首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 770 毫秒
1.
As part of a study on the pigmentary system of Salamandra salamandra salamandra (L.), we cultured skin fragments of 7–10-day-old larvae in order to examine the expression of molecules implicated in cellular adhesion and migration and in regulating cell-cell relationships. Keratinocytes, fibroblasts, Leydig cells, xanthophores, and melanophores migrated from the fragments and were observed in the outgrowth. Keratinocytes and fibroblasts organized into an epidermal layer and an underlying “dermal portion.” The chromatophores were always located below the epithelial cells, often with fibroblasts. We examined by immunocytochemistry the expression of fibronectin, β1-integrin, L-CAM, and A-CAM in the cultures. Many keratinocytes, fibroblasts, and Leydig cells expressed all the signal molecules tested. Xanthophores and melanophores were only immunoreactive to the anti-adhesion molecules antisera. Since the molecules tested are known to play a role in cell adhesion, growth, and spreading, as well as in regulating tissue differentiation and in maintaining normal tissue morphology, we may hypothesize that in Salamandra salamandra salamandra fibronectin, β1-integrin, L-, and A-CAMS concertedly act to stabilize the architecture of the outgrowth and regulate the relationships between chromatophores and those between chromatophores and the other elements of the skin culture.  相似文献   

2.
Differentiation of fibroblasts to myofibroblasts and collagen fibrillogenesis are two processes essential for normal cutaneous development and repair, but their misregulation also underlies skin-associated fibrosis. Periostin is a matricellular protein normally expressed in adult skin, but its role in skin organogenesis, incisional wound healing and skin pathology has yet to be investigated in any depth. Using C57/BL6 mouse skin as model, we first investigated periostin protein and mRNA spatiotemporal expression and distribution during development and after incisional wounding. Secondarily we assessed whether periostin is expressed in human skin pathologies, including keloid and hypertrophic scars, psoriasis and atopic dermatitis. During development, periostin is expressed in the dermis, basement membrane and hair follicles from embryonic through neonatal stages and in the dermis and hair follicle only in adult. In situ hybridization demonstrated that dermal fibroblasts and basal keratinocytes express periostin mRNA. After incisional wounding, periostin becomes re-expressed in the basement membrane within the dermal-epidermal junction at the wound edge re-establishing the embryonic deposition pattern present in the adult. Analysis of periostin expression in human pathologies demonstrated that it is over-expressed in keloid and hypertrophic scars, atopic dermatitis, but is largely absent from sites of inflammation and inflammatory conditions such as psoriasis. Furthermore, in vitro we demonstrated that periostin is a transforming growth factor beta 1 inducible gene in human dermal fibroblasts. We conclude that periostin is an important ECM component during development, in wound healing and is strongly associated with pathological skin remodeling.  相似文献   

3.
To identify precursor cells of xanthophores (xanthoblasts), non-pigmented cells without any phenotypic traits as pigment cells were isolated from the dermal tissue of xanthic goldfish with an adult color pattern and cultured in a medium containing 1 mM db-cAMP or 0.25 U/ml ACTH and 10% carp serum. These non-pigmented cells differentiated into xanthophores which showed a dendritic morphology and contained a large quantity of fluorescent pteridines and numerous vesicular inclusions. Sepiapterin was the major component, and the vesicles contained fuzzy material in addition to small membranous elements. The fluorescent pattern and the morphological characteristics indicated that the differentiated pigment cells were xanthophores of larval type.  相似文献   

4.
Morphological, cytological and transport properties of the integument of Salamandra salamandra were investigated during natural ontogenetic development, from birth to adult. Three stages were operationally defined: I, larvae, from birth to metamorphosis; II, metamorphosis (judged externally by the colour change and loss of the gills); and III, post-metamorphosis to adult. Pieces of skin were fixed at various stages for immunocytochemical examinations, and the electrical properties were investigated on parallel pieces. Distinct cellular changes take place in the skin during metamorphosis, and lectin (PNA, WGA and ConA) binding indicates profound changes in glycoprotein composition of cell membranes, following metamorphosis. Band 3 and carbonic anhydrase I (CA I) were confined to mitochondria-rich (MR)-like cells, and were detected only in the larval stage. CA II on the other hand, was detected both in MR-like and in MR cells following metamorphosis. The electrical studies show that the skin becomes more tight (transepithelial resistance increases) upon metamorphosis, followed by manifestation of amiloride-sensitive short-circuit current (I(SC)) indicating that functional Na+ uptake has been acquired. The skin of metamorphosed adults had no finite transepithelial Cl- conductance, and band 3 was not detected in its MR cells. The functional properties of MR-like and MR cells remain to be established.  相似文献   

5.
1. This study examined the longitudinal distribution of larval fire salamanders ( Salamandra salamandra salamandra L.) in the Weidlingbach system, a first- to fourth-order tributary of the Danube near Vienna, Austria. On the microhabitat scale, actual current velocities, Reynolds numbers and Froude numbers at larval locations were measured and larval positions mapped.
2. Larval densities were highest in shallow first- and second-order tributaries where mean current speeds were less than 20 cm s−1, mean Reynolds numbers were less than 12 000 and mean Froude numbers were less than 0.30. Young larvae appeared on 26 April, fully grown larvae were observed from 11 May and larvae started metamorphosis from 27 June. Young adults left the brook between 26 August and 8 September. A severe flood on 25 May significantly reduced larval density, especially at sites near the source.
3. At a given sampling station young larvae favoured microhabitats exposed to only minor hydraulic stress. As larvae grew, they also colonized microhabitats with moderate current velocity (4–15 cm s−1). At sites with generally low discharge, larvae were distributed over a wider range of current velocities than at sites with higher discharge; at the latter, larvae were constricted to sheltered microhabitats.  相似文献   

6.
Pigment patterns of fishes are a tractable system for studying the genetic and cellular bases for postembryonic phenotypes. In the zebrafish Danio rerio, neural crest-derived pigment cells generate different pigment patterns during different phases of the life cycle. Whereas early larvae exhibit simple stripes of melanocytes and silver iridophores in a background of yellow xanthophores, this pigment pattern is transformed at metamorphosis into that of the adult, comprising a series of dark melanocyte and iridophore stripes, alternating with light stripes of iridophores and xanthophores. Although several genes have been identified in D. rerio that contribute to the development of both early larval and adult pigment patterns, comparatively little is known about genes that are essential for pattern formation during just one or the other life cycle phase. In this study, we identify the gene responsible for the rose mutant phenotype in D. rerio. rose mutants have wild-type early larval pigment patterns, but fail to develop normal numbers of melanocytes and iridophores during pigment pattern metamorphosis and exhibit a disrupted pattern of these cells. We show that rose corresponds to endothelin receptor b1 (ednrb1), an orthologue of amniote Ednrb genes that have long been studied for their roles in neural crest and pigment cell development. Furthermore, we demonstrate that D. rerio ednrb1 is expressed both during pigment pattern metamorphosis and during embryogenesis, and cells of melanocyte, iridophore, and xanthophore lineages all express this gene. These analyses suggest a phylogenetic conservation of roles for Ednrb signaling in the development of amniote and teleost pigment cell precursors. As murine Ednrb is essential for the development of all neural crest derived melanocytes, and D. rerio ednrb1 is required only by a subset of adult melanocytes and iridophores, these analyses also reveal variation among vertebrates in the cellular requirements for Ednrb signaling, and suggest alternative models for the cellular and genetic bases of pigment pattern metamorphosis in D. rerio.  相似文献   

7.
The pigmentation pattern of ventral skin of the frog Rana esculenta consists mainly of melanophores and iridophores, rather than the three pigment cells (xanthophores, iridophores, and melanophores) which form typical dermal chromatophore units in dorsal skin. The present study deals with the precise localization and identification of the types of pigment cells in relation to their position in the dermal tracts of uncultured or cultured frog skins. Iridophores were observed by dark-field microscopy; both melanophores and iridophores were observed by transmission electron microscopy. In uncultured skins, three levels were distinguished in the dermal tracts connecting the subcutaneous tissue to the upper dermis. Melanophores and iridophores were localized in the upper openings of the tracts directed towards the superficial dermis (level 1). The tracts themselves formed level 2 and contained melanophores and a few iridophores. The inner openings of the tracts made up level 3 in which mainly iridophores were present. These latter openings faced the subcutaneous tissue In cultured skins, such pigment-cell distribution remained unchanged, except at level 2 of the tracts, where pigment cells were statistically more numerous; among these, mosaic pigment cells were sometimes observed.  相似文献   

8.
The genetic and developmental bases for trait expression and variation in adults are largely unknown. One system in which genes and cell behaviors underlying adult traits can be elucidated is the larval-to-adult transformation of zebrafish, Danio rerio. Metamorphosis in this and many other teleost fishes resembles amphibian metamorphosis, as a variety of larval traits (e.g., fins, skin, digestive tract, sensory systems) are remodeled in a coordinated manner to generate the adult form. Among these traits is the pigment pattern, which comprises several neural crest-derived pigment cell classes, including black melanophores, yellow xanthophores, and iridescent iridophores. D. rerio embryos and early larvae exhibit a relatively simple pattern of melanophore stripes, but this pattern is transformed during metamorphosis into the more complex pattern of the adult, consisting of alternating dark (melanophore, iridophore) and light (xanthophore, iridophore) horizontal stripes. While it is clear that some pigment cells differentiate de novo during pigment pattern metamorphosis, the extent to which larval and adult pigment patterns are developmentally independent has not been known. In this study, we show that a subset of embryonic/early larval melanophores persists into adult stages in wild-type fish; thus, larval and adult pigment patterns are not completely independent in this species. We also analyze puma mutant zebrafish, derived from a forward genetic screen to isolate mutations affecting postembryonic development. In puma mutants, a wild-type embryonic/early larval pigment pattern forms, but supernumerary early larval melanophores persist in ectopic locations through juvenile and adult stages. We then show that, although puma mutants undergo a somatic metamorphosis at the same time as wild-type fish, metamorphic melanophores that normally appear during these stages are absent. The puma mutation thus decouples metamorphosis of the pigment pattern from the metamorphosis of many other traits. Nevertheless, puma mutants ultimately recover large numbers of melanophores and exhibit extensive pattern regulation during juvenile development, when the wild-type pigment pattern already would be completed. Finally, we demonstrate that the puma mutant is both temperature-sensitive and growth-sensitive: extremely severe pigment pattern defects result at a high temperature, a high growth rate, or both; whereas a wild-type pigment pattern can be rescued at a low temperature and a low growth rate. Taken together, these results provide new insights into zebrafish pigment pattern metamorphosis and the capacity for pattern regulation when normal patterning mechanisms go awry.  相似文献   

9.
In the present study we set out to investigate the expression of E-cadherin, N-cadherin, β1-integrin, fibronectin and vitronectin in the mitochondria-rich cells (MRC) of the skin of Salamandra salamandra salamandra. Moreover MRC were stained with five lectins (Triticum vulgaris; Dolichos biflorus; Glycine max; Arachis hypogaea and Canavalia ensiformis). Larval MRC expressed both adhesion molecules and extracellular matrix glycoproteins and bound all lectins tested. Juvenile MRC did not react with the antisera utilized, but they stained with the lectins. Both the lectins and the regulatory molecules proved to be good cytochemical markers for distinguishing morphologically differentiated MRC during the larval life of Salamandra salamandra salamandra. The adhesion molecules and matrix glycoproteins are of great utility for maintaining the correct tissue architecture. In Salamandra salamandra salamandra larvae these molecules may be crucial for stability and for the correct localization and fate of all skin elements, including specialized cells such as larval MRC.  相似文献   

10.
Wild-collected adults of Bombina orientalis are bright green dorsally and red to red-orange ventrally. As a prelude to an analysis of the differentiation of pigment cells in developing B. orientalis, we describe structural and chemical aspects of the fully differentiated pigment pattern of the “normal” adult. Structurally, differences between dorsal green and ventral red skin are summarized as follows: (1) Dorsal green skin contains a “typical” dermal chromatophore unit comprised of melanophores, iridophores, and xanthophores. Red skin contains predominantly carotenoid-containing xanthophores (erythrophores), and skin from black spot areas contains only melanophores. (2) In ventral red skin, there is also a thin layer of deep-lying iridophores that presumably are not involved in the observed color pattern. (3) Xanthophores of red and green skin are morphologically distinguishable from each other. Dorsal skin xanthophores contain both pterinosomes and carotenoid vesicles; ventral skin xanthophores contain only carotenoid vesicles. Carotenoid vesicles in dorsal xanthophores are much larger but less electron dense than comparable structures in ventral xanthophores. The presence of carotenes in ventral skin accounts for the bright red-orange color of the belly of this frog. Similar pigments are also present in green skin, but in smaller quantities and in conjunction with both colored (yellow) and colorless pteridines. From spectral data obtained for xanthophore pigments and structural data obtained from the size and arrangement of reflecting platelets in the iridophore layer, we attempt to explain the phenomenon of observed green color in B. orientalis.  相似文献   

11.
Ectothermic vertebrates exhibit a diverse array of adult pigment patterns. A common element of these patterns is alternating dark and light stripes each comprising different classes of neural crest-derived pigment cells. In the zebrafish, Danio rerio, alternating horizontal stripes of black melanophores and yellow xanthophores are a prominent feature of the adult pigment pattern. In fms mutant zebrafish, however, xanthophores fail to develop and melanophore stripes are severely disrupted. fms encodes a type III receptor tyrosine kinase expressed by xanthophores and their precursors and is the closest known homologue of kit, which has long been studied for roles in pigment pattern development in amniotes. In this study we assess the cellular and temporal requirements for Fms activity in promoting adult pigment pattern development. By transplanting cells between fms mutants and either wild-type or nacre mutant zebrafish, we show that fms acts autonomously to the xanthophore lineage in promoting the striped arrangement of adult melanophores. To identify critical periods for fms activity, we isolated temperature sensitive alleles of fms and performed reciprocal temperature shift experiments at a range of stages from embryo to adult. These analyses demonstrate that Fms is essential for maintaining cells of the xanthophore lineage as well as maintaining the organization of melanophore stripes throughout development. Finally, we show that restoring Fms activity even at late larval stages allows essentially complete recovery of xanthophores and the development of a normal melanophore stripe pattern. Our findings suggest that fms is not required for establishing a population of precursor cells during embryogenesis but is required for recruiting pigment cell precursors to xanthophore fates, with concomitant effects on melanophore organization.  相似文献   

12.
The striped pigment patterns in the flanks of zebrafish result from chromatophores deep within the dermis or hypodermis, while superficial melanophores associated with dermal scales add a dark tint to the dorsal coloration. The responses of these chromatophores were compared during the long-term adaptation of zebrafish to a white or a black background. In superficial skin, melanophores, xanthophores, and two types of iridophores are distributed in a gradient along the dorso-ventral axis independent of the hypodermal pigment patterns. Within one week the superficial melanophores and iridophores changed their density and/or areas of distribution, which adopted the dorsal skin color and the hue of the flank to the background, but did not affect the striped pattern. The increases or decreases in superficial melanophores are thought to be caused by apoptosis or by differentiation, respectively. When the adaptation period was prolonged for more than several months, the striped color pattern was also affected by changes in the width of the black stripes. Some black stripes disappeared and interstripe areas were emphasized with a yellow color within one year on a white background. Such long-term alteration in the pigment pattern was caused by a decrease in the distribution of melanophores and a concomitant increase in xanthophores in the hypodermis. These results indicate that morphological responses of superficial chromatophores contribute to the effective and rapid background adaptation of dorsal skin and while prolonged adaptation also affects hypodermal chromatophores in the flank to alter the striped pigment patterns.  相似文献   

13.
Developmental mechanisms underlying traits expressed in larval and adult vertebrates remain largely unknown. Pigment patterns of fishes provide an opportunity to identify genes and cell behaviors required for postembryonic morphogenesis and differentiation. In the zebrafish, Danio rerio, pigment patterns reflect the spatial arrangements of three classes of neural crest-derived pigment cells: black melanocytes, yellow xanthophores and silver iridophores. We show that the D. rerio pigment pattern mutant panther ablates xanthophores in embryos and adults and has defects in the development of the adult pattern of melanocyte stripes. We find that panther corresponds to an orthologue of the c-fms gene, which encodes a type III receptor tyrosine kinase and is the closest known homologue of the previously identified pigment pattern gene, kit. In mouse, fms is essential for the development of macrophage and osteoclast lineages and has not been implicated in neural crest or pigment cell development. In contrast, our analyses demonstrate that fms is expressed and required by D. rerio xanthophore precursors and that fms promotes the normal patterning of melanocyte death and migration during adult stripe formation. Finally, we show that fms is required for the appearance of a late developing, kit-independent subpopulation of adult melanocytes. These findings reveal an unexpected role for fms in pigment pattern development and demonstrate that parallel neural crest-derived pigment cell populations depend on the activities of two essentially paralogous genes, kit and fms.  相似文献   

14.
We investigated the cellular mechanism of formation of subepidermal thick bundles of collagen (collagen lamella) during larval development of the bullfrog, Rana catesbeiana, using cDNA of alpha1(I) collagen as a probe. The originally bilayered larval epidermis contains basal skein cells and apical cells, and the collagen lamella is directly attached to the basement membrane. The basal skein cells above the collagen lamella and fibroblasts beneath it intensively expressed the alpha1(I) gene. As the skin developed, suprabasal skein cells ceased expression of the gene. Concomitantly, the fibroblasts started to outwardly migrate, penetrated into the lamella and formed connective tissue between the epidermis and the lamella. These fibroblasts intensively expressed the gene. As the connective tissue developed, the basal skein cells ceased to express the gene and were replaced by larval basal cells that did not express the gene. These dynamic changes took place first in a lateral region of the body skin and proceeded to all other regions except the tail. Isolated cultured skein cells expressed the gene and extracellularly deposited its protein as the type I collagen fibrils. Thus, it is concluded that anuran larval epidermal cells can autonomously and intrinsically synthesize type I collagen.  相似文献   

15.
Summary The change in distribution of melanophores from stage 28+ (uniform melanophore pattern) to stage 34 (banded melanophore pattern) and the participation of xanthophores in these changes has been investigated inTriturus alpestris embryos by studying the social behaviour of single cells. While melanophores are clearly visible from outside the embryo at stage 28+, xanthophores cannot be recognized from the outside until after stage 34. In ultrathin sections of stage 34 embryos, xanthophores are observed alternating with melanophores in a zonal distribution (Epperlein 1982). Using detached pieces of dorsolateral trunk skin, which retain their chromatophores after detachment, the entire distribution of melanophores and xanthophores can be visualized in a scanning electron microscope (SEM). In ambiguous cases (early stages), cells were reprocessed for transmission electron microscopy (TEM) and the presence of the characteristic pigment organelles was assessed. In addition, xanthophores were specifically identified by pteridine fluorescence with dilute ammonia. Pteridines were also identified chromatographically in skin homogenates. The combination of these methods allowed precise identification and quantitative determination of melanophores and xanthophores. Both cell types were present as codistributed, biochemically differentiated cells at stage 28+. Changes in the pattern up to stage 34 were due to the rearrangement at the epidermal-mesodermal interface of a relatively fixed number of melanophores which became preferentially localised at the dorsal somite edge and at the lateral plate mesoderm, and to the distribution of an increasing number of xanthophores to subepidermal locations in the dorsal fin and between the melanophore bands. Concomitant was an increase in the thickness of the epidermal basement membrane and a change in shape of chromatophores from elongate via stellate to rosette shaped, which may be correlated with a shift from migratory to sessile phases.  相似文献   

16.
The ultrastructural changes that take place in the ventral dermis along with the development of iridophores were examined in the anadromous sea lamprey, Petromyzon marinus, during metamorphosis. There is a disruption of all components of the ventral dermis and a reformation that results in a structure very similar to that prior to metamorphosis. Although not a dermal component, a layer of iridophores develops directly beneath the dermis during late metamorphosis. The dermal endothelium is lost by mid metamorphosis (stage 4) and the highly organized collagenous lamellae making up the bulk of the dermis become disrupted by the migration of fibroblasts into the region. Many of these fibroblasts are involved in the degradation of the lamellae. By stage 5 of metamorphosis some fibroblasts become highly active collagen synthesizing cuboidal shaped cells that align to form a layer above the reformed dermal endothelium. New lamellae are formed by these cuboidal cells which then divide and migrate into the lamellae where they assume the characteristic attenuated appearance of fibroblasts in the adult dermal lamellae region. Iridophores first appear during stage 5 directly beneath the dermal endothelium. Reflecting platelets develop from double membraned vesicles associated with the Golgi apparatus. By late metamorphosis, stacks of trapezoidal shaped platelets fill the cytoplasm of the iridophores. The significance of the changes in the dermis during metamorphosis are discussed. This work is part of a continuing series of studies on the connective tissues in the anadromous sea lamprey.  相似文献   

17.
The physiological response and ultrastructure of the pigment cells of Trematomus bernacchii, an Antarctic teleost that lives under the sea ice north of the Ross Ice Shelf, were studied. In the integument, two types of epidermal chromatophores, melanophores and xanthophores, were found; in the dermis, typically three types of chromatophores--melanophores, xanthophores, and iridophores--were observed. The occurrence of epidermal xanthophore is reported for the first time in fish. Dermal melanophores and xanthophores have well-developed arrays of cytoplasmic microtubules. They responded rapidly to epinephrine and teleost melanin-concentrating hormone (MCH) with pigment aggregation and to theophylline with pigment dispersion. Total darkness elicited pigment aggregation in the majority of dermal xanthophores of isolated scales, whereas melanophores remained dispersed under both light and dark conditions. Pigment organelles of epidermal and dermal xanthophores that translocate during the pigmentary responses are carotenoid droplets of relatively large size. Dermal iridophores containing large reflecting platelets appeared to be immobile.  相似文献   

18.
To provide histological foundation for studying the genetic mechanisms of color‐pattern polymorphisms, we examined light reflectance profiles and cellular architectures of pigment cells that produced striped, nonstriped, and melanistic color patterns in the snake Elaphe quadrivirgata. Both, striped and nonstriped morphs, possessed the same set of epidermal melanophores and three types of dermal pigment cells (yellow xanthophores, iridescent iridophores, and black melanophores), but spatial variations in the densities of epidermal and dermal melanophores produced individual variations in stripe vividness. The densities of epidermal and dermal melanophores were two or three times higher in the dark‐brown‐stripe region than in the yellow background in the striped morph. However, the densities of epidermal and dermal melanophores between the striped and background regions were similar in the nonstriped morph. The melanistic morph had only epidermal and dermal melanophores and neither xanthophores nor iridophores were detected. Ghost stripes in the shed skin of some melanistic morphs suggested that stripe pattern formation and melanism were controlled independently. We proposed complete‐ and incomplete‐dominance heredity models for the stripe‐melanistic variation and striped, pale‐striped, and nonstriped polymorphisms, respectively, according to the differences in pigment‐cell composition and its spatial architecture. J. Morphol. 274:1353–1364, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

19.
In anuran amphibians, the specific color pattern of the skin is expressed after metamorphosis, and its formation involves pigment cell migrations. Pigment cells are differently distributed in the tadpole, larval, and froglet skin. To learn more about their fate during metamorphic climax and in the young froglet, we focused our attention on the different localizations of larval melanophores and iridophores in the ventral skin of Rana esculenta before and during skin homing. Localizations of melanophores and iridophores can be elucidated at the developmental stages suggested by Taylor and Kollros (TK stages). At TK stage II (during early premetamorphosis), large melanophores beneath the larval skin are detected. At TK stage X, dispersed melanophores lie under bundles of muscular striated fibrils near the larval skin; they are also observed at the vascular level. At TK stage XVII (prometamorphosis), melanophores are extended on the inner side of the basement lamellar collagen. At the end of prometamorphosis, iridophores are located with melanophores in the separating space between attached basement collagen and derived basement collagen. At TK stage XX (earlier climax), melanophores and iridophores are detected inside the upper extremities of fractures opened in the derived basement collagen. At TK stage XXIV (later climax), both types of larval pigment cells are observed in the inner extremities of breaks derived from the fractures. During climax, these pigment cells occupy the well-formed breaks. At TK stage XXV in young froglet, the pigment cells remain alone in the breaks formed in the derived basement collagen. Briefly, breaks in the basement lamellar collagen are opened by invading cell processes of mesenchymal cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
色素细胞是皮肤图案形成的基础,为了解鳜(Siniperca chuatsi)皮肤图案区域色素细胞的种类、分布及排列特征,采用光学显微镜与电子显微镜对鳜皮肤中图案区域、非图案区域及交界处皮肤的色素细胞进行显微及超显微结构观察。结果显示,鳜皮肤中含有黑色素细胞、黄色素细胞、红色素细胞及虹彩细胞,主要分布于表皮层和色素层。头部过眼条纹、躯干纵带、躯干斑块等图案区域皮肤表皮层与色素层均含有黑色素细胞,非图案区域仅表皮层含有少量黑色素细胞。躯干图案区域(纵带、斑块)皮肤色素层色素细胞分布层次明显,由外到内依次为黄色素细胞、红色素细胞、黑色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较长,整齐水平排列;躯干非图案区域皮肤色素层由外到内依次为黄色素细胞、红色素细胞和虹彩细胞,其中,虹彩细胞内反射小板较短,无规则排列。头部过眼条纹色素层含有4种色素细胞,色素细胞数量较少,且无规则排列,其中,黑色素细胞内黑色素颗粒较大。交界处皮肤色素层黑色素细胞数量向非图案区域一侧逐渐减少,虹彩细胞数量逐渐增加。结果表明,鳜图案区域与非图案区域、不同图案区域的色素细胞分布与排列各不相同,本研究结果为鳜色素细胞图案化形成机制提供了基础资料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号