首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this report, we studied the formation of breaks in the frog dermis during its remodelling at climactic metamorphosis. This remodelling consisted of detachment of the basement lamella collagen from the epidermis. The detached part, called derived collagen, was progressively fractured by breaks. We focused our attention on dermal cell localization during break formation. Firstly, at early climax, dermal cells were localized inside fractures opened in the derived collagen. Secondly, at the later climax, the fractures became breaks, making room for the dermal cells themselves. Thirdly, in derived collagen of the froglet, the well-opened breaks contained elongated dermal cells. At climax, DAB immunoperoxidase staining of fibronectin revealed a granular pattern at the surface of epidermal and dermal cells. Unexpected staining revealed that the dermal breaks contained fibronectin in the form of vertical lines. The foregoing results suggest that the dermal breaks are migratory pathways for dermal cells in derived collagen remodelled at climax.  相似文献   

2.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机制提供了基础资料。  相似文献   

3.
During larval development of Salamandra salamandra salamandra chromatophores organize to form the definitive pigment pattern constituted by a black background with yellow patches that are characterized by epidermal xanthophores and dermal iridophores. Simultaneously the dermis undergoes remodeling from the larval stage to that typical of the adult. In the present study we ultrastucturally and immunocytochemically examined skin fragments of S. s. salamandra larvae and juveniles in order to investigate the modalities of xanthophore migration and differentiation in the context of dermal remodeling from the larval to adult stage. Semithin and thin sections showed that the dermis in newly born larvae consists of a compact connective tissue (basement lamella), to which fibroblasts and xanthophores adhere, and of a loose deep collagen layer. As larval development proceeds, fibroblasts and xanthophores invade the basement lamella, skin glands develop and the adult dermis forms. At metamorphosis, xanthophores reach the epidermis crossing through the basal lamina. We examined immunocytochemically the expression of signal molecules, such as fibronectin, vitronectin, beta1-integrin, chondroitin sulfate, E-cadherin, N-cadherin and plasminogen activator, which are known to be involved in regulating morphogenetic events. Their role in dermal remodeling and in pigment pattern formation is discussed.  相似文献   

4.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

5.
Iridophoroma and melanophoroma were diagnosed in an adult male pine snake. Light microscopic examination of irregularly thickened white and black portions of abnormal scales demonstrated two distinctive populations of pigment-containing cells. Pigment cells within abnormal-appearing white scales had needle-shaped granules that were dark amber in color while black portions were composed of pigment cells typical of melanophores, with dark black, round granules. Both populations of cells showed junctional activity, and clusters of both neoplastic pigment cell types were found in adjoining areas of the epidermis. By electron microscopy, the pigment cell with amber-colored granules contained reflecting platelet profiles typical of iridophores while pigment cells with dark round granules contained melanosomes. At a junctional area between abnormal white and black scales, mosaic chromatophores containing reflecting platelet profiles and melanosomes were observed. At 1 1/2 years following initial diagnosis, the snake died and neoplastic iridophores were found at multiple visceral sites; there was no evidence of metastases of melanophores to any organ. The two pigment cell tumors are believed to have developed from either stem cells destined to become iridophores and melanophores or from prexisting iridophores and melanophores in the dermis.  相似文献   

6.
Microscopic observation of the skin of Plestiodon lizards, which have body stripes and blue tail coloration, identified epidermal melanophores and three types of dermal chromatophores: xanthophores, iridophores, and melanophores. There was a vertical combination of these pigment cells, with xanthophores in the uppermost layer, iridophores in the intermediate layer, and melanophores in the basal layer, which varied according to the skin coloration. Skin with yellowish-white or brown coloration had an identical vertical order of xanthophores, iridophores, and melanophores, but yellowish-white skin had a thicker layer of iridophores and a thinner layer of melanophores than did brown skin. The thickness of the iridophore layer was proportional to the number of reflecting platelets within each iridophore. Skin showing green coloration also had three layers of dermal chromatophores, but the vertical order of xanthophores and iridophores was frequently reversed. Skin showing blue color had iridophores above the melanophores. In addition, the thickness of reflecting platelets in the blue tail was less than in yellowish-white or brown areas of the body. Skin with black coloration had only melanophores.  相似文献   

7.
In the periodic albino mutant (a(p)/a(p)) of Xenopus laevis, peculiar leucophore-like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild-type (+/+). These leucophore-like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of alpha-melanocyte stimulating hormone (alphaMSH), and (4) containing an abundance of bizarre-shaped, reflecting platelet-like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore-like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to alphaMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore-like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore-like cells are essentially similar to melanophores of the wild-type with respect to their localization in the skin and manner of response to alphaMSH, (3) the leucophore-like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet-like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore-like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

8.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

9.
In the integument of the red-spotted newt there occasionally appear patches of skin which are at the same time melanistic and iridescent. Such hyperpigmented patches have been found on the back, on the tail and on the dorsal surface of both fore and hind limbs. Cytological examination of several such areas revealed the presence of large numbers of chromatophores distributed throughout the dermis. The majority of the chromatophores consisted of atypically large and dendritic melanophores, which contained typical pigment granules. The iridescence resulted from a high incidence of iridophores. Xanthophores also were found in considerable abundance. This extensive and apparently random intermingling of melanophores, iridophores and xanthophores in limited areas constitutes a striking exception to the usual distributional patterns of pigment cells in this animal.  相似文献   

10.
The fat body of Lithobates catesbeianus (formerly Rana catesbeiana) tadpoles was studied during metamorphosis and after food deprivation in order to detect changes in its weight, adipocyte size, histology, and melatonin content. Bullfrog tadpoles have large fat bodies throughout their long larval life. Fat bodies increase in absolute weight, and weight relative to body mass, during late stages of prometamorphosis, peaking just before climax, and then decreasing, especially during the latter stages of transformation into the froglet. The climax decrease is accompanied by a reduction in size of adipocytes and a change in histology of the fat body such that interstitial tissue becomes more prominent. Food deprivation for a month during early prometamorphosis significantly decreased fat body weight and adipocyte size but did not affect the rate of development. However, food restriction just before climax retarded development, suggesting that the increased nutrient storage in the fat body before climax is necessary for metamorphic progress. Melatonin, which might be involved in the regulation of seasonal changes in fat stores, stayed approximately at the same level during most of larval life, but increased sharply in the fat body during the late stages of climax. The findings show that the rate of development of these tadpoles is not affected by starvation during larval life as long as they can utilize fat body stores for nourishment. They also suggest that the build up of fat body stores just before climax is necessary for progress during the climax period when feeding stops.  相似文献   

11.
In the periodic albino mutant (ap/ap) of Xenopus laevis, peculiar leucophore‐like cells appear in the skins of tadpoles and froglets, whereas no such cells are observed in the wild‐type (+/+). These leucophore‐like cells are unusual in (1) appearing white, but not iridescent, under incident light, (2) emitting green fluorescence under blue light, (3) exhibiting pigment dispersion in the presence of α‐melanocyte stimulating hormone (αMSH), and (4) containing an abundance of bizarre‐shaped, reflecting platelet‐like organelles. In this study, the developmental and ultrastructural characteristics of these leucophore‐like cells were compared with melanophores, iridophores and xanthophores, utilizing fluorescence stereomicroscopy, and light and electron microscopy. Staining with methylene blue, exposure to αMSH, and culture of neural crest cells were also performed to clarify the pigment cell type. The results obtained clearly indicate that: (1) the leucophore‐like cells in the mutant are different from melanophores, iridophores and xanthophores, (2) the leucophore‐like cells are essentially similar to melanophores of the wild‐type with respect to their localization in the skin and manner of response to αMSH, (3) the leucophore‐like cells contain many premelanosomes that are observed in developing melanophores, and (4) mosaic pigment cells containing both melanosomes specific to mutant melanophores and peculiar reflecting platelet‐like organelles are observed in the mutant tadpoles. These findings strongly suggest that the leucophore‐like cells in the periodic albino mutant are derived from the melanophore lineage, which provides some insight into the origin of brightly colored pigment cells in lower vertebrates.  相似文献   

12.
The number of epidermal melanophores of the skin decreases dramatically during metamorphosis in the frog, Rana japonica. This decrease may represent an adaptation for rapid color change, a property which the animal acquires after metamorphosis. We concluded that the decrease was due to the migration of epidermal melanophores to the dermis. Epidermal melanophores and epidermal cells are tightly associated with each other in the young tadpole. The association becomes looser at the metamorphic stage and, occasionally, small breaks in the basement membrane are seen. These breaks may facilitate the migration. The migration was observed exclusively at the metamorphic stage, in spite of careful observation of other stages under the electron microscope. The migration of epidermal melanophores was induced by treatment with thyroxine of cultured skin from tadpoles at stage 15, and this hormone may act directly on epidermal melanophores. Until now, the increase in the number of dermal melanophores during metamorphosis has been explained by the differentiation of dermal melanophores from melanoblasts and by their mitotic division. Our results show that the migration of epidermal melanophores to the dermis may be a factor which accounts for the increase in the number of dermal melanophores.  相似文献   

13.
Unusual light-reflecting pigment cells, “white pigment cells”, specifically appear in the periodic albino mutant (a p /a p ) of Xenopus laevis and localize in the same place where melanophores normally differentiate in the wild-type. The mechanism responsible for the development of unusual pigment cells is unclear. In this study, white pigment cells in the periodic albino were compared with melanophores in the wild-type, using a cell culture system and a tail-regenerating system. Observations of both intact and cultured cells demonstrate that white pigment cells are unique in (1) showing characteristics of melanophore precursors at various stages of development, (2) accumulating reflecting platelets characteristic of iridophores, and (3) exhibiting pigment dispersion in response to α-melanocyte stimulating hormone (α-MSH) in the same way that melanophores do. When a tadpole tail is amputated, a functionally competent new tail is regenerated. White pigment cells appear in the mutant regenerating tail, whereas melanophores differentiate in the wild-type regenerating tail. White pigment cells in the mutant regenerating tail are essentially similar to melanophores in the wild-type regenerating tail with respect to their localization, number, and response to α-MSH. In addition to white pigment cells, iridophores which are never present in the intact tadpole tail appear specifically in the somites near the amputation level in the mutant regenerating tail. Iridophores are distinct from white pigment cells in size, shape, blue light-induced fluorescence, and response to α-MSH. These findings strongly suggest that white pigment cells in the mutant arise from melanophore precursors and accumulate reflecting platelets characteristic of iridophores.  相似文献   

14.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

15.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

16.
Pigment cells in zebrafish ? melanophores, iridophores, and xanthophores ? originate from neural crest‐derived stem cells associated with the dorsal root ganglia of the peripheral nervous system. Clonal analysis indicates that these progenitors remain multipotent and plastic beyond embryogenesis well into metamorphosis, when the adult color pattern develops. Pigment cells share a lineage with neuronal cells of the peripheral nervous system; progenitors propagate along the spinal nerves. The proliferation of pigment cells is regulated by competitive interactions among cells of the same type. An even spacing involves collective migration and contact inhibition of locomotion of the three cell types distributed in superimposed monolayers in the skin. This mode of coloring the skin is probably common to fish, whereas different patterns emerge by species specific cell interactions among the different pigment cell types. These interactions are mediated by channels involved in direct cell contact between the pigment cells, as well as unknown cues provided by the tissue environment.  相似文献   

17.
Goda M  Fujii R 《Zoological science》1998,15(3):323-333
Measurements of spectral reflectance from the sky-blue portion of skin from the common surgeonfish, Paracanthurus hepatus, showed a relatively steep peak at around 490 nm. We consider that a multilayer thin-film interference phenomenon of the non-ideal type, which occurs in stacks of very thin light-reflecting platelets in iridophores of that region, is primarily responsible for the revelation of that hue. The structural organization of the iridophore closely resembles that of bluish damselfish species, although one difference is the presence of iridophores in a monolayer in the damselfish compared to the double layer of iridophores in the uppermost part of the dermis of surgeonfish. If compared with the vivid cobalt blue tone of the damselfish, the purity of the blue hue of the surgeonfish is rather low. This may be ascribable mainly to the double layer of iridophores in the latter since incident lightrays are complicatedly reflected and scattered in the strata. The dark-blue hue of the characteristic scissors-shaped pattern on the trunk of surgeonfish is mainly due to the dense population of melanophores, because iridophores are only present there in a scattered fashion. Photographic and spectral reflectance studies in vivo, as well as photomicrographic, photo-electric, and spectrometric examinations of the state of chromatophores in skin specimens in vitro, indicate that both melanophores and iridophores are motile. Physiological analyses disclosed that melanophores are under the control of the sympathetic nervous and the endocrine systems, while iridophores are regulated mainly by nerves. The body color of surgeonfish shows circadian changes, and becomes paler at night; this effect may be mediated by the pineal hormone, melatonin, which aggregates pigment in melanophores.  相似文献   

18.
本文观察比较了体色正常及体色异常褐牙鲆 (Paralichthysolivaceus)皮肤中黑色素胞和鳞片的发生及演变过程。结果显示仔鱼鱼体两侧皮肤中最先出现星状幼体型黑色素胞 ,随着变态发育 ,有眼侧皮肤中成体型黑色素胞逐渐替代幼体型黑色素胞 ;而无眼侧皮肤中 ,幼体型黑色素胞逐渐退化崩解 ,成体型黑色素胞不出现 ,无眼侧皮肤逐渐失去色素变为白色。体色异常现象出现于变态后期 ,白化和黑化现象几乎同时发生。白化个体有眼侧皮肤中成体型黑色素胞不能正常替代幼体型黑色素胞 ,逐渐失去色素形成白色斑块。黑化个体无眼侧皮肤中成体型黑色素胞则非正常地出现 ,逐渐替代幼体黑色素胞形成黑斑。约 30日龄变态完成时 ,体色异常现象已经显著 ,已能明显区分体色正常和异常个体。 6 0日龄左右 ,幼鱼皮肤开始长出形态较为原始的圆鳞。体色正常个体有眼侧皮肤上的圆鳞会逐渐发育成栉鳞 ,无眼侧则维持圆鳞。对比分析体色异常个体的鳞片形态 ,发现有眼侧白化部位的鳞片仍为圆鳞 ,而无眼侧黑化部位的鳞片则发育为栉鳞。同时 ,通过对体色正在恢复中的白化牙鲆的鳞片观察表明 ,伴随着白化部位色素的恢复 ,该部位的圆鳞会逐渐转变为栉鳞。由此推断色素的发生与鳞片的发育密切相关  相似文献   

19.
The morphological origin of the dark and pink‐orange areas in the skin of the venomous lizard Heloderma suspectum is not known. Histology and electron microscopy show that dark‐grey areas of the skin derived from dermal chromatophores localized in specific areas present underneath the epidermis. A dynamic chromatophoric unit in the dermis is absent. In the darkest areas of the skin, the accumulation of melanosomes in cells of the beta‐layer contributes to increase the black intensity. In the orange‐pink areas, the superficial dermis contains xantophores storing numerous carotenoid vesicles, rare or absent lamellated pterinosomes and a variable number of melanosomes. These xanto‐melanophores predominate over the remaining chromatophores and form a continuous stratum underneath the epidermis. Beneath this lipoid‐rich stratum, iridophores are infrequent and do not form a continuous layer in the dermis. In the paler areas of the skin, melanophores are sparse in both superficial and deeper part of the dermis where irregularly oriented bundles of collagen fibrils are present. The prevalent xanto‐melanophores localized in the pink‐orange areas of the skin contribute to an effective sunlight protection in desert conditions in addition to the darker regions occupied by melanophores.  相似文献   

20.
Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage, and mate choice and have played important roles in speciation. Here, we review studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post‐embryonic, peripheral nerve‐associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow‐orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号