首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
Cell surface display of heavy metal-binding proteins has been used to enhance the adsorption capacity of heavy metals and the engineered microbial cells can be potentially used for the bioremediation of heavy metals. In this study, the proteins PbrR, PbrR691, and PbrD from the Cupriavidus metallidurans strain CH34 were displayed on the extracellular membrane of Escherichia coli BL21 cells, with the N-domain of ice-nucleation protein as the anchor protein to achieve specific adsorption of lead ions (Pb2+) and bioremediation of lead in the soil. The localization of fusion proteins was confirmed by western blot analysis. We investigated the effects of fusion pattern, expression level, heavy metal concentration, and the presence of other heavy metal ions on the adsorption of Pb2+ by these engineered bacteria, and the optimal linker peptide (flexible linker) and inducer concentration (0.5 mM) were obtained. The engineered bacteria showed specific selectivity and strong adsorption capacity for Pb2+. The maximum Pb2+ adsorption capacity of strains displaying the three proteins (PbrR, PbrR691, and PbrD) were 942.1-, 754.3-, and 864.8-μmol/g cell dry weight, respectively, which was the highest reported to date. The engineered E. coli bacteria were also applied to Pb2+-contaminated soil and the detoxification effects were observed via the seed germination test and the growth of Nicotiana benthamiana in comparison with the control BL21, which provides the proof-of-concept for in situ remediations of Pb2+-contaminated water or soil.  相似文献   

2.
In the present study, the effect of copper (Cu2+) and lead (Pb2+) ions on the growth and lipid composition of various parts of the fern, Matteuccia sthruthiopteris, was examined. Plants were incubated in the presence or absence of 1, 10, 100 μM of Cu(NO3)2 or Pb(NO3)2. Cu2+ and Pb2+ ions at concentrations of 1 and 10 μM caused an increased growth of the roots and leaves. A higher concentration of Pb2+ did not show any effect on growth, whereas that of Cu2+ slowed down the growth of the whole plants. The roots accumulated more than 700 μg of Cu2+ and 400 μg of Pb2+ per 1 g dry weight when the plants were incubated with the higher concentrations of metals, whereas in the leaves the concentration of Cu2+ was much lower and did not exceed 12 μg/g dry weight. No accumulation of Pb2+ ions by leaves was detected. The lipid composition of photosynthetic leave tissues was shown to be affected by the presence of metal ions in the root medium at either concentration studied. Various changes in lipid classes were noted as responsive reactions of M. sthruthiopteris to the heavy metal ions in nutrient medium. Cu2+ ions decreased the content of total lipids, total phospholipids, and individual phosphatidylcholines and phosphatidylethanolamines, whereas Pb2+ ions caused a decrease in the content of total lipids and glycolipids. Changes in the lipid composition were more pronounced in the mature leaves than in the scrolls of the studied fern.  相似文献   

3.
The effect of Pb2+ ions on the Na+,K+-ATPase was investigated in detail by means of steady-state fluorescence spectroscopy. Experiments were performed by using the electrochromic styryl dye RH421. It is shown that Pb2+ ions can bind reversibly to the protein and do not affect the Na+ and K+ binding affinities in the E1 and P-E2 conformations of the enzyme. The pH titrations indicate that lead(II) favors binding of one H+ to the P-E2 conformation in the absence of K+. A model scheme is proposed that accounts for the experimental results obtained for backdoor phosphorylation of the enzyme in the presence of Pb2+ ions. Taken together, our results clearly indicate that Pb2+ bound to the enzyme stabilizes an E2-type conformation. In particular, under conditions that promote enzyme phosphorylation, Pb2+ ions are able to confine the Na+,K+-ATPase into a phosphorylated E2 state.  相似文献   

4.
The resonance scattering spectral probe for Pb2+ was obtained using aptamer-modified AuPd Nanoalloy. In the pH 7.0 Na2HPO4–NaH2PO4 buffer solution, the aptamer interacted with AuPd nanoalloy particles to form stable aptamer-AuPd nanoalloy probe for Pb2+ that is stable in high concentration of salt. The probe combined with Pb2+ ions to form a G-quadruplex and to release AuPd nanoalloy particles that aggregate to form big particles which led the resonance scattering (RS) intensity enhancing. The reaction solution was filtered by 0.15 μm membrane to obtain the filtration containing aptamer-AuPd nanoalloy probe that has strong catalytic effect on the electrodeless nickel particle plating reaction between Ni(II) and PO23− that exhibited a strong RS peak at 508 nm. The RS intensity at 508 nm decreased when the Pb2+ concentration increased. The decreased intensity (ΔI 508nm) is linear to the concentration of 0.08–42 nM Pb2+, with regress equation of DI508nm = 16.3 c + 1.5 \Delta {I_{{5}0{\rm{8nm}}}} = {16}.{3}\,c + {1}.{5} , correlation coefficient of 0.9965, and detection limit of 0.04 nM Pb2+. The RS assay was applied to the analysis of Pb2+ in wastewater, with satisfactory results.  相似文献   

5.
This study has shown that the effect of Pb2+ ions (10–150 μM) on Scots pine seedlings is manifested by a biomass decrease and a delay in development of the root system, including shortening of the main root, reduction of the lateral root formation zone, and reduction of the number of lateral roots. The ability of the root system to deposit Pb2+ ions and to perform a barrier function, preventing Pb2+ uptake into assimilating organs, has been revealed. This ability is blocked if the Pb2+ concentration in the nutrient medium exceeds 80 μM. In the case of elevated Pb2+ concentrations, the content of photosynthetic pigments in pine needles decreases, whereas that in cotyledons increases. Analysis of the proline content and the functioning of the antioxidant enzyme system (superoxide dismutase, catalase, ascorbate peroxidase, and peroxidase) shows that the presence of Pb2+ ions in a wide concentration range does not induce intensive oxidative stress in pine seedlings.  相似文献   

6.
Summary Intracellular Pb2+ ions can replace Ca2+ ions in stimulating the Ca-dependent K permeability of human red blood cells. In metabolically depleted resealed ghosts, the threshold for stimulation of86Rb efflux by internal Pb2+ is around 5×10–10 m, and stimulation is half-maximal at about 2×10–9 m, and maximal at 10–8 m Pb2+. There is no effect on22Na efflux in this concentration range.86Rb efflux is antagonized by internal Mg2+ ions, and by the channel-blocking drugs quinidine and diS-C2(5), as observed for the Ca-dependent K permeability in red cells. In ghosts containing EDTA, which prevents any internal effects of Pb2+ ions, external Pb2+ increases both22Na and86Rb permeability when its concentration exceeds 6×10–7 m. This effect is seemingly unrelated to the Ca-dependent K permeability. This work makes extensive use of Pb2+ ion buffers, and gives information about their preparation and properties.  相似文献   

7.
A label-free fluorescent DNA sensor for the detection of lead ions (Pb2+) based on lead(II)-stabilized G-quadruplex formation is proposed in this article. A guanine (G)-rich oligonucleotide, T30695, was used as a recognition probe, and a DNA intercalator, SYBR Green I (SG), was used as a signal reporter. In the absence of Pb2+, the SG intercalated with the single-stranded random-coil T30695 and emitted strong fluorescence. While in the presence of Pb2+, the random-coil T30695 would fold into a G-quadruplex structure and the SG could barely show weak fluorescence, and the fluorescence intensity was inversely proportional to the involving amount of Pb2+. Based on this, a selective lead ion sensor with a limit of detection of 3.79 ppb (parts per billion) and a detection range from 0 to 600 ppb was constructed. Because detection for real samples was also demonstrated to be reliable, this simple, low-cost, sensitive, and selective sensor holds good potential for Pb2+ detection in real environmental samples.  相似文献   

8.
Pb2+ accumulation in Saccharomyces cerevisiae changed by Hg2+ and cell conditions. The accumulated Pb2+ amounts decreased from 0.22 to 0.02?mmol Pb2+/g cell dry weight by the existence of Hg2+. But the total metals accumulation (0.42?mmol metal ions/g cell dry weight) was not changed. The order of accumulated Pb2+ amounts (mg Pb2+/g cell dry weight) according to the cell conditions at an equilibrium state was shown as the original cell (260)?>?5?times autoclaved cell for 15?min (150)?>?grinded cell after drying (100)?>?autoclaved cell for 5?min (30).  相似文献   

9.
We have studied the condensation reaction of ImpG2 on a poly(C) template, in the presence of various metal ions. With Mg2+ as co-catalyst we confirmed that Pb2+ and Zn2+ are effective catalysts. A catalytic effect was also observed for Bi3+, Sb3+ and Mn2+. Bi3+ and Sn2+, like Pb2+, favored the formation of 2′-5′ linkages. With Mn2+ a rather complex mixture of oligomers is formed, some of which contain pyrophosphate linkages. None of the metal ions investigated behaved like Zn2+ in favoring the formation of the naturally occurring 3′-5′ linkages.  相似文献   

10.
A novel and sensitive biosensor based on aptamer and pyrene-labeled fluorescent probes for the determination of K+ was developed. The aptamer was used as a molecular recognition element and a partially complementary oligonucleotide with the aptamer was labeled by pyrene moieties at both ends to transduce the binding event of K+ with aptamer. In the presence of K+, the complementary oligonucleotides were displaced from aptamers, which was accompanied by excimer fluorescence of pyrenes because the self-hairpin structure of the complementary oligonucleotide brought pyrene moieties into close proximity. However, it gave only monomer emission in the absence of K+. Under optimum conditions, the relative fluorescence intensity of pyrene was proportional to the concentration of K+ in the range of 6.0 × 10−4 to 2.0 × 10−2 M. A detection limit of 4.0 × 10−4 M was achieved. Moreover, this method was able to detect K+ with high selectivity in the presence of Na+, , Mg2+, and Ca2+ ions of biological fluids. In brief, the assay may have great potential applications, especially in a biological environment because of its simplicity, sensitivity, and specificity.  相似文献   

11.
A batch sorption technique was used to study the biosorption of Pb2+, Cd2+ and Zn2+ ions onto the vastly abundant water hyacinth weed, Eichhornia crassipes biomass in binary and ternary systems at a temperature of 30 °C and pH 4.84. Mutual interference effects were probed using equilibrium adsorption capacity ratios, , where the prime indicates the presence of one or two other metal ions. The combined action of the metals was found to be antagonistic, and the metal sorption followed the order Pb2+  Cd2+  Zn2+. The behaviour of competitive biosorption for Pb–Cd and Pb–Zn combinations were successfully described by the Langmuir Competitive Model (CLM), whilst the model showed poor fitting to the Cd–Zn data. In conclusion, Pb2+ ions could still be effectively removed from aqueous solution in the presence of both Cd2+ and Zn2+ ions, but removal of the Cd2+ and Zn2+ ions would be suppressed in the presence of Pb2+.  相似文献   

12.
The toxic effect of Pb2+ has been studied in eukaryotic cells by using Tetrahymena as a target. The maximum power (P m) and the growth rate constant (k) were determined, which showed that values of P m and k were linked to the concentration (C) of Pb2+. The addition of Pb2+ caused a decrease of the maximum heat production and growth rate constant, indicating that Tetrahymena growth was inhibited in the presence of Pb2+, and Pb2+ took part in the metabolism of cells. From micrographs, morphological changes of Tetrahymena were observed with addition of Pb2+, indicating that the toxic effect of Pb2+ derived from destroying the membrane of surface of Tetrahymena. According to the thermogenic curves and photos of Tetrahymena under different conditions, it is clear that metabolic mechanism of Halobacterium halobium R1 growth has been changed with the addition of Pb2+.  相似文献   

13.
14.
Two strains of Chlorella vulgaris Beijerinck isolated from two different sites in Laguna de Bay, Philippines, were studied for their resistance and ability to remove four metal ions, i.e., Cu2+, Cr6+, Pb2+, and Cd2+ added separately in BG-11 growth medium. The growth of the two strains was severely inhibited at 2 mg.L−1 of Cu2+, 5 mg.L−1 of Cr6+, 8 mg.L−1 of Pb2+, and 10 mg.L−1 of Cd2+. However, the two strains exhibited different EC50 values for the same metal ion. The WB strain had a significantly higher resistance (p < 0.01) for Cd2+ and Cr6+ compared with the SB strain, while the SB strain had significantly higher resistance (p < 0.01) for Cu2+ compared with the WB strain. On the other hand, the two strains behaved differently in their capacity to remove the metal ions in BG-11 medium containing 1.0 mg.L−1 of the three metal ions, except for Cu2+, which was added at 0.1 mg.L−1. The WB strain showed the highest removal of Cd2+ at 70.3% of total, followed by Pb2+ at 32%, while the SB strain exhibited the highest removal of Pb2+ at 48.7% followed by Cd2+ at 40.7% of the total. Both strains showed the least removal of Cr6+ at 28% and 20.8% of the total for the WB and SB strains respectively. The percentage removal for Cu2+ was 50.7% and 60.8% for the WB and SB strains respectively. After 12 days of incubation, both strains showed that a greater percentage of the metal ions removed were accumulated intracellularly than adsorbed at a ratio of at least 2:1. Both strains manifested the same cytological deformities, like a loss of pyrenoids at 10 mg.L−1 in all four metal ions. Discoloration and disintegration of chloroplasts were observed at 1.0 mg.L−1 in Cu2+ and 5 mg.L−1 in Cr6+. The nonrelease of autospores from the mother cells was observed at 10 mg.L−1 in Cu2+ and Cr6+. Presented at the 6th Meeting of the Asian Pacific Society of Applied Phycology, Manila, Philippines.  相似文献   

15.
《Insect Biochemistry》1990,20(1):13-27
Glossina fuscipes fuscipes haemolymph contained agglutinins (lectins), titre range 2−11–2−18, against red blood cells (RBC) of human ABO(H) blood group with highest values detected against “AB” RBC. The use of protease- and neuraminidase-treated RBC in many cases increased titres whilst treatment with galactosidases or glucosidases caused decreased levels. Haemolymph adsorption with “O” RBC reduced titres against “O” and “AB” but to a lesser extent anti-A or -B activity indicating lectin heterogeneity. The carbohydrate-binding specificities for human RBC were directed towards N-acetylated and deoxy derivatives of glucose and/or galactose. In addition the haemagglutinins were reactive against some oligosaccharides, ribose, deoxymannose, deoxygalactose, xylose and xylan with certain of the RBC types. The agglutinins were glycoprotein in nature, thermo-labile, affected by storage, freezing and thawing treatments and exposure to a high dosage of γ-radiation, possessed limited disulphide and hydrogen bonds, and depended upon slightly acid to neutral conditions for optimum agglutination. The haemag-glutinins did not require the presence of divalent cations (Ca2+, Mn2+ or Cu2+ ions) for activity although an elevated concentration of Mg2+ ions resulted in increased endpoint titres. However heavy metal ions (Pb2+ and Fe2+) in the buffer lowered agglutinin levels. The intact lectin molecule had an isoelectric point of 6.2, a relative molecular weight of 710 kDa and comprised approx. 70 kDa subunits.  相似文献   

16.
A bench study was carried out to characterize the kinetics of two plant growth promoting rhizobacteria (PGPR) Azotobacter chroococcum and Bacillus megaterium to adsorb heavy metals from solution. Adsorption of Pb2+ and Cd2+ by bacterial cells was processed quickly with an equilibration achieved within 5 min. The adsorptions were fitted well with Freundlich and Langmuir isotherm models. The comparison of isotherm parameters indicated that A. chroococcum had a stronger capacity to bind metal ions than B. megaterium, with an average increase of 59.8% for Pb2+ and 75.6% for Cd2+, respectively. Both bacteria had a stronger affinity to Pb2+ than Cd2+ since Pb2+ was more easily bound with the phosphoryl groups on the cell surface than Cd2+. This demonstrated that the presence of bacteria in the rhizosphere may result in the reduction of mobile ions in soil solution.  相似文献   

17.
Non-living (dried) biomass of five common filamentous algae belonging to Chlorophyta and Cyanophyta (Cyanobacteria) were screened for their metal ion sorption and removal efficiency in a batch system. A considerably higher magnitude of sorption of Pb2+ and Cu2+ by all the tested algae suggests the prevalence of Pb2+- and Cu2+-binding ligands in them. The Langmuir isotherm could more appropriately describe metal sorption by the test algae than the Freundlich isotherm. A 1 g l−1 biomass concentration of Pithophora odeogonia and Spirogyra neglecta, respectively removed 97 and 89% Pb2+in 30 min from a solution containing 5 mg l−1 initial concentration of Pb2+. Metal ion removal by the test algae decreased with increase in metal concentration in the solution. S. neglecta could remove >70% Pb2+ even from a solution containing 75 mg Pb2+ l−1. S. neglecta and P. oedogonia could remove more than 75% of Pb2+ and Cu2+ from a multi-metal solution, and therefore have tremendous potential for removing Pb2+and Cu2+ from wastewaters containing several metal ions simultaneously. Other test algae, namely, Hydrodictyon reticulatum, Cladophora calliceima and Aulosira fertilissima were relatively less efficient in removing metal ions from solution.  相似文献   

18.
Lead biosorption by different morphologies of fungus Mucor indicus   总被引:1,自引:0,他引:1  
Biosorption characteristics of Pb+2 ions from aqueous solution were investigated using fungus Mucor indicus biomass treated with NaOH. Biosorption was measured as a function of biomass morphology, pH, biomass concentration, contact time, and metal concentration. The morphology of M. indicus biomass was manipulated towards filamentous or yeast-like forms. The highest and lowest biosorption capacities were observed for purely filamentous and yeast-like forms, respectively. Models of Langmuir, Freundlich, Temkin, and Scachard were applied to describe adsorption isotherm and fitted appropriately. Biosorption kinetics was successfully described using Ho’s pseudo-second-order model. Maximum and minimum values of biosorption capacity of Pb2+ were 22.1 and 12.1 mg g−1 for purely filamentous and yeast-like morphologies, respectively. Increasing pH resulted in higher biosorption of Pb+2 ions up to pH 5.5. Biosorption capacity of individual Pb+2 ions was reduced in the presence of other metal ions in bi- or multi-metal ion experiments. Metal ions adsorption by the biomass could be eluted effectively with HNO3.  相似文献   

19.
20.
The cyanobacterium Nostoc sphaeroides Kützing is expected to be effective in toxic metal adsorption as it produces abundant exopolysaccharides with functional groups. Therefore, the adsorption properties of Cu2+, Cd2+, Cr3+, Pb2+, Ni2+, and Mn2+ on fresh macrocolonies and algal powder of N. sphaeroides were compared at pH 5 and 25 °C. The adsorption capacity of fresh biomass for Pb2+ and of algal powder for Pb2+ and Cr3+ were highest in single metal solutions. Compared to the fresh biomass, the metal adsorption capacities of algal powder were similar for Ni2+, Cd2+, and Pb2+ and slightly greater for Cr3+, but they were markedly smaller for Mn2+ and Cu2+. Coexisting ions (in tap water or in multiple solutions) significantly decreased the metal adsorption capacity, except for Cr3+ in tap water. The Pb2+ and Cr3+ adsorption dynamic process fitted the pseudo-second-order model well, showing fast adsorption at the first stage in 10 and 20 min, respectively. Higher pH in acidic ranges favored the adsorption greatly. The Langmuir isotherm model was suitable for explaining the adsorption, and the maximum adsorption capacities were 116.28 and 22.37 mg g?1 for Pb2+ and Cr3+, respectively. The adsorption process was endothermic, confirmed by the significantly higher adsorption capability at higher temperature. Hydroxyl, amino, and carboxyl groups were the main functional groups based on Fourier transform infrared spectroscopy analysis, and they bind to metal ions via ion exchange. The results suggest that fresh macrocolonies of N. sphaeroides can be used as an effective biosorbent for metal ion removal, especially for Pb2+ and Cr3+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号