共查询到20条相似文献,搜索用时 15 毫秒
1.
Notch signaling regulates the pattern of auditory hair cell differentiation in mammals 总被引:11,自引:0,他引:11
The development of the mammalian cochlea is an example of patterning in the peripheral nervous system. Sensory hair cells and supporting cells in the cochlea differentiate via regional and cell fate specification. The Notch signaling components shows both distinct and overlapping expression patterns of Notch1 receptor and its ligands Jagged1 (Jag1) and Jagged2 (Jag2) in the developing auditory epithelium of the rat. On embryonic day 16 (E16), many precursor cells within the K?lliker's organ immunostained for the presence of both Notch1 and Jag1, while the area of hair cell precursors did not express either Notch1 and Jag1. During initial events of hair cell differentiation between E18 and birth, Notch1 and Jag1 expression predominated in supporting cells and Jag2 in nascent hair cells. Early after birth, Jag2 expression decreased in hair cells while the pattern of Notch1 expression now included both supporting cells and hair cells. We show that the normal pattern of hair cell differentiation is disrupted by alteration of Notch signaling. A decrease of either Notch1 or Jag1 expression by antisense oligonucleotides in cultures of the developing sensory epithelium resulted in an increase in the number of hair cells. Our data suggest that the Notch1 signaling pathway is involved in a complex interplay between the consequences of different ligand-Notch1 combinations during cochlear morphogenesis and the phases of hair cell differentiation. 相似文献
2.
Notch genes encode evolutionarily conserved large, single transmembrane receptors, which regulate many cell fate decisions and differentiation processes during fetal and postnatal life. Multiple Notch receptors and ligands are expressed in both developing and adult epidermis and hair follicles. Proliferation and differentiation of these two ectodermal-derived structures have been proposed to be controlled in part by the Notch pathway. Whether Notch signaling is involved in postnatal hair homeostasis is currently unknown. Here, we investigate and compare the role of the Notch1 receptor during embryonic hair follicle development and postnatal hair homeostasis using Cre-loxP based tissue specific and inducible loss-of-function approaches. During embryonic development, tissue-specific ablation of Notch1 does not perturb formation and patterning of hair follicle placodes. However, Notch1 deficient hair follicles invaginate prematurely into the dermis. Embryonic as well as postnatal inactivation of Notch1 shortly after birth or in adult mice results in almost complete hair loss followed by cyst formation. The first hair cycle of Notch1 deficient mice is characterized by shortened anagen and a premature entry into catagen. These data show that Notch1 is essential for late stages of hair follicle development during embryogenesis as well as for post-natal hair follicle development and hair homeostasis. 相似文献
3.
4.
5.
The Notch signal transduction pathway regulates the decision to proliferate versus differentiate. Although there are a myriad of mouse models for the Notch pathway, surprisingly little is known about how these genes regulate early eye development, particularly in the anterior lens. We employed both gain-of-function and loss-of-function approaches to determine the role of Notch signaling in lens development. Here we analyzed mice containing conditional deletion of the Notch effector Rbpj or overexpression of the activated Notch1 intracellular domain during lens formation. We demonstrate distinct functions for Notch signaling in progenitor cell growth, fiber cell differentiation and maintenance of the transition zone. In particular, Notch signaling controls the timing of primary fiber cell differentiation and is essential for secondary fiber cell differentiation. Either gain or loss of Notch signaling leads to formation of a dysgenic lens, which in loss-of-function mice undergoes a profound postnatal degeneration. Our data suggest both Cyclin D1 and Cyclin D2, and the p27Kip1 cyclin-dependent kinase inhibitor act downstream of Notch signaling, and define multiple critical functions for this pathway during lens development. 相似文献
6.
7.
8.
Asymmetric division of progenitor/stem cells generates both self-renewing and differentiating progeny and is fundamental to development and regeneration. How this process is regulated in the vertebrate brain remains incompletely understood. Here, we use time-lapse imaging to track radial glia progenitor behavior in the developing zebrafish brain. We find that asymmetric division invariably generates a basal self-renewing daughter and an apical differentiating sibling. Gene expression and genetic mosaic analysis further show that the apical daughter is the source of Notch ligand that is essential to maintain higher Notch activity in the basal daughter. Notably, establishment of this intralineage and directional Notch signaling requires the intrinsic polarity regulator Partitioning defective protein-3 (Par-3), which segregates the fate determinant Mind bomb unequally to the apical daughter, thereby restricting the self-renewal potential to the basal daughter. These findings reveal with single-cell resolution how self-renewal and differentiation become precisely segregated within asymmetrically dividing neural progenitor/stem lineages. 相似文献
9.
Jianxing Zeng Yingying Jing Rongyu Shi Xiaorong Pan Fobao Lai Wenting Liu 《Cell cycle (Georgetown, Tex.)》2016,15(12):1602-1610
Autophagy plays important roles in self-renewal and differentiation of stem cells. Hepatic progenitor cells (HPCs) are thought to have the ability of self-renewal as well as possess a bipotential capacity, which allows them to differentiate into both hepatocytes and bile ductular cells. However, how autophagy contributes to self-renewal and differentiation of hepatic progenitor cells is not well understood. In this study, we use a well-established rat hepatic progenitor cell lines called WB-F344, which is treated with 3.75 mM sodium butyrate (SB) to promote the differentiation of WB-F344 along the biliary phenotype. We found that autophagy was decreased in the early stage of biliary differentiation, and maintained a low level at the late stage. Activation of autophagy by rapamycin or starvation suppressed the biliary differentiation of WB-F344. Further study reported that autophagy inhibited Notch1 signaling pathway, which contributed to biliary differentiation and morphogenesis. In conclusions, autophagy regulates biliary differentiation of hepatic progenitor cells through Notch1 signaling pathway. 相似文献
10.
The Notch signaling pathway is an essential cell-cell interaction mechanism, which regulates processes such as cell proliferation, cell fate decisions, differentiation or stem cell maintenance. Pigmentation in mammals is provided by melanocytes, which are derived from the neural crest, and by the retinal pigment epithelium (RPE), which is part of the optic cup and hence orginates from neuroectoderm. The importance of functional Notch signaling in melanocytes has been unveiled recently. Here, the pathway is essential for the maintenance of proper hair pigmentation. Deletion of Notch1 and Notch2 or RBP-Jkappa in the melanocyte lineage resulted in a gene dosage-dependent precocious hair graying, due to the elimination of melanoblasts and melanocyte stem cells. Expression data support the idea that Notch signaling might equally be involved in development of the RPE. Furthermore, recent analyses indicate a possible role of Notch signaling in the development of melanoma. In this review, we address the essential role of Notch signaling in the regeneration of the melanocyte population during hair follicle cycles, and discuss data supporting the implication of this signaling pathway in RPE development and melanoma. 相似文献
11.
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. 相似文献
12.
13.
A role for the primary cilium in Notch signaling and epidermal differentiation during skin development 总被引:2,自引:0,他引:2
Ciliogenesis precedes lineage-determining signaling in skin development. To understand why, we performed shRNA-mediated knockdown of seven intraflagellar transport proteins (IFTs) and conditional ablation of Ift-88 and Kif3a during embryogenesis. In both cultured keratinocytes and embryonic epidermis, all of these eliminated cilia, and many (not Kif3a) caused hyperproliferation. Surprisingly and independent of proliferation, ciliary mutants displayed defects in Notch signaling and commitment of?progenitors to differentiate. Notch receptors and Notch-processing enzymes colocalized with cilia in wild-type epidermal cells. Moreover, differentiation defects in ciliary mutants were cell autonomous and rescued by activated Notch (NICD). By contrast, Shh signaling was neither operative nor required for?epidermal ciliogenesis, Notch signaling, or differentiation. Rather, Shh signaling defects in ciliary mutants occurred later, arresting hair follicle morphogenesis in the skin. These findings unveil temporally and spatially distinct functions for primary cilia?at the nexus of signaling, proliferation, and differentiation. 相似文献
14.
Engin F Yao Z Yang T Zhou G Bertin T Jiang MM Chen Y Wang L Zheng H Sutton RE Boyce BF Lee B 《Nature medicine》2008,14(3):299-305
Notch signaling is a key mechanism in the control of embryogenesis. However, its in vivo function during mesenchymal cell differentiation, and, specifically, in bone homeostasis, remains largely unknown. Here, we show that osteoblast-specific gain of Notch function causes severe osteosclerosis owing to increased proliferation of immature osteoblasts. Under these pathological conditions, Notch stimulates early osteoblastic proliferation by upregulating the genes encoding cyclin D, cyclin E and Sp7 (osterix). The intracellular domain of Notch1 also regulates terminal osteoblastic differentiation by directly binding Runx2 and repressing its transactivation function. In contrast, loss of all Notch signaling in osteoblasts, generated by deletion of the genes encoding presenilin-1 and presenilin-2 in bone, is associated with late-onset, age-related osteoporosis, which in turn results from increased osteoblast-dependent osteoclastic activity due to decreased osteoprotegerin mRNA expression in these cells. Together, these findings highlight the potential dimorphic effects of Notch signaling in bone homeostasis and may provide direction for novel therapeutic applications. 相似文献
15.
Tang H Brennan J Karl J Hamada Y Raetzman L Capel B 《Development (Cambridge, England)》2008,135(22):3745-3753
During testis development, fetal Leydig cells increase their population from a pool of progenitor cells rather than from proliferation of a differentiated cell population. However, the mechanism that regulates Leydig stem cell self-renewal and differentiation is unknown. Here, we show that blocking Notch signaling, by inhibiting gamma-secretase activity or deleting the downstream target gene Hairy/Enhancer-of-split 1, results in an increase in Leydig cells in the testis. By contrast, constitutively active Notch signaling in gonadal somatic progenitor cells causes a dramatic Leydig cell loss, associated with an increase in undifferentiated mesenchymal cells. These results indicate that active Notch signaling restricts fetal Leydig cell differentiation by promoting a progenitor cell fate. Germ cell loss and abnormal testis cord formation were observed in both gain- and loss-of-function gonads, suggesting that regulation of the Leydig/interstitial cell population is important for male germ cell survival and testis cord formation. 相似文献
16.
17.
Dietary vitamin A regulates wingless-related MMTV integration site signaling to alter the hair cycle
Liye Suo John P Sundberg Helen B Everts 《Experimental biology and medicine (Maywood, N.J.)》2015,240(5):618-623
Alopecia areata (AA) is an autoimmune hair loss disease caused by a cell-mediated immune attack of the lower portion of the cycling hair follicle. Feeding mice 3–7 times the recommended level of dietary vitamin A accelerated the progression of AA in the graft-induced C3H/HeJ mouse model of AA. In this study, we also found that dietary vitamin A, in a dose dependent manner, activated the hair follicle stem cells (SCs) to induce the development and growth phase of the hair cycle (anagen), which may have made the hair follicle more susceptible to autoimmune attack. Our purpose here is to determine the mechanism by which dietary vitamin A regulates the hair cycle. We found that vitamin A in a dose-dependent manner increased nuclear localized beta-catenin (CTNNB1; a marker of canonical wingless-type Mouse Mammary Tumor Virus integration site family (WNT) signaling) and levels of WNT7A within the hair follicle bulge in these C3H/HeJ mice. These findings suggest that feeding mice high levels of dietary vitamin A increases WNT signaling to activate hair follicle SCs. 相似文献
18.
19.
Background
Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis.Methodology/Principal Findings
Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene.Conclusions/Significance
Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification. 相似文献20.
Epithelial Bmpr1a regulates differentiation and proliferation in postnatal hair follicles and is essential for tooth development 总被引:10,自引:0,他引:10
Andl T Ahn K Kairo A Chu EY Wine-Lee L Reddy ST Croft NJ Cebra-Thomas JA Metzger D Chambon P Lyons KM Mishina Y Seykora JT Crenshaw EB Millar SE 《Development (Cambridge, England)》2004,131(10):2257-2268