首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 511 毫秒
1.
We have synthesized and characterized a new BaCa2Al8O15:Eu2+,Dy3+ phosphor prepared by the combustion method. X‐ray diffraction, thermoluminescence, scanning electron microscope, time decay and optical spectral analysis photoluminescence excitation, emission spectra were used to characterize the phosphors. Broadband ultraviolet excited luminescence of the BaCa2Al8O15:Eu2+,Dy3+ was observed in the blue region (λmax = 435 nm) due to transitions from the 4f65d1 to the 4f7 configuration of the Eu2+ ion. Scanning electron microscopy has been used for exploring the morphological properties of the prepared phosphors. The BaCa2Al8O15:Eu2+ phosphor has a blue afterglow when Dy3+ ions were co‐doped. The thermoluminescence spectra show that the Dy3+ ion induces a proper trap in the phosphor with a depth of 0.67 eV and results in a long afterglow phosphorescence. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A significant advance made in combinatorial approach research was that the emphasis shifted from simple mixing to intelligent screening, so as to improve the efficiency and accuracy of discovering new materials from a larger number of diverse compositions. In this study, the long‐lasting luminescence of SrAl2O4, which is co‐doped with Eu2+, Ce3+, Dy3+, Li+ and H3BO3, was investigated based on a combinatorial approach in conjunction with the Taguchi method. The minimal number of 16 samples to be tested (five dopants and four levels of concentration) were designed using the Taguchi method. The samples to be screened were synthesized using a parallel combinatorial strategy based on ink‐jetting of precursors into an array of micro‐reactor wells. The relative brightness of luminescence of the different phosphors over a particular period was assessed. Ce3+ was identified as the constituent that detrimentally affected long‐lasting luminescence. Its concentration was optimized to zero. Li+ had a minor effect on long‐lasting luminescence but the main factors that contributed to the objective property (long‐lasting luminescence) were Eu2+, Dy3+ and H3BO3, and the concentrations of these dopants were optimized to 0.020, 0.030 and 0.300, respectively, for co‐doping into SrAl2O4. This study demonstrates that the utility of the combinatorial approach for evaluating the effect of components on an objective property (e.g. phosphorescence) and estimating the expected performance under the optimal conditions can be improved by the Taguchi method. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ long afterglow phosphors were synthesized under a weak reducing atmosphere by the traditional high temperature solid state reaction method. The synthesized phosphors were characterized by powder X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDX), and photo‐, thermo‐ and mechanoluminescence spectroscopic techniques. The phase structure of the sintered phosphor was an akermanite type structure, which belongs to tetragonal crystallography. The thermoluminescence properties of these phosphors were investigated and compared. Under ultraviolet light excitation, the emission spectra of both prepared phosphors were composed of a broad emission band peaking at 470 nm. When the Sr2MgSi2O7:Eu2+ phosphor was co‐doped with Dy3+, the photoluminescence (PL), afterglow and mechanoluminescence (ML) intensity were strongly enhanced. The decay graph indicated that both the sintered phosphors contained fast decay and slow decay processes. The ML intensities of Sr2MgSi2O7:Eu2+ and Sr2MgSi2O7:Eu2+,Dy3+ phosphors were increased proportionally with increasing impact velocity, a finding that suggests that these phosphors could be used as sensors to detect the stress of an object. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were synthesized using the solid‐state reaction method. X‐Ray diffraction (XRD) and photoluminescence (PL) analyses were used to characterize the phosphors. The XRD results revealed that the synthesized CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors were crystalline and are assigned to the monoclinic structure with a space group C2/c. The calculated crystal sizes of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors with a main (221) diffraction peak were 44.87 and 53.51 nm, respectively. Energy‐dispersive X‐ray spectroscopy (EDX) confirmed the proper preparation of the sample. The PL emission spectra of CaMgSi2O6:Eu2+,Dy3+ and CaMgSi2O6:Eu2+,Ce3+ phosphors have a broad band peak at 444.5 and 466 nm, respectively, which is due to electronic transition from 4f65d1 to 4f7. The afterglow results indicate that the CaMgSi2O6:Eu2+,Dy3+ phosphor has better persistence luminescence than the CaMgSi2O6:Eu2+,Ce3+ phosphor. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper, europium‐doped strontium aluminate (SrAl2O4:Eu2+) phosphors were synthesized using a combustion method with urea as a fuel at 600°C. The phase structure, particle size, surface morphology and elemental analysis were studied using X‐ray diffractometry (XRD), transmission electron microscopy (TEM), energy‐dispersive X‐ray spectroscopy (EDX) and Fourier transform infrared (FTIR) spectra. The EDX and FTIR spectra confirm the elements present in the SrAl2O4:Eu2+ phosphor. The optical properties of SrAl2O4:Eu2+ phosphors were investigated by photoluminescence (PL) and mechanoluminescence (ML). The excitation and emission spectra showed a broad band with peaks at 337 and 515 nm, respectively. The ML intensities of SrAl2O4:Eu2+ phosphor increased proportionally with the increase in the height of the mechanical load, which suggests that this phosphor could be used in stress sensors. The CIE colour chromaticity diagram and ML spectra confirm that the SrAl2O4:Eu2+ phosphor emitted green coloured light. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
A series of single‐phase full‐color emitting Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors were synthesized by solid‐state reaction and characterized by X‐ray diffraction and photoluminescence analyses. The samples showed emission peaks at 488 nm (blue), 572 nm (yellow), 592 nm (orange) and 617 nm (red) under 393 nm excitation. The photoluminescence excitation spectra, comprising the Eu–O charge transfer band and 4f–4f transition bands of Dy3+ and Eu3+, range from 200 to 500 nm. The Commission Internationale de I'Eclairage chromaticity coordinates for Li2Sr0.98−xSiO4:0.02Dy3+,xEu3+ phosphors were simulated. By manipulating Eu3+ and Dy3+ concentrations, the color points of Li2Sr1−x−ySiO4:xDy3+,yEu3+ were tuned from the greenish‐white region to white light and eventually to reddish‐white region, demonstrating that a tunable white light can be obtained by Li2Sr1−x−ySiO4:xDy3+,yEu3+ phosphors. Li2Sr0.98−xSiO4:0.02Dy3+, xEu3+ can serve as a white‐light‐emitting phosphor for phosphor‐converted light‐emitting diode. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Piyush Jha 《Luminescence》2016,31(7):1302-1305
This paper reports the luminescence behavior of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors under UV‐irradiation. The effect of UV‐irradiation on afterglow (AG), thermoluminescence (TL) and mechanoluminescence (ML) of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is investigated. The space group of Sr0.097Al2O4:Eu0.01,Dy0.02 phosphors is monoclinic P21. The prepared phosphors exhibit a long AG, intense TL and ML. It is found that the AG, ML intensity and TL increase with increasing duration of irradiation time. The ML intensity decreases with successive impact of the load onto the phosphors, whereby the diminished ML intensity can be recovered by UV‐irradiation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
Long persistence phosphor CaAl4O7: Eu2+, Dy3+ were prepared by a combustion method. The phosphors were characterized by means of X‐ray diffraction (XRD), scanning electron microscopy (SEM), decay time measurement techniques and photoluminescence spectra (PL). The CaAl4O7: Eu2+, Dy3+ phosphor showed a broad blue emission, peaking at 445 nm when excited at 341 nm. Such a blue emission can be attributed to the intrinsic 4f → 5d transitions of Eu2+ in the host lattices. The lifetime decay curve of the Dy3+ co‐doped CaAl4O7: Eu2+ phosphor contains a fast decay component and another slow decay one. Surface morphology also has been studied by SEM. The calculated CIE colour chromaticity coordinates was (0.227, 043). We have also discussed a possible long‐persistent mechanism of CaAl4O7:Eu2+, Dy3+ phosphor. All the results indicate that this phosphor has promising potential for practical applications in the field of long‐lasting phosphors for the purposes of sign boards and defence. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
The afterglow properties of long afterglow luminescent materials are greatly affected by their defects, which are distributed on the grain surface. Increasing the exposed surface area is an important method to improve the afterglow performance. In this research, long rod-shaped long afterglow materials Sr2MgSi2O7:Eu2+,Dy3+ were prepared using the hydrothermal-coprecipitation method. When the reaction time reached 96 h, the length of the afterglow materials could grow to 2 mm, and the sintering temperature was just 1150°C. The emission spectra of all obtained samples upon excitation at 397 nm had a maximum of 465 nm, which belonged to the representative transition of Eu2+. The initial brightness was 1.35 cd/m2. The afterglow time could reach 19 h, giving a good afterglow performance. The research on this kind of material has essential significance in the exploration of luminescence mechanisms and their applications.  相似文献   

10.
Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were prepared using the solid‐state reaction method. The crystal structures of the sintered phosphors were of melilite type, which has a tetragonal crystallography. The chemical compositions of the sintered phosphors was confirmed by energy dispersive X‐ray spectroscopy. The different thermoluminescence kinetic parameters [activation energy (E), frequency factor (s) and order of the kinetics (b)] of these phosphors were evaluated and compared using the peak shape method. Under ultraviolet excitation, the emission spectra of both Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors were composed of a broad emission band peaking at 530 nm. When the Ca2MgSi2O7:Eu2+ phosphor is co‐doped with Ce3+ ions, photoluminescence, afterglow and mechanoluminescence intensity was strongly enhanced. Ca2MgSi2O7:Eu2+ showed some afterglow with a short persist time. On incorporation of Ce3+, efficient energy transfer from Ce3+ to Eu2+ was found and the emission intensity of Eu2+ was enhanced. The mechanoluminescence intensities of Ca2MgSi2O7:Ce3+, Ca2MgSi2O7:Eu2+ and Ca2MgSi2O7:Eu2+,Ce3+ phosphors increased proportionally increased with the increase in impact velocity, which suggests that these phosphors can be used as sensors to detect stress in an object.  相似文献   

11.
In this work, we report the preparation, characterization, comparison and luminescence mechanisms of Eu2+‐doped and Eu2+,Dy3+‐co‐doped Ba2MgSi2O7 (BMSO) phosphors. Prepared phosphors were synthesized via a high temperature solid‐state reaction method. All prepared phosphors appeared white. The phase structure, particle size, and elemental analysis were analyzed using X‐ray diffraction (XRD), transmission electron microscopy (TEM) and energy‐dispersive X‐ray (EDX) analysis. The luminescence properties of the phosphors were investigated by thermoluminescence (TL) and photoluminescence (PL). The PL excitation and emission spectra of Ba2MgSi2O7:Eu2+ showed the peak to be around 381 nm and 490 nm respectively. The PL excitation spectrum of Ba2MgSi2O7:Eu2+Dy3+ showed the peak to be around 341 nm and 388 nm, and the emission spectrum had a broad band around 488 nm. These emissions originated from the 4f6 5d1 to 4f7 transition of Eu2+. TL analysis revealed that the maximum TL intensity was found at 5 mol% of Eu2+ doping in Ba2MgSi2O7 phosphors after 15 min of ultraviolet (UV) light exposure. TL intensity was increased when Dy3+ ions were co‐doped in Ba2MgSi2O7:Eu2+ and maximum TL intensity was observed for 2 mol% of Dy3+. TL emission spectra of Ba1.95MgSi2O7:0.05Eu2+ and Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors were found at 500 nm. TL intensity increased with UV exposure time up to 15 min, then decreased for the higher UV radiation dose for both Eu doping and Eu,Dy co‐doping. The trap depths were calculated to be 0.54 eV for Ba1.95MgSi2O7:0.05Eu2+ and 0.54 eV and 0.75 eV for Ba1.93MgSi2O7:0.05Eu2+,0.02Dy3+ phosphors. It was observed that co‐doping with small amounts of Dy3+ enhanced the thermoluminescence properties of Ba2MgSi2O7 phosphor. Copyright © 2016 John Wiley & Sons, Ltd. [Correction added on 5 April 2016, after first online publication: The following parts of the abstract have been edited for consistency. '4f65d1' has been corrected to '4f6 5d1', '4f7' has been corrected to '4f7', 'Ba1.95' has been corrected to 'Ba1.95' and 'Ba1.93' has been corrected to 'Ba1.93' respectively.]  相似文献   

12.
Sr2MgSi2O7:Eu2+,Dy3+ long afterglow materials were prepared by a high‐temperature solid‐state reaction method with different cooling rates. The cooling rate had a slight effect on X‐ray diffraction patterns and photoluminescence performance, but significantly modified the grain boundaries and long afterglow properties of the Sr2MgSi2O7:Eu2+,Dy3+ materials. When the cooling rate was 1°C/min, grains remained intact with clear grain boundaries. As the cooling rate increased from 1°C/min to 5°C/min, some grain boundaries became indistinguishable. The afterglow properties were optimized, presenting best performance at the cooling rate of 3°C/min. The trap state was investigated and illustrated through thermoluminescence curves. The depths of the traps of all the samples were unchanged, whereas densities changed to a large extent, leading to different afterglow properties. The retrapping process is discussed based on the afterglow curves.  相似文献   

13.
Calcium aluminate phosphor co‐doped Eu2+, Dy3+, Nd3+ is prepared by the combustion method. We study systemically the influences of the quantity of mixed Dy3+ ion, the quantity of flux H3BO3, the differences in dispersing methods between magnetic stirring and ultrasonic dispersing and the combustion temperature on the long‐persistence phosphor. The analytical results indicate that Dy3+ ion improves the properties of the phosphors CaAl2O4:Eu2+, Nd3+. The appropriate quantity of flux H3BO3 to reduce the forming temperature of the sample was determined. The monoclinic single phase of CaAl2O4 formed at 500°C and remained steady. The calcium aluminate co‐doped Eu2+, Dy3+, Nd3+ was synthesized by dispersal of the raw material using the ultrasonic method, and it had better optical properties. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

14.
Ca2Al2O5:Eu3+, Ca2Al2O5:Dy3+ and Ca2Al2O5:Tb3+ phosphors were synthesized using a combustion synthesis method. The prepared phosphors were characterized by X‐ray powder diffraction for phase purity, by scanning electron microscopy for morphology, and by photoluminescence for emission and excitation measurements. The Ca2Al2O5:Eu3+ phosphors could be efficiently excited at 396 nm and showed red emission at 594 nm and 616 nm due to 5D0 → 7F1 and 5D0 → 7F2 transitions. Dy3+‐doped phosphors showed blue emission at 482 nm and yellow emission at 573 nm. Ca2Al2O5:Tb3+ phosphors showed emission at 545 nm when excited at 352 nm. Concentration quenching occurred in both Eu3+ and Dy3+phosphors at 0.5 mol%. Photoluminescence results suggested that the aluminate‐based phosphor could be a potential candidate for application in environmentally friendly based lighting technologies.  相似文献   

15.
A series of ZnB2O4 phosphors doped with different concentrations of Eu and Dy (0.05 0.1, 0.2, 0.5, 1.0 mol%) and co-doped with Ce (1, 2, 5, 7, 10 mol%) respectively was prepared via the solid-state reaction technique and the thermoluminescence (TL) behaviour of gamma ray-irradiated samples was studied. The synthesized samples were irradiated with γ-rays for the dose range 0.03–1.20 kGy. The TL intensity variations with dose, dopant concentration, and the effect of co-doping were studied. The TL response curves for ZnB2O4:Eu3+ and ZnB2O4:Dy3+, ZnB2O4:Eu3,Ce3+ and ZnB2O4:Dy3+,Ce3+ phosphor were observed. It was revealed that ZnB2O4:Eu3+ showed a linear TL behaviour for the dose 0.03–1.20 kGy and ZnB2O4:Dy3+ showed linearity for the gamma dose range 0.03–0.10 kGy. Furthermore, fading for all the samples was observed to be less than 10% for a storage period of 30 days. In addition to this, the trapping parameters, especially activation energies were evaluated using the Ilich method and the initial rise method. The activation energy values obtained from both methods were in complete agreement with each other.  相似文献   

16.
Sr3(PO4)2:Dy3+,Li+ phosphors were prepared using a simple high temperature solid method for luminescence enhancement. The structures of the as‐prepared samples agreed well with the standard phase of Sr3(PO4)2, even when Dy3+ and Li+ were introduced. Under ultraviolet excitation at 350 nm, the Sr3(PO4)2:Dy3+ sample exhibited two emission peaks at 483 nm and 580 nm, which were due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. A white light was fabricated using these two emissions from the Sr3(PO4)2:Dy3+ phosphors. The luminescence properties of Sr3(PO4)2:Dy3+,Li+ phosphors, including emission intensity and decay time, were improved remarkably with the addition of Li+ as the charge compensator, which would promote their application in near‐ultraviolet excited white‐light‐emitting diodes.  相似文献   

17.
Energy storage phosphors with millisecond period afterglow that compensate for the diming time of alternating current light‐emitting diodes (AC‐LEDs) have promising application. To obtain a persistent luminescence (PersL) white colour in AC‐LEDs, we focussed on a red afterglow with short period phosphorescence. Ca4Ti3O10 forms a type of perovskite‐related Ruddlesden–Popper phase structure. Doping Pr3+ ions into Ca4Ti3O10, an ideal red PersL was obtained. X‐ray diffraction and element analysis demonstrated that our target samples were crystallized well. Steady‐state and afterglow luminescence properties were investigated in detail. Notably, the PersL intensity was dependent on various excitation wavelengths. By measuring three‐dimensional thermoluminescence spectra, we found that the trap depths showed a continuous distribution and that the shallowest trap contributed to the millisecond afterglow. Two PersL mechanism models were used to elucidate the electron charging and de‐trapping processes under UV or blue light activation.  相似文献   

18.
Europium (Eu)3+‐substituted La2Li0.5Al0.5O4 red emitting phosphors were prepared by a conventional high‐temperature solid‐state reaction method. Powder X‐ray diffraction, diffuse reflectance spectra and spectrofluorometry were used as vital characterizing tools for the phosphors. The Eu concentration dependence luminescence properties and Judd–Ofelt intensity parameters were investigated and calculated, respectively. All compositions showed an orange red emission (due to the magnetic and electric dipole transitions of the Eu3+ ion) with the appropriate Commission Internationale de l'Eclairage (CIE) colour gamut under near ultraviolet or blue ray light excitation. The calculated critical distance showed that the energy transfer occured between Eu to Eu via an exchange mechanism. The Eu1.4La0.6Li0.5Al0.5O4 composition showed the highest red emission intensity with CIE colour saturation compared with that of the commercial Eu‐activated yttrium oxysulfide red phosphor.  相似文献   

19.
Sr4Al2O7:Eu3+ and Sr4Al2O7:Dy3+ phosphors with alkali metal substitution were prepared using a sol–gel method. The effects of a charge compensator R on the structure and luminescence of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors were investigated in detail. Upon heating to 1400°C, the structure of the prepared samples was that of the standard phase of Sr4Al2O7. Under ultraviolet excitation, all Sr4Al2O7:Eu3+,R+ samples exhibited several narrow emission peaks ranging from 550 to 700 nm due to the 4f → 4f transition of Eu3+ ions. All Sr4Al2O7:Dy3+,R+ phosphors showed two emission peaks at 492 and 582 nm, due to the 4F9/2 → 6H15/2 and 4F9/2 → 6H13/2 transitions of Dy3+ ions, respectively. The luminescence intensity of Sr4Al2O7:Re3+,R+ (Re = Eu and Dy; R = Li, Na and K) phosphors improved markedly upon the addition of charge compensators, promoting their application in white light‐emitting diodes with a near‐ultraviolet chip.  相似文献   

20.
A series of Mg2Y2Al2Si2O12:Dy3+,Eu3+ was prepared using a solid-state method, and the phosphor emitted white light by tuning the ratio of Dy3+/Eu3+. The effects of La3+/Lu3+ on the structure and luminescence properties of Mg2Y2Al2Si2O12:Dy3+,Eu3+ were explored. Under the influence of bond length and twist, the luminescence intensity of the materials increased first and then decreased under excitation with ultraviolet light. The lattice distortion of the trivalent cation La3+-substituted Mg2Y2Al2Si2O12:Dy3+ and Eu3+ phosphors was reduced, the symmetry of polyhedron occupied by the luminescence centre improved, and the thermal stability of the luminescence centre improved to a certain extent. White light emitting diodes (LEDs) were fabricated by combining a 370 nm LED chip and the Mg2Y2Al2Si2O12:Dy3+,Eu3+,La3+ (Mg2Y2Al2Si2O12:Dy3+,Eu3+,Lu3+) phosphor. The results showed that Mg2Y2Al2Si2O12:Dy3+,Eu3+,La3+/Lu3+ may have potential application in the area of white LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号