analysis confirmed stable genomic integration of the sgfp transgene. The high levels of GFP expression were also maintained in the second generation of transgenic peach plants.  相似文献   

10.
Agave salmiana was transformed using two different protocols: co-cultivation with Agrobacterium tumefaciens and particle bombardment. The uidA (β-glucuronidase) gene was used as a reporter gene for both methods whereas the nptII and bar genes were used as selectable markers for A. tumefaciens and biolistic transformation respectively. Previous reports for in vitro regeneration of A. salmiana have not been published; therefore the conditions for both shoot regeneration and rooting were optimized using leaves and embryogenic calli of Agave salmiana. The transgenes were detected by Polymerase Chain Reaction (PCR) in 11 month old plants. The transgenic nature of the plants was also confirmed using GUS histochemical assays. Transformation via co-cultivation of explants with Agrobacterium harbouring the pBI121 binary vector was the most effective method of transformation, producing 32 transgenic plants and giving a transformation efficiency of 2.7%. On the other hand, the biolistic method produced transgenic calli that tested positive with the GUS assay after 14 months on selective medium while still undergoing regeneration.  相似文献   

11.
12.
Biolistic transformation was used to introduce genes encoding the insecticidal proteins snowdrop lectin (Galanthus nivalis agglutinin; GNA) and cry1Ac Bt toxin (-endotoxin from Bacillus thuringiensis) into elite rice (Oryza sativa) cultivars. Plant transformation was carried out in parallel experiments simultaneously by using either whole plasmids containing suitable gene constructs, or the corresponding minimal gene cassettes, which were linear DNA fragments lacking vector sequences excised from the plasmids. Both transformation methods generated similar numbers of independent transformation events. Selected R0 clonal plant lines were further characterised for presence and expression of transgenes. Co-transformation of the unselected genes (cry1Ac and gna) with the selectable marker (hpt) was at least as efficient for transformation with minimal gene cassettes as with whole plasmid DNA, and higher levels of accumulation of the insecticidal gene products GNA and cry1Ac were observed in plants resulting from minimal gene cassette transformation. Insect bioassays with major pests of rice showed that transgenic plants expressing gna showed enhanced resistance to brown planthopper (Nilaparvata lugens), and plants expressing cry1Ac were protected against attack by striped stem borer (Chilo suppressalis). Expression of both transgenes gave protection against both pests, but did not increase protection against either pest significantly over the levels observed in plants containing a single insecticidal transgene.  相似文献   

13.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

14.
Jia H  Pang Y  Chen X  Fang R 《Transgenic research》2006,15(3):375-384
Selection markers are often indispensable during the process of plant transformation, but dispensable once transgenic plants have been established. The Cre/lox site-specific recombination system has been employed to eliminate selectable marker genes from transgenic plants. Here we describe the use of a movement function-improved Tobacco Mosaic Virus (TMV) vector, m30B, to express Cre recombinase for elimination of the selectable marker gene nptII from transgenic tobacco plants. The transgenic tobacco plants were produced by Agrobacterium-mediated transformation with a specially designed binary vector pGNG which contained in its T-DNA region a sequence complex of 35S promoter-lox-the gfp coding sequence-rbcS terminator-Nos promoter-nptII-Nos terminator-lox-the gus coding region-Nos terminator. The expression of the recombinant viral vector m30B:Cre in plant cells was achieved by placing the viral vector under the control of the 35S promoter and through agroinoculation. After co-cultivating the pGNG-leaf discs with agro35S-m30B:Cre followed by shoot regeneration without any selection, plants devoid of the lox-flanked sequences including nptII were obtained with an efficiency of about 34% as revealed by histochemical GUS assay of the regenerants. Three of 11 GUS expressing regenerants, derived from two independent transgenic lines containing single copy of the pGNG T-DNA, proved to be free of the lox-flanked sequences by Southern blot analysis. Excision of the lox-flanked sequences in the three plants could be attributed to transient expression of Cre from the viral vector at the early stage of co-cultivation, since the cre sequence could not be detected in the viral RNA molecules accumulated in the plants, nor in their genomic DNA. The parental marker-free genotype was inherited in their selfed progeny, and all of the progeny were virus-free, apparently because TMV is not seed-transmissible. Therefore, expression of Cre from a TMV-based vector could be used to eliminate selectable marker genes from transgenic tobacco plants without sexual crossing and segregation, and this strategy could be extended to other TMV-infected plant species and applicable to other compatible virus–host plant systems.  相似文献   

15.
We have developed a self-excision Cre-vector to remove marker genes from Brassica napus. In this vector cre recombinase gene and bar expression cassette were inserted between two lox sites in direct orientation. These lox-flanked sequences were placed between the seed-specific napin promoter and the gene of interest (vstI). Tissue-specific cre activation resulted in simultaneous excision of the recombinase and marker genes. The vector was introduced into B. napus by Agrobacterium-mediated transformation. F1 progeny of seven lines with single and multiple transgene insertions was subjected to segregation and molecular analysis. Marker-free plants could be detected and confirmed by PCR and Southern blot in all transgenic lines tested. The recombination efficiency expressed as a ratio of plants with complete gene excision to the total number of investigated plants varied from 13 to 81% dependent on the transgene copy number. Potential application of this system would be the establishment of marker-free transgenic plants in generatively propagated species.  相似文献   

16.
Four different pearl millet breeding lines were transformed and led to the regeneration of fertile transgenic plants. Scutellar tissue was bombarded with two plasmids containing the bar selectable marker and the -glucuronidase reporter gene (gus or uidA) under control of the constitutive CaMV 35S promoter or the maize Ubiquitin1 promoter (the CaMV 35S is not a maize promoter). For the delivery of the DNA-coated microprojectiles, either the particle gun PDS 1000/He or the particle inflow gun was used. The calli and regenerants were selected for their resistance to the herbicide Basta (glufosinate ammonium) mediated by the bar gene. Putative transformants were screened for enzyme activity by painting selected leaves or spraying whole plants with an aqueous solution of the herbicide Basta and by the histochemical GUS assay using cut leaf segments. PCR and Southern blot analysis of genomic DNA indicated the presence of introduced foreign genes in the genomic DNA of the transformants. Five regenerated plants represent independent transformation events and have been grown to maturity and set seed. The integration of the bar selectable and the gus reporter gene was confirmed by genomic Southern blot analysis in all five plants. All five plants had multiple integrations of both marker genes. To date, the T1 progeny of three out of four lines generated by the PDS particle gun shows co-segregating marker genes, indicating an integration of the bar and the gus gene at the same locus in the genome.  相似文献   

17.
Plant transformation, viaAgrobacterium tumefaciens, is usually performed with binary vectors. Most of the available binary vectors contain within the T-DNA (which is transferred to the plant genome) components not required for the intended modification. These additional sequences may cause potential risks during field testing of the transgenic plants or even more in the case of commercialization. The aim of this study was to produce a plant transformation vector which only contains a selectable and screenable marker gene and a multiple cloning site for insertion of promoter::foreign gene::terminator cassettes from other plasmids.  相似文献   

18.
Three constructs harbouring novel Bacillus thuringiensis genes (Cry1C, Cry2A, Cry9C) and bar gene were transformed into four upland cotton cultivars, Ekangmian10, Emian22, Coker201 and YZ1 via Agrobacterium-mediated transformation. With the bar gene as a selectable marker, about 84.8 % of resistant calli have been confirmed positive by polymerase chain reaction (PCR) tests, and totally 50 transgenic plants were regenerated. The insertions were verified by means of Southern blotting. Bioassay showed 80 % of the transgenic plantlets generated resistance to both herbicide and insect. We optimized conditions for improving the transformation efficiency. A modified in vitro shoot-tip grafting technique was introduced to help entire transplantation. This result showed that bar gene can replace antibiotic marker genes (ex. npt II gene) used in cotton transformation.  相似文献   

19.
Mature seed‐derived callus from an elite Chinese japonica rice cv. Eyl 105 was transformed with a plasmid containing the selectable marker hygromycin phosphotransferase (hpt) and the reporter β‐glucuronidase (gusA) genes via particle bombardment. After two rounds of selection on hygromycin (30 mg/l)‐containing medium, resistant callus was transferred to hygromycin (30 mg/l)‐containing regeneration medium for plant regeneration. Twenty‐three independent transgenic rice plants were regenerated from 127 bombarded callus with a transformation frequency of 18.1%. All the transgenic plants contained both gusA and hpt genes, revealed by PCR/Southern blot analysis. GUS assay revealed 18 out of 23 plants (78.3%) proliferated on hygromycin‐containing medium had GUS expression at various levels. Genetic analysis confirmed Mendelian segregation of transgenes in progeny. From R2 generations with their R1 parent plants showing 3:1 Mendelian segregation, we identified three independent homozygous transgenic rice lines. The homozygous lines were phenotypically normal and fertile compared to the control plants. We demonstrate that homozygous transgenic rice lines can be obtained via particle bombardment‐mediated transformation and through genetic analysis‐based selection.  相似文献   

20.
Detailed molecular characterisation of transgene loci is a requirement for gaining regulatory approval for environmental release of genetically modified crops. In cereals, it is generally accepted that Agrobacterium-mediated transformation generates cleaner transgene loci with lower copy number and fewer rearrangements than those generated by biolistics. However, in wheat there has been little detailed analysis of T-DNA insertions at genetic and molecular level. Wheat lines transformed using Agrobacterium tumefaciens with bar and gusA (GUS) genes were subjected to genetic and molecular analysis. Unlike previous studies of transgene loci in wheat, we used functional assays for PAT and GUS proteins, combined with PCR and Southern analysis to detect the presence, copy number, linkage and transmission of two transgenes inserted in the same T-DNA. Thirty-four independent transgenic lines were categorised into three types: type I events (38% of total) where the gusA and bar genes displayed complete genetic linkage, segregating together as a single functional locus at the expected ratio of 3:1; type II events (18%), which possessed two or more transgene loci each containing gusA and bar; and type III events (44%), containing an incomplete T-DNA in which either the gusA or bar gene was lost. Most lines in this last category had lost the bar gene situated near the left T-DNA border. Southern analysis indicated that 30% of all lines possessed a single T-DNA copy containing gusA and bar. However, when data on expression and molecular analysis are combined, only 23% of all lines have single copy T-DNAs in which both gene cassettes are functioning. We also report on the presence of plasmid backbone DNA sequence in transgene loci detected using primer pairs outside the left and right T-DNA borders and within the plasmid selectable marker (NptI) gene. Approximately two thirds of the lines contained some vector backbone DNA, more frequently adjacent to the left border. Taken together, these data imply unstable left border function causing premature T-strand termination or read-through into vector backbone. As far as we are aware, this is the first report revealing near border T-DNA truncation and vector backbone integration in wheat transgenic lines produced by Agrobacterium-mediated transformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号