首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The lifelong self-renewal of the epidermis is driven by a progenitor cell population with high proliferative potential. To date, the upstream signals that determine this potential have remained largely elusive. Here, we find that insulin and insulin-like growth factor receptors (IR and IGF-1R) determine epidermal proliferative potential and cooperatively regulate interfollicular epidermal morphogenesis in a cell autonomous manner. Epidermal deletion of either IR or IGF-1R or both in mice progressively decreased epidermal thickness without affecting differentiation or apoptosis. Proliferation was temporarily reduced at E17.5 in the absence of IGF-1R but not IR. In contrast, clonogenic capacity was impaired in both IR- and IGF-1R-deficient primary keratinocytes, concomitant with an in vivo loss of keratin 15. Together with a reduction in label-retaining cells in the interfollicular epidermis, this suggests that IR/IGF-1R regulate progenitor cells. The expression of dominant active Rac rescued clonogenic potential of IR/IGF-1R-negative keratinocytes and reversed epidermal thinning in vivo. Our results identify the small GTPase Rac as a key target of epidermal IR/IGF-1R signalling crucial for proliferative potential and interfollicular morphogenesis.  相似文献   

2.
Cholesterol is a key lipid in the stratum corneum, where it is critical for permeability barrier homeostasis. The epidermis is an active site of cholesterol synthesis, but inhibition of epidermal cholesterol synthesis with topically applied statins only modestly affects epidermal permeability barrier function, suggesting a possible compensatory role for extraepidermal cholesterol. Scavenger receptor class B type I (SR-BI) is a recently described cell surface receptor for high density lipoproteins (HDL) that mediates the selective uptake of cholesterol esters from circulating HDL. In the present study, we demonstrate that SR-BI is present in cultured human keratinocytes and that calcium-induced differentiation markedly decreases SR-BI levels. Additionally, the cell association of [(3)H]cholesterol-labeled HDL decreased in differentiated versus undifferentiated keratinocytes. Furthermore, the inhibition of cholesterol synthesis with simvastatin resulted in a 3-4-fold increase in both SR-BI mRNA and protein levels, whereas conversely, addition of 25-hydroxycholesterol suppressed SR-BI levels by approximately 50%. SR-BI mRNA is also expressed in murine epidermis, increasing by 50% in parallel with cholesterol requirements following acute barrier disruption. Because the increase is completely blocked by occlusion with a vapor-impermeable membrane, changes in epidermal SR-BI expression are regulated specifically by barrier requirements. Lastly, using immunofluorescence we demonstrated that SR-BI is present in human epidermis predominantly in the basal layer and increases following barrier disruption. In summary, the present study demonstrates first that SR-BI is expressed in keratinocytes and regulated by cellular cholesterol requirements, suggesting that it plays a role in keratinocyte cholesterol homeostasis. Second, the increase in SR-BI following barrier disruption suggests that SR-BI expression increases to facilitate cholesterol uptake leading to barrier restoration.  相似文献   

3.
4.
The metabolism of the epidermal structural and nonstructural proteins was studied in hydrocortisone-induced in vitro keratinization of 13-day chick embryonic skin growing in a chemically defined medium. The protein metabolism of the epidermis was examined by determining the amounts of radioactivity incorporated into the fractions of reduced, S-carboxymethylated epidermal proteins (SCMEp) which were separated by polyacrylamide gel electrophoresis. A group of high molecular weight, glycine-rich derivatives of the epidermal fibrous protein called SCMEpA were found to be actively synthesized in the hydrocortisone-treated epidermis alone, while a group of undefined protein derivatives called SCMEpX was shown to be synthesized exclusively in the nontreated epidermis. Chase-culture of the prelabeled explants revealed that hydrocortisone accelerated the degradation of general proteins including SCMEpX while SCMEpA remained metabolically stable throughout the culture. Actinomycin D did not significantly affect the hydrocortisone-induced synthesis of SCMEpA but greatly inhibited that of SCMEpX of the nontreated epidermis, suggesting the induction by the steroid of relatively stable mRNA for SCMEpA. From these findings, it is concluded that hydrocortisone directed the cultured epidermis toward keratinization through acceleration of the synthesis of epidermal structural proteins and degradation of other proteins.  相似文献   

5.
The epidermis of terrestrial vertebrates is a stratified epithelium and forms an essential protective barrier. It is continually renewed, with dead corneocytes shed from the surface and replaced from a basal keratinocyte stem cell population. Whilst mouse is the prime model system used for epidermal studies, there is increasing employment of the zebrafish to analyse epidermis development and homeostasis, however the architecture and ontogeny of the epidermis in this system are incompletely described. In particular, it is unclear if adult zebrafish epidermis is derived entirely from the basal epidermal stem cell layer, as in the mouse, or if the most superficial keratinocyte layer is a remnant of the embryonic periderm. Furthermore, a relative paucity of cellular markers and genetic reagents to label and manipulate the basal epidermal stem cell compartment has hampered research. Here we show that the type I keratin, krtt1c19e, is a suitable marker of the basal epidermal layer and identify a krtt1c19e promoter fragment able to drive strong and specific expression in this cell type. Use of this promoter to express an inducible Cre recombinase allowed permanent labelling of basal cells during embryogenesis, and demonstrated that these cells do indeed generate keratinocytes of all strata in the adult epidermis. Further deployment of the Cre-Lox system highlighted the transient nature of the embryonic periderm. We thus show that the epidermis of adult zebrafish, as in the mouse, derives from basal stem cells, further expanding the similarities of epidermal ontogeny across vertebrates. Future use of this promoter will assist genetic analysis of basal keratinocyte biology in zebrafish.  相似文献   

6.
7.
8.
9.
It is well known that calcium ions (Ca2+) induce keratinocyte differentiation. Ca2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca2+ gradient.  相似文献   

10.
11.
Integrin-linked kinase (ILK) is key for cell survival, migration, and adhesion, but little is known about its role in epidermal development and homeostasis in vivo. We generated mice with conditional inactivation of the Ilk gene in squamous epithelia. These mice die perinatally and exhibit skin blistering and severe defects in hair follicle morphogenesis, including greatly reduced follicle numbers, failure to progress beyond very early developmental stages, and pronounced defects in follicular keratinocyte proliferation. ILK-deficient epidermis shows abnormalities in adhesion to the basement membrane and in differentiation. ILK-deficient cultured keratinocytes fail to attach and spread efficiently and exhibit multiple abnormalities in actin cytoskeletal organization. Ilk gene inactivation in cultured keratinocytes causes impaired ability to form stable lamellipodia, to directionally migrate, and to polarize. These defects are accompanied by abnormal distribution of active Cdc42 to cell protrusions, as well as reduced activation of Rac1 upon induction of cell migration in scraped keratinocyte monolayers. Significantly, alterations in cell spreading and forward movement in single cells can be rescued by expression of constitutively active Rac1 or RhoG. Our studies underscore a central and distinct role for ILK in hair follicle development and in polarized cell movements, two key aspects of epithelial morphogenesis and function.  相似文献   

12.
The importance of the epidermal permeability barrier (EPB) in protecting the mammalian species against harmful UV irradiation, microorganism invasion and water loss is well recognized, as is the role of calcium (Ca(2+)) in keratinocyte differentiation, cell-cell contact and the EPB. In a previous study, we reported that the overexpression of the Ca(2+)-sensing receptor (CaSR) in the undifferentiated basal cells of the epidermis induced a modified epidermal differentiation program including an accelerated EPB formation in transgenic mice, suggesting a role for CaSR signaling in the differentiation of embryonic epidermal cells during development. We now describe the expression profile of claudins (Cldns) and keratin markers in the accelerated EPB formation of K14-CaSR transgenic mice during development as compared to the wild type from E12.5 to newborn stages. Our data show that the transgenic epidermis undergoes an advanced epidermal differentiation program as compared to the wild type as evidenced morphologically as well as by the expression of K14, K1, loricrin, Cldn6, Cldn18 and Cldn11. In addition, we report for the first time the sequential expression of Cldns in epidermal development and describe that the localization of some Cldns change within the epidermis as it matures. Furthermore, we demonstrate that Cldn6 is expressed very early in epidermal morphogenesis, followed by Cldn18, Cldn11 and Cldn1.  相似文献   

13.
ABCG1, a member of the ATP binding cassette superfamily, facilitates the efflux of cholesterol from cells to HDL. In this study, we demonstrate that ABCG1 is expressed in cultured human keratinocytes and murine epidermis, and induced during keratinocyte differentiation, with increased levels in the outer epidermis. ABCG1 is regulated by liver X receptor (LXR) and peroxisome proliferator-activated receptor-δ (PPAR-δ) activators, cellular sterol levels, and acute barrier disruption. Both LXR and PPAR-δ activators markedly stimulate ABCG1 expression in a dose- and time-dependent fashion. PPAR-γ activators also increase ABCG1 expression, but to a lesser degree. In contrast, activators of PPAR-α, retinoic acid receptor, retinoid X receptor, and vitamin D receptor do not alter ABCG1 expression. In response to increased intracellular sterol levels, ABCG1 expression increases, whereas inhibition of cholesterol biosynthesis decreases ABCG1 expression. In vivo, ABCG1 is stimulated 3–6 h after acute barrier disruption by either tape stripping or acetone treatment, an increase that can be inhibited by occlusion, suggesting a potential role of ABCG1 in permeability barrier homeostasis. Although Abcg1-null mice display normal epidermal permeability barrier function and gross morphology, abnormal lamellar body (LB) contents and secretion leading to impaired lamellar bilayer formation could be demonstrated by electron microscopy, indicating a potential role of ABCG1 in normal LB formation and secretion.  相似文献   

14.
15.
Lin HY  Kao CH  Lin KM  Kaartinen V  Yang LT 《PloS one》2011,6(1):e15842

Background

Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.

Methodology and Principal Findings

We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.

Significance

our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells.  相似文献   

16.
Zinc ion homeostasis plays an important role in human cutaneous biology where it is involved in epidermal differentiation and barrier function, inflammatory and antimicrobial regulation, and wound healing. Zinc-based compounds designed for topical delivery therefore represent an important class of cutaneous therapeutics. Zinc pyrithione (ZnPT) is an FDA-approved microbicidal agent used worldwide in over-the-counter topical antimicrobials, and has also been examined as an investigational therapeutic targeting psoriasis and UVB-induced epidermal hyperplasia. Recently, we have demonstrated that cultured primary human skin keratinocytes display an exquisite sensitivity to nanomolar ZnPT concentrations causing induction of heat shock response gene expression and poly(ADP-ribose) polymerase (PARP)-dependent cell death (Cell Stress Chaperones 15:309–322, 2010). Here we demonstrate that ZnPT causes rapid accumulation of intracellular zinc in primary keratinocytes as observed by quantitative fluorescence microscopy and inductively coupled plasma mass spectrometry (ICP-MS), and that PARP activation, energy crisis, and genomic impairment are all antagonized by zinc chelation. In epidermal reconstructs (EpiDerm™) exposed to topical ZnPT (0.1–2% in Vanicream™), ICP-MS demonstrated rapid zinc accumulation, and expression array analysis demonstrated upregulation of stress response genes encoding metallothionein-2A (MT2A), heat shock proteins (HSPA6, HSPA1A, HSPB5, HSPA1L, DNAJA1, HSPH1, HSPD1, HSPE1), antioxidants (SOD2, GSTM3, HMOX1), and the cell cycle inhibitor p21 (CDKN1A). IHC analysis of ZnPT-treated EpiDerm™ confirmed upregulation of Hsp70 and TUNEL-positivity. Taken together our data demonstrate that ZnPT impairs zinc ion homeostasis and upregulates stress response gene expression in primary keratinocytes and reconstructed human epidermis, activities that may underlie therapeutic and toxicological effects of this topical drug.  相似文献   

17.
Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts.Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.  相似文献   

18.
19.
Connexin levels regulate keratinocyte differentiation in the epidermis   总被引:1,自引:0,他引:1  
To understand the role of connexin43 (Cx43) in epidermal differentiation, we reduced Cx43 levels by RNA-mediated interference knockdown and impaired its functional status by overexpressing loss-of-function Cx43 mutants associated with the human disease oculodentodigital dysplasia (ODDD) in rat epidermal keratinocytes. When Cx43 expression was knocked down by 50-75%, there was a coordinate 55-65% reduction in Cx26 level, gap junction-based dye coupling was reduced by 60%, and transepithelial resistance decreased. Importantly, the overall growth and differentiation of Cx43 knockdown organotypic epidermis was severely impaired as revealed by alterations in the levels of the differentiation markers loricrin and involucrin and by reductions in vital and cornified layer thicknesses. Conversely, although the expression of Cx43 mutants reduced the coupling status of rat epidermal keratinocytes by approximately 80% without altering the levels of endogenous Cx43 or Cx26, their ability to differentiate was not altered. In addition, we used a mouse model of ODDD and found that newborn mice harboring the loss-of-function Cx43(G60S) mutant had slightly reduced Cx43 levels, whereas Cx26 levels, epidermis differentiation, and barrier function remained unaltered. This properly differentiated epidermis was maintained even when Cx43 and Cx26 levels decreased by more than 70% in 3-week-old mutant mice. Our studies indicate that Cx43 and Cx26 collectively co-regulate epidermal differentiation from basal keratinocytes but play a more minimal role in the maintenance of established epidermis. Altogether, these studies provide an explanation as to why the vast majority of ODDD patients, where Cx43 function is highly compromised, do not suffer from skin disease.  相似文献   

20.
Epidermis is a self-renewing, multilayered tissue composed primarily of keratinocytes. The epidermal keratinocyte follows a terminal differentiation pathway that under normal circumstances is tightly linked to its position within the epidermis and culminates in the formation of the protective barrier (stratum corneum) that constitutes the outermost layer of skin. Strong but pliant adhesive mechanisms are essential for normal functioning of the epidermis. In the epidermis, adhesion is mediated primarily by four structures: hemidesmosomes and focal adhesions, which function in cell-matrix adhesion, and desmosomes and adherens junctions, which function in cell-cell adhesion. In this review we concentrate on the transmembrane components of these structures, which are thought to mediate directly the adhesive function. Members of the integrin family of adhesion molecules comprise the transmembrane components of hemidesmosomes and focal adhesions, although hemidesmosomes also have a second, unrelated transmembrane molecule known as 'bullous pemphigoid antigen 2'. Members of the cadherin family are the transmembrane constituents of desmosomes and adherens junctions. Desmosomes consistently contain two types of cadherins (desmoglein and desmocollin), while adherens junctions may contain only one type of cadherin (E- or P-cadherin). Expression of most of the transmembrane components varies with the position of the keratinocyte within the epidermis and thus may reflect the degree of epidermal differentiation. All of the integrin subunits have been localized predominantly to the basal layer. In contrast, the cadherins show very complex expression patterns throughout the epidermis. Desmogleins and desmocollins (the desmosomal cadherins) are each encoded by three genes, and the expression of each gene is limited to certain epidermal layers. With respect to the cadherins of the adherens junction, it has been shown that E-cadherin is present throughout the epidermis, while P-cadherin is limited to the basal layer. Interestingly, these complex expression patterns of integrins and cadherins within the epidermis may not simply be passive events in differentiation; rather, evidence is accumulating that adhesion molecules can exert a dynamic role in epidermal differentiation/stratification. For example, decreased adhesion to extracellular matrix, induced by changes in one or more integrins, appears to be a signal that induces certain differentiation-related events. Even more profound effects on epidermal morphogenesis have been demonstrated for the cadherins. E- and/or P-cadherin is required not only to initiate normal intercellular junction formation but also for the subsequent development of a stratified epithelium. Thus, the findings to date with both integrins and cadherins suggest that adhesion molecules may function not just as direct mediators of adhesion, but also as regulators of epidermal stratification, differentiation, and morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号