首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
小干扰RNA (small interfering RNA,siRNA)是RNA干扰的引发物,激发与之互补的目标mRNA沉默,对基因调控及疾病治疗有重要意义。siRNA作为药物需要克服血管屏障、实现细胞内吞及溶酶体逃逸,同时还需要避免核酸酶作用下发生降解。因此,设计合适的纳米载体以帮助siRNA成功递送进细胞并发挥作用是目前siRNA药物发展的重要目标。纳米载体的材料种类、尺寸、结构、表面修饰等精确设计是实现siRNA药物成功递送的重要因素。随着研究的深入和应用的发展,siRNA药物纳米载体的精确控制制备、精准靶向递送及多功能化取得了较好的成果。本文围绕siRNA药物纳米载体,对siRNA药物应用及其递送困难、siRNA药物纳米载体主要设计策略、目前siRNA药物上市情况进行介绍,同时对其未来发展方向进行展望。  相似文献   

2.
ABSTRACT: Controlling gene expression via small interfering RNA (siRNA) has opened the doors to a plethora of therapeutic possibilities, with many currently in the pipelines of drug development for various ocular diseases. Despite the potential of siRNA technologies, barriers to intracellular delivery significantly limit their clinical efficacy. However, recent progress in the field of drug delivery strongly suggests that targeted manipulation of gene expression via siRNA delivered through nanocarriers can have an enormous impact on improving therapeutic outcomes for ophthalmic applications. Particularly, synthetic nanocarriers have demonstrated their suitability as a customizable multifunctional platform for the targeted intracellular delivery of siRNA and other hydrophilic and hydrophobic drugs in ocular applications. We predict that synthetic nanocarriers will simultaneously increase drug bioavailability, while reducing side effects and the need for repeated intraocular injections. This review will discuss the recent advances in ocular siRNA delivery via non-viral nanocarriers and the potential and limitations of various strategies for the development of a 'universal' siRNA delivery system for clinical applications.  相似文献   

3.
Human serum albumin (HSA) nanoparticles emerge as promising carriers for drug delivery. Among challenges, one important issue is the design of HSA nanoparticles with a low mean size of ca. 50?nm and having a high drug payload. The original strategy developed here is to use sacrificial mesoporous nanosilica templates having a diameter close to 30?nm to drive the protein nanocapsule formation. This new approach ensures first an efficient high drug loading (ca. 30%) of Doxorubicin (DOX) in the porous silica by functionalizing silica with an aminosiloxane layer and then allows the one-step adsorption and the physical cross-linking of HSA by modifying the silica surface with isobutyramide (IBAM) groups. After silica template removal, homogenous DOX-loaded HSA nanocapsules (30–60?nm size) with high drug loading capacity (ca. 88%) are thus formed. Such nanocapsules are shown efficient in multicellular tumor spheroid models (MCTS) of human hepatocarcinoma cells by their significant growth inhibition with respect to controls. Such a new synthesis approach paves the way toward new protein based nanocarriers for drug delivery.  相似文献   

4.
Gene therapy, including small interfering RNA (siRNA) technology, is one of the leading strategies that help to improve the outcomes of the current therapeutic systems against HIV-1 infection. The successful therapeutic application of siRNAs requires their safe and efficient delivery to specific cells. Here, we introduce a superparamagnetic iron oxide nanoparticle (SPION) for delivering siRNA against HIV-1 nef (anti-nef siRNA) into two cell lines, HEK293 and macrophage RAW 264.7. SPIONs were coated with trimethyl chitosan (TMC), and thereafter, different concentrations of SPION–TMC were coated with different ratios of a carboxymethyl dextran (CMD) to modify the physicochemical properties and improve the biological properties of the nanocarriers. The nanoparticles exhibited a spherical shape with an average size of 112 nm. The obtained results showed that the designed delivery route enhanced the uptake of siRNA into both HEK293 and RAW 264.7 cells compared with control groups. Moreover, CMD–TMC–SPIONs containing anti-nef siRNA significantly reduced the expression of HIV-1 nef in HEK293 stable cells. The modified siRNA-loaded SPIONs also displayed no toxicity or apoptosis-inducing effects on the cells. The CMD–TMC–SPIONs are suggested as potential nanocarriers for siRNA delivery in gene therapy of HIV-1 infection.  相似文献   

5.
The delivery of agrochemicals is typically achieved by the spraying of fossil-based polymer dispersions, which might accumulate in the soil and increase microplastic pollution. A potentially sustainable alternative is the use of biodegradable nano- or micro-formulations based on biopolymers, which can be degraded selectively by fungal enzymes to release encapsulated agrochemicals. To date, no hemicellulose nanocarriers for drug delivery in plants have been reported. Xylan is a renewable and abundant feedstock occurring naturally in high amounts in hemicellulose - a major component of the plant cell wall. Herein, xylan from corncobs was used to produce the first fungicide-loaded xylan-based nanocarriers by interfacial polyaddition in an inverse miniemulsion using toluene diisocyanate (TDI) as a crosslinking agent. The nanocarriers were redispersed in water and the aqueous dispersions were proven to be active in vitro against several pathogenic fungi, which are responsible for fungal plant diseases in horticulture or agriculture. Besides, empty xylan-based nanocarriers stimulated the growth of fungal mycelium, which indicated the degradation of xylan in the presence of the fungi, and underlined the degradation as a trigger to release a loaded agrochemical. This first example of crosslinked xylan-based nanocarriers expands the library of biodegradable and biobased nanocarriers for agrochemical release and might play a crucial role for future formulations in plant protection.  相似文献   

6.
为了达到更好的肿瘤治疗效果,研究者们针对肿瘤微环境设计出了双重和多重响应性智能纳米药物载体。其中基于酸敏感的双重响应性智能纳米药物载体的研究是最广泛、最常见的一种。在当前的研究中,该智能纳米药物载体已经初步实现了体内长循环、有效地抵达肿瘤细胞、在特定肿瘤微环境下控制药物释放等功效,增加了药物抗肿瘤疗效,有效地减少了药物对机体中正常组织的伤害。但是这类研究仍存在许多问题需要解决,如价格昂贵、载体结构复杂、体内药物传递机理不明确等,使其很难用于临床治疗。这里主要从酸-温度、酸-磁、酸-氧化还原、酸-酶、酸-光和酸-超声几个方面简单介绍了近几年的纳米载体研究进展,为进一步实现纳米药物临床应用奠定基础。  相似文献   

7.
介孔二氧化硅因具有有序介孔结构、比表面积大、生物相容性好及表面易于修饰等特点, 在生物医药等领域显示出了极大的应用前景, 目前, 基于介孔二氧化硅的纳米药物输送体系已成为众多科研工作者研究的热点. 本文讨论了靶向修饰及成像等多功能化的介孔二氧化硅药物输送体系的研究进展, 同时详细介绍了一系列具有特定形态结构(如中空/摇铃状、纳米管等)的介孔二氧化硅基载药体系的制备、表面修饰及在其在药物输送、释放等领域的应用研究. 最后, 对目前介孔二氧化硅基药物输送体系(主要包括具有特定形态结构的介孔二氧化硅药物载体、多功能复合药物载体及可生物降解的介孔二氧化硅药物输送体系等)在实际应用中存在的问题进行了分析并对其未来的发展前景进行了展望.  相似文献   

8.
Abstract

Efficient and site-specific delivery of therapeutic drugs is a critical challenge in clinical treatment of cancer. Nano-sized carriers such as liposomes, micelles, and polymeric nanoparticles have been investigated for improving bioavailability and pharmacokinetic properties of therapeutics via various mechanisms, for example, the enhanced permeability and retention (EPR) effect. Further improvement can potentially be achieved by conjugation of targeting ligands onto nanocarriers to achieve selective delivery to the tumour cell or the tumour vasculature. Indeed, receptor-targeted nanocarrier delivery has been shown to improve therapeutic responses both in vitro and in vivo. A variety of ligands have been investigated including folate, transferrin, antibodies, peptides and aptamers. Multiple functionalities can be incorporated into the design of nanoparticles, e.g., to enable imaging and triggered intracellular drug release. In this review, we mainly focus on recent advances on the development of targeted nanocarriers and will introduce novel concepts such as multi-targeting and multi-functional nanoparticles.  相似文献   

9.
Nanomaterials based on chitosan have emerged as promising carriers of therapeutic agents for drug delivery due to good biocompatibility, biodegradability, and low toxicity. Chitosan originated nanocarriers have been prepared by mini-emulsion, chemical or ionic gelation, coacervation/precipitation, and spray-drying methods. As alternatives to these traditional fabrication methods, self-assembled chitosan nanomaterials show significant advantages and have received growing scientific attention in recent years. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing or modification steps. In this review, we focus on recent progress in the design, fabrication and physicochemical aspects of chitosan-based self-assembled nanomaterials. Their applications in drug delivery of different therapeutic agents are also discussed in details.  相似文献   

10.
Paclitaxel (PTX) and organophilic iron oxide nanocrystals of 7 nm average size were co-encapsulated in the oily core of poly(lactide)-poly(ethyleneglycol) (PLA-PEG) nanocapsules in order to develop magnetically responsive nanocarriers of PTX. The nanocapsules were prepared by a solvent displacement technique and exhibited satisfactory drug and iron oxide loading efficiency, high colloidal stability, and sustained drug release properties. Drug release also proved responsive to an alternating magnetic field. Magnetophoresis experiments showed that the magnetic responsiveness of the nanocapsules depended on their SPION content. The PTX-loaded nanocapsules exhibited comparable to free PTX cytotoxicity against the A549 lung cancer cell line at 24 h of incubation but higher cytotoxicity than free drug at 48 h of incubation. The conjugation of a cysteine-modified TAT peptide (HCys-Tyr-Gly-Arg-Lys-Lys-Arg-Arg-Gln-Arg-Arg-Arg-NH2) on the surface of the nanocapsules resulted to highly increased uptake of nanocapsules by cancer cells, as well as to profound improvement of their cytotoxicity against the cancer cells. The results obtained justify further investigation of the prospects of these multifunctional PLA-PEG nanocapsules as a targeted delivery system of paclitaxel.  相似文献   

11.
Cyclodextrins (CDs) are used in oral pharmaceutical formulations, by means of inclusion complexes formation, with the following advantages for the drugs: (1) solubility, dissolution rate, stability, and bioavailability enhancement; (2) to modify the drug release site and/or time profile; and (3) to reduce or prevent gastrointestinal side effects and unpleasant smell or taste, to prevent drug–drug or drug–additive interactions, or even to convert oil and liquid drugs into microcrystalline or amorphous powders. A more recent trend focuses on the use of CDs as nanocarriers, a strategy that aims to design versatile delivery systems that can encapsulate drugs with better physicochemical properties for oral delivery. Thus, the aim of this work was to review the applications of the CDs and their hydrophilic derivatives on the solubility enhancement of poorly water-soluble drugs in order to increase their dissolution rate and get immediate release, as well as their ability to control (to prolong or to delay) the release of drugs from solid dosage forms, either as complexes with the hydrophilic (e.g., as osmotic pumps) and/or hydrophobic CDs. New controlled delivery systems based on nanotechnology carriers (nanoparticles and conjugates) have also been reviewed.  相似文献   

12.
Successful drug delivery by functionalized nanocarriers largely depends on their efficient intracellular transport which has not yet been fully understood. We developed a new tracking technique by encapsulating quantum dots into the core of wheat germ agglutinin-conjugated nanoparticles (WGA-NP) to track cellular transport of functionalized nanocarriers. The resulting nanoparticles showed no changes in particle size, zeta potential or biobinding activity, and the loaded probe presented excellent photostability and tracking ability. Taking advantage of these properties, cellular transport profiles of WGA-NP in Caco-2 cells was demonstrated. The cellular uptake begins with binding of WGA to its receptor at the cell surface. The subsequent endocytosis happened in a cytoskeleton-dependent manner and by means of clathrin and caveolae-mediated mechanisms. After endosome creating, transport occurs to both trans-Golgi and lysosome. Our study provides new evidences for quantum dots as a cellular tracking probe of nanocarriers and helps understand intracellular transport profile of lectin-functionalized nanoparticles.  相似文献   

13.
Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.  相似文献   

14.
随着核酸纳米技术的飞速发展,核酸自组装纳米载体已成为药物递送领域的研究热点。针对核酸自组装纳米载体在药物递送中的应用进展进行了系统综述,讨论了不同的核酸自组装策略,阐述了多种靶向递送和药物控制释放方法,同时,总结了核酸自组装纳米递送载体在蛋白质药物、核酸药物、小分子药物和纳米药物递送中的应用,并针对该领域的挑战和未来发展趋势进行了总结和展望,以期为药物递送领域和新型药物系统研究提供参考。  相似文献   

15.
The emergence of different nanoparticles (NPs) has made a significant revolution in the field of medicine. Different NPs in the form of metallic NPs, dendrimers, polymeric NPs, carbon quantum dots and liposomes have been functionalized and used as platforms for intracellular delivery of biomolecules, drugs, imaging agents and nucleic acids. These NPs are designed to improve the pharmacokinetic properties of the drug, improve their bioavailability and successfully surpass physiological or pathological obstacles in the biological system so that therapeutic efficacy is achieved. In this review I present some of the current approaches used in intracellular delivery systems, with a focus on various stimuli-responsive nanocarriers, including cell-penetrating peptides, to highlight their various biomedical applications.  相似文献   

16.
Gold nanoshells (AuNSs) are currently being investigated as nanocarriers for drug delivery systems and have both diagnostic and therapeutic applications, including photothermal ablation, hyperthermia, drug delivery, and diagnostic imaging, particularly in oncology. AuNSs are valuable for their localized surface plasmon resonance, biocompatibility, low immunogenicity, and facile functionalization. AuNSs used for drug delivery can be spatially and temporally triggered to release controlled quantities of drugs inside the target cells when illuminated with a near-infrared (NIR) laser. Recently, many research groups have demonstrated that these AuNS complexes are able to deliver antitumor drugs (e.g., doxorubicin, paclitaxel, small interfering RNA, and single-stranded DNA) into cancer cells, which enhances the efficacy of treatment. AuNSs can also be functionalized with active targeting ligands such as antibodies, aptamers, and peptides to increase the particles’ specific binding to the desired targets. This article reviews the current research on NIR light-activatable AuNSs used as nanocarriers for drug delivery systems and cancer theranostics.  相似文献   

17.
Nanocarriers with positive surface charges are known for their toxicity which has limited their clinical applications. The mechanism underlying their toxicity, such as the induction of inflammatory response, remains largely unknown. In the present study we found that injection of cationic nanocarriers, including cationic liposomes, PEI, and chitosan, led to the rapid appearance of necrotic cells. Cell necrosis induced by cationic nanocarriers is dependent on their positive surface charges, but does not require RIP1 and Mlkl. Instead, intracellular Na+ overload was found to accompany the cell death. Depletion of Na+ in culture medium or pretreatment of cells with the Na+/K+-ATPase cation-binding site inhibitor ouabain, protected cells from cell necrosis. Moreover, treatment with cationic nanocarriers inhibited Na+/K+-ATPase activity both in vitro and in vivo. The computational simulation showed that cationic carriers could interact with cation-binding site of Na+/K+-ATPase. Mice pretreated with a small dose of ouabain showed improved survival after injection of a lethal dose of cationic nanocarriers. Further analyses suggest that cell necrosis induced by cationic nanocarriers and the resulting leakage of mitochondrial DNA could trigger severe inflammation in vivo, which is mediated by a pathway involving TLR9 and MyD88 signaling. Taken together, our results reveal a novel mechanism whereby cationic nanocarriers induce acute cell necrosis through the interaction with Na+/K+-ATPase, with the subsequent exposure of mitochondrial damage-associated molecular patterns as a key event that mediates the inflammatory responses. Our study has important implications for evaluating the biocompatibility of nanocarriers and designing better and safer ones for drug delivery.  相似文献   

18.
In continuing search for effective treatments of cancer, the emerging model aims at efficient intracellular delivery of therapeutics into tumor cells in order to increase the drug concentration. However, the implementation of this strategy suffers from inefficient cellular uptake and drug resistance. Therefore, pH-sensitive nanosystems have recently been developed to target slightly acidic extracellular pH environment of solid tumors. The pH targeting approach is regarded as a more general strategy than conventional specific tumor cell surface targeting approaches, because the acidic tumor microclimate is most common in solid tumors. When nanosystems are combined with triggered release mechanisms in endosomal or lysosomal acidic pH along with endosomolytic capability, the nanocarriers demonstrated to overcome multidrug resistance of various tumors. Here, novel pH sensitive carbonate apatite has been fabricated to efficiently deliver anticancer drug Doxorubicin (DOX) to cancer cells, by virtue of its pH sensitivity being quite unstable under an acidic condition in endosomes and the desirable size of the resulting apatite-DOX for efficient cellular uptake as revealed by scanning electron microscopy. Florescence microscopy and flow cytometry analyses demonstrated significant uptake of drug (92%) when complexed with apatite nanoparticles. In vitro chemosensitivity assay revealed that apatite-DOX nanoparticles executed high cytotoxicity in several human cancer cell lines compared to free drugs and consequently apatite-DOX-facilitated enhanced tumor inhibitory effect was observed in colorectal tumor model within BALB/cA nude mice, thereby shedding light on their potential applications in cancer therapy.  相似文献   

19.
20.

Background

Aerosolized therapeutics hold great potential for effective treatment of various diseases including lung cancer. In this context, there is an urgent need to develop novel nanocarriers suitable for drug delivery by nebulization. To address this need, we synthesized and characterized a biocompatible drug delivery vehicle following surface coating of Fe3O4 magnetic nanoparticles (MNPs) with a polymer poly(lactic-co-glycolic acid) (PLGA). The polymeric shell of these engineered nanoparticles was loaded with a potential anti-cancer drug quercetin and their suitability for targeting lung cancer cells via nebulization was evaluated.

Results

Average particle size of the developed MNPs and PLGA-MNPs as measured by electron microscopy was 9.6 and 53.2 nm, whereas their hydrodynamic swelling as determined using dynamic light scattering was 54.3 nm and 293.4 nm respectively. Utilizing a series of standardized biological tests incorporating a cell-based automated image acquisition and analysis procedure in combination with real-time impedance sensing, we confirmed that the developed MNP-based nanocarrier system was biocompatible, as no cytotoxicity was observed when up to 100 μg/ml PLGA-MNP was applied to the cultured human lung epithelial cells. Moreover, the PLGA-MNP preparation was well-tolerated in vivo in mice when applied intranasally as measured by glutathione and IL-6 secretion assays after 1, 4, or 7 days post-treatment. To imitate aerosol formation for drug delivery to the lungs, we applied quercitin loaded PLGA-MNPs to the human lung carcinoma cell line A549 following a single round of nebulization. The drug-loaded PLGA-MNPs significantly reduced the number of viable A549 cells, which was comparable when applied either by nebulization or by direct pipetting.

Conclusion

We have developed a magnetic core-shell nanoparticle-based nanocarrier system and evaluated the feasibility of its drug delivery capability via aerosol administration. This study has implications for targeted delivery of therapeutics and poorly soluble medicinal compounds via inhalation route.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号