首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 379 毫秒
1.
Tobacco plants transformed with the RNA polymerase (RdRp) gene of potato virus X (PVX) that are extremely resistant to infection by potato virus X have previously been described. The PVX-resistant plants accumulated the RdRp protein at a lower level than fully susceptible plants transformed with the same RdRp construct. In this paper the difference between the PVX-resistant and susceptible transformed plants is investigated and it is demonstrated that there are three associated phenotypes of the RdRp transgene that vary in parallel between transformed lines. These phenotypes are: accumulation of the transgenic RdRp RNA at a low level; strain-specific resistance to PVX; and the ability of the transgene to trans -inactivate homologous transgenes. This gene-silencing potential of the transgenes conferring PVX resistance was illustrated by analysis of progeny from a cross between a transformant that was extremely resistant to PVX and a second PVX-susceptible transformant. In other transformants, in which the resistance was less extreme, the same three phenotypes were associated but in a transgene dosage-dependent manner. The same association of strain-specific resistance and low-level accumulation of the transgenic RdRp RNA was observed with plants that were transformed with mutant or wild-type versions of the RdRp gene. Strain-specific resistance was also produced in plants transformed with untranslatable versions of the RdRp transgene. Based on these data it is proposed that homology-dependent gene silencing and transgenic resistance to PVX may be due to the same RNA-based mechanism. An undefined genomic feature is proposed to account for the variation in the resistance and trans -inactivation phenotypes of different transformants. It is further proposed that this genome feature influences a cytoplasmic mechanism that degrades RNA with sequence homology to the silencing transgene.  相似文献   

2.
3.
4.
The p24 protein, one of the three proteins implicated in local movement of potato virus X (PVX), was expressed in transgenic tobacco plants (Nicotiana tabacum Xanthi D8 NN). Plants with the highest level of p24 accumulation exhibited a stunted and slightly chlorotic phenotype. These transgenic plants facilitate the cell-to-cell movement of a mutant of PVX that contained a frameshift mutation in p24. Upon inoculation with tobacco mosaic virus (TMV), the size of necrotic local lesions was significantly smaller in p24+ plants than in nontransgenic, control plants. Systemic resistance to tobamoviruses was also evidenced after inoculation of p24+ plants with Ob, a virus that evades the hypersensitive response provided by the N gene. In the latter case, no systemic symptoms were observed, and virus accumulation remained low or undetectable by Western immunoblot analysis and back-inoculation assays. In contrast, no differences were observed in virus accumulation after inoculation with PVX, although more severe symptoms were evident on p24-expressing plants than on control plants. Similarly, infection assays conducted with potato virus Y showed no differences between control and transgenic plants. On the other hand, a considerable delay in virus accumulation and symptom development was observed when transgenic tobacco plants containing the movement protein (MP) of TMV were inoculated with PVX. Finally, a movement defective mutant of TMV was inoculated on p24+ plants or in mixed infections with PVX on nontransgenic plants. Both types of assays failed to produce TMV infections, implying that TMV MP is not interchangeable with the PVX MPs.  相似文献   

5.
The effects of 254 nm UV-irradiation of tobacco mosaic virus (TMV) and potato virus X (PVX) RNA preparations on the RNA ability to self-assembly in vitro with the viral coat proteins were studied. It was found that while TMV RNA ability to assemble with the homologous protein is rapidly inactivated by the UV-irradiation, PVX RNA ability to be encapsidated by the PVX coat protein is quite resistant to the irradiation. More than that, the irradiation of TMV RNA with the dose strongly inhibiting its assembly with the homologous protein, did not result in any significant inhibition of this RNA ability to be coated with the PVX protein. The results testify to the profound differences in the mechanisms of RNA-protein interactions in the processes of self-assembly in vitro of tobamoviruses and potexviruses.  相似文献   

6.
7.
The Rx1 gene in potato confers extreme resistance to potato virus X (PVX). To investigate the mechanism and elicitation of Rx resistance, protoplasts of potato cv. Cara (Rx1 genotype) and Maris Bard (rx1 genotype) were inoculated with PVX and tobacco mosaic virus (TMV). At 24 h post-inoculation in Maris Bard protoplasts there was at least 100-fold more PVX RNA than in protoplasts of Cara. TMV RNA accumulated to the same level in both types of protoplast. However, when the TMV was inoculated together with PVX the accumulation of TMV RNA was suppressed in the Cara (Rx1 genotype) protoplasts to the same extent as PVX. The Rx1 resistance also suppressed accumulation of a recombinant TMV in which the coat protein gene was replaced with the coat protein gene of PVX. It is therefore concluded that Rx1-mediated resistance is elicited by the PVX coat protein, independently of any other proteins encoded by PVX. The domain of the coat protein with elicitor activity was localized by deletion and mutation analysis to the structural core of a non-virion form of the coat protein.  相似文献   

8.
9.
We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.  相似文献   

10.
11.
Salicylate watered onto soil in which White Burley tobacco plants were grown represents a reversible stress characterized by stomatal closure, slight slackening of plant growth and low chlorophyll loss. Salicylate affected viral pathogenesis in opposite ways. It had no effect against local and systemic infections by potato virus X (PVX), potato virus Y0 (PVY0) or tobacco mosaic virus (TMV), whereas it completely prevented systemic infection by alfalfa mosaic virus (AIMV) or tobacco, rattle virus (TRV) in a high proportion of treated plants. When infection moved from leaves inoculated with AIMV or TRV, the tendency to limit systemic spread was shown by the restriction of systemic infection to very limited areas erratically distributed in some uninoculated leaves. The salicylate-induced restriction of AIMV or TRV infectivity to inoculated leaves did not appear due to inhibition of virus multiplication because the inoculation of potentially resistant leaves of salicylate-reated plants resulted in virus antigen accumulation comparable to that of untreated controls. Salicylate may therefore inhibit some long distance virus transport function. Salicylate appears able to evoke true hypersensitivity only against systemic viruses able to induce local necrotic lesions, probably by activating some genetic information for resistance that is normally not expressed.  相似文献   

12.
13.
NTH201, a novel class II KNOTTED1-like protein gene, was cloned from tobacco (Nicotiana tabacum cv. Xanthi) and its role in Tobacco mosaic virus (TMV) infection was analyzed. Virus-induced gene silencing of NTH201 caused a delay in viral RNA accumulation as well as virus spread in infected tobacco plants. Overexpression of the gene in a transgenic tobacco plant (N. tabacum cv. Xanthi nc) infected by TMV showed larger local lesions than those of the nontransgenic plant. NTH201 exhibited no intercellular trafficking ability but did exhibit colocalization with movement protein (MP) at the plasmodesmata. When NTH201-overexpressing tobacco BY-2 cultured cells were infected with TMV, the accumulation of MP but not of viral genomic and subgenomic RNA clearly was accelerated compared with those in nontransgenic cells at an early infection period. The formation of virus replication complexes (VRC) also was accelerated in these transgenic cells. Conversely, NTH201-silenced cells showed less MP accumulations and fewer VRC formations than did nontransgenic cells. These results suggested that NTH201 might indirectly facilitate MP accumulation and VRC formation in TMV-infected cells, leading to rapid viral cell-to-cell movement in plants at an early infection stage.  相似文献   

14.
15.
The UV-irradiation was found to induce formation of the RNA-protein cross-links and intraviral RNA chain breaks in the particles of flexuous potato virus X (PVX). Using the technique developed previously for the rod-like tobacco mosaic virus (TMV), the quantum yields of RNA-protein cross-links and intraviral RNA polynucleotide chain breaks formation in the PVX were determined and found to be more or less close to those found for the intraviral TMV RNA.  相似文献   

16.
17.
应用RNAi技术培育抗TMV病毒转基因烟草   总被引:5,自引:0,他引:5  
利用烟草花叶病毒(TMV)外壳蛋白基因构建RNAi干涉载体, 通过叶盘法转化至烟草K326 和龙江911两个栽培品种。对转基因株系的荧光定量PCR分析表明, 不同转基因株系的病毒RNA靶序列都得到一定程度的降解, 抗病性鉴定结果证实, 转基因K326和龙江911两个栽培品种的转基因材料分别有83%和90%转基因株系对TMV呈现免疫级抗性。  相似文献   

18.
Tobacco mosaic virus (TMV) induces the hypersensitive response (HR) in tobacco plants containing the N gene. This defence response is characterized by cell death at the site of virus infection and inhibition of viral replication and movement. A previous study indicated that a portion of the TMV replicase containing a putative helicase domain is involved in HR induction. Here, this observation is confirmed and extended by showing that non-viral expression of a 50 kDa TMV helicase fragment (p50) is sufficient to induce the N-mediated HR in tobacco. Like the HR elicited by TMV infection, transgenic expression of p50 induces a temperature-sensitive defence response. We demonstrate that recombinant p50 protein has ATPase activity, as suggested by the presence of conserved sequence motifs found in ATPase/helicase enzymes. A point mutation that alters one of these motifs abolishes ATPase activity in vitro but does not affect HR induction. These results suggest that features of the TMV helicase domain, independent of its enzymatic activity, are recognized by N-containing tobacco to induce TMV resistance.  相似文献   

19.
Recombination is a frequent phenomenon in RNA viruses whose net result is largely influenced by selective pressures. RNA silencing in plants acts as a defense mechanism against viruses and can be used to engineer virus resistance. Here, we have investigated the influence of RNA silencing as a selective pressure to favor recombinants of PVX-HCT, a chimeric Potato virus X (PVX) vector carrying the helper-component proteinase (HC-Pro) gene from Plum pox virus (PPV). All the plants from two lines expressing a silenced HC-Pro transgene were completely resistant to PPV. However a significant proportion became infected with PVX-HCT. Analysis of viral RNAs accumulating in silenced plants revealed that PVX-HCT escaped silencing-based resistance by removal of the HC-Pro sequences that represented preferential targets for transgene-promoted silencing. The virus vector also tended to lose the HC-Pro insert when infecting transgenic plants containing a nonsilenced HC-Pro transgene or wild-type (wt) Nicotiana benthamiana plants. Nevertheless, loss of HC-Pro sequences was faster in nonsilenced transgenic plants than in wt plants, suggesting the transgene plays a role in promoting a higher selective pressure in favor of recombinant virus versions. These results indicate that the outcome of recombination processes depends on the strength of selection pressures applied to the virus.  相似文献   

20.
Summary Grapevine fanleaf nepovirus (GFLV) is responsible for the economically significant court-noué disease in vineyards. Its genome is made up of two single-stranded RNA molecules (RNA1 and RNA2) which direct the synthesis of polyproteins P1 and P2 respectively. A chimeric coat protein gene derived from the C-terminal part of P2 was constructed and subsequently introduced into a binary transformation vector. Transgenic Nicotiana benthamiana plants expressing the coat protein under the control of the CaMV 35S promoter were engineered by Agrobacterium tumefaciens-mediated transformation. Protection against infection with virions or viral RNA was tested in coat protein-expressing plants. A significant delay of systemic invasion was observed in transgenic plants inoculated with virus compared to control plants. This effect was also observed when plants were inoculated with viral RNA. No coat protein-mediated cross-protection was observed when transgenic plants were infected with arabis mosaic virus (ArMV), a closely related nepovirus also responsible for a court-noué disease.Abbreviations GFLV-F13 grapevine fanleaf virus F13 isolate - ArMV arabis mosaic virus - CP coat protein - MS Murashige and Skoog - NPTII neomycin phosphotransferase II - CaMV cauliflower mosaic virus - ELISA enzyme linked immunosorbent assay - VPg genome linked viral protein - TMV tobacco mosaic virus - PVX potato virus X - PVY potato virus Y - TRV tobacco rattle virus - +CP CP expressing - -CP control plant, not expressing CP - CPMP coat protein-mediated protection - CPMCP coat crotein-mediated cross protection  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号