首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cardiac contraction and relaxation dynamics result from a set of simultaneously interacting Ca(2+) regulatory mechanisms. In this study, cardiocyte Ca(2+) dynamics were modeled using a set of six differential equations that were based on theories, equations, and parameters described in previous studies. Among the unique features of the model was the inclusion of bidirectional modulatory interplay between the sarcoplasmic reticular Ca(2+) release channel (SRRC) and calsequestrin (CSQ) in the SR lumen, where CSQ acted as a dynamic rather than simple Ca(2+) buffer, and acted as a Ca(2+) sensor in the SR lumen as well. The inclusion of this control mechanism was central in overcoming a number of assumptions that would otherwise have to be made about SRRC kinetics, SR Ca(2+) release rates, and SR Ca(2+) release termination when the SR lumen is assumed to act as a simple, buffered Ca(2+) sink. The model was sufficient to reproduce a graded Ca(2+)-induced Ca(2+) release (CICR) response, CICR with high gain, and a system with reasonable stability. As constructed, the model successfully replicated the results of several previously published experiments that dealt with the Ca(2+) dependence of the SRRC (, J. Gen. Physiol. 85:247-289), the refractoriness of the SRRC (, Am. J. Physiol. 270:C148-C159), the SR Ca(2+) load dependence of SR Ca(2+) release (, Am. J. Physiol. 268:C1313-C1329;, J. Biol. Chem. 267:20850-20856), SR Ca(2+) leak (, J. Physiol. (Lond.). 474:463-471;, Biophys. J. 68:2015-2022), SR Ca(2+) load regulation by leak and uptake (, J. Gen. Physiol. 111:491-504), the effect of Ca(2+) trigger duration on SR Ca(2+) release (, Am. J. Physiol. 258:C944-C954), the apparent relationship that exists between sarcoplasmic and sarcoplasmic reticular calcium concentrations (, Biophys. J. 73:1524-1531), and a variety of contraction frequency-dependent alterations in sarcoplasmic [Ca(2+)] dynamics that are normally observed in the laboratory, including rest potentiation, a negative frequency-[Ca(2+)] relationship, and extrasystolic potentiation. Furthermore, under the condition of a simulated Ca(2+) overload, an alternans-like state was produced. In summary, the current model of cardiocyte Ca(2+) dynamics provides an integrated theoretical framework of fundamental cellular Ca(2+) regulatory processes that is sufficient to predict a broad array of observable experimental outcomes.  相似文献   

2.
Parameters (amplitude, width, kinetics) of Ca(2+) sparks imaged confocally are affected by errors when the spark source is not in focus. To identify sparks that were in focus, we used fast scanning (LSM 5 LIVE; Carl Zeiss) combined with fast piezoelectric focusing to acquire x-y images in three planes at 1-μm separation (x-y-z-t mode). In 3,000 x-y scans in each of 34 membrane-permeabilized cat atrial cardiomyocytes, 6,906 sparks were detected. 767 sparks were in focus. They had greater amplitude, but their spatial width and rise time were similar compared with all sparks recorded. Their distribution of amplitudes had a mode at ΔF/F(0) = 0.7. The Ca(2+) release current underlying in-focus sparks was 11 pA, requiring 20 to 30 open channels, a number at the high end of earlier estimates. Spark frequency was greater than in earlier imaging studies of permeabilized ventricular cells, suggesting a greater susceptibility to excitation, which could have functional relevance for atrial cells. Ca(2+) release flux peaked earlier than the time of peak fluorescence and then decayed, consistent with significant sarcoplasmic reticulum (SR) depletion. The evolution of fluorescence and release flux were strikingly similar for in-focus sparks of different rise time (T). Spark termination involves both depletion of Ca(2+) in the SR and channel closure, which may be synchronized by depletion. The observation of similar flux in sparks of different T requires either that channel closure and other termination processes be independent of the determinants of flux (including [Ca(2+)](SR)) or that different channel clusters respond to [Ca(2+)](SR) with different sensitivity.  相似文献   

3.
We examined 1) contractile properties and the intracellular Ca(2+) concentration ([Ca(2+)](i)) transient in cardiac myocytes and 2) sarcoplasmic reticulum (SR) Ca(2+) uptake and release function in myocardium from patients with end-stage heart failure caused by ischemic (ICM) vs. idiopathic dilated cardiomyopathy (DCM). The amplitude of cell motion was decreased 43 +/- 6% in ICM and 68 +/- 7% in DCM compared with that in normal organ donors (DN). Time to peak of shortening was increased 43 +/- 15% in DCM, but not in ICM. Prolongation of the relaxation time was more predominant in ICM. In DCM the systolic [Ca(2+)](i) was decreased 27 +/- 9% and diastolic [Ca(2+)](i) was increased 36 +/- 11%. In ICM the diastolic [Ca(2+)](i) was increased 59 +/- 12% but the systolic [Ca(2+)](i) was unchanged. A significant decrease of the ATP-dependent SR Ca(2+) uptake rate associated with the reduction of the SR Ca(2+)-ATPase protein level was found in ICM. In contrast, the significant decrease in SR Ca(2+) release rate was distinct in DCM. The large amount of Ca(2+) retained in the SR associated with a significant decrease in the maximum reaction velocity and increase in the Michaelis-Menten constant in the caffeine concentration-response curve suggests a fundamental abnormality in the SR Ca(2+) release channel gating property in DCM. We conclude that potentially important differences exist in the intracellular Ca(2+) homeostasis and excitation-contraction coupling in ICM vs. DCM. The SR Ca(2+) release dysfunction may play an important pathogenetic role in the abnormal Ca(2+) homeostasis in DCM, and the SR Ca(2+) uptake dysfunction may be responsible for the contractile dysfunction in ICM.  相似文献   

4.
Central to controlling intracellular calcium concentration ([Ca(2+)](i)) are a number of Ca(2+) transporters and channels with the L-type Ca(2+) channel, Na(+)-Ca(2+) exchanger and sarcoplasmic reticulum Ca(2+)-ATPase (SERCA) being of particular note in the heart. This review concentrates on the regulation of [Ca(2+)](i) in cardiac muscle and the homeostatic mechanisms employed to ensure that the heart can operate under steady-state conditions on a beat by beat basis. To this end we discuss the relative importance of various sources and sinks of Ca(2+) responsible for initiating contraction and relaxation in cardiac myocytes and how these can be manipulated to regulate the Ca(2+) content of the major Ca(2+) store, the sarcoplasmic reticulum (SR). We will present a simple feedback system detailing how such control can be achieved and highlight how small perturbations to the steady-state operation of the feedback loop can be both beneficial physiologically and underlie changes in systolic Ca(2+) in ageing and heart disease. In addition to manipulating the amplitude of the normal systolic Ca(2+) transient, the tight regulation of SR Ca(2+) content is also required to prevent the abnormal, spontaneous or diastolic release of Ca(2+) from the SR. Such diastolic events are a major factor contributing to the genesis of cardiac arrhythmias in disease situations and in recently identified familial mutations in the SR Ca(2+) release channel (ryanodine receptor, RyR). How such diastolic release arises and potential mechanisms for controlling this will be discussed.  相似文献   

5.
6.
In skeletal muscle, the release of calcium (Ca(2+)) by ryanodine sensitive sarcoplasmic reticulum (SR) Ca(2+) release channels (i.e., ryanodine receptors; RyR1s) is the primary determinant of contractile filament activation. Much attention has been focused on calsequestrin (CASQ1) and its role in SR Ca(2+) buffering as well as its potential for modulating RyR1, the L-type Ca(2+) channel (dihydropyridine receptor, DHPR) and other sarcolemmal channels through sensing luminal [Ca(2+)]. The genetic ablation of CASQ1 expression results in significant alterations in SR Ca(2+) content and SR Ca(2+) release especially during prolonged activation. While these findings predict a significant loss-of-function phenotype in vivo, little information on functional status of CASQ1 null mice is available. We examined fast muscle in vivo and in vitro and identified significant deficits in functional performance that indicate an inability to sustain contractile activation. In single CASQ1 null skeletal myofibers we demonstrate a decrease in voltage dependent RyR Ca(2+) release with single action potentials and a collapse of the Ca(2+) release with repetitive trains. Under voltage clamp, SR Ca(2+) release flux and total SR Ca(2+) release are significantly reduced in CASQ1 null myofibers. The decrease in peak Ca(2+) release flux appears to be solely due to elimination of the slowly decaying component of SR Ca(2+) release, whereas the rapidly decaying component of SR Ca(2+) release is not altered in either amplitude or time course in CASQ1 null fibers. Finally, intra-SR [Ca(2+)] during ligand and voltage activation of RyR1 revealed a significant decrease in the SR[Ca(2+)](free) in intact CASQ1 null fibers and a increase in the release and uptake kinetics consistent with a depletion of intra-SR Ca(2+) buffering capacity. Taken together we have revealed that the genetic ablation of CASQ1 expression results in significant functional deficits consistent with a decrease in the slowly decaying component of SR Ca(2+) release.  相似文献   

7.
Skeletal muscle contraction depends on the release of Ca(2+) from the sarcoplasmic reticulum (SR), but the dynamics of the SR free Ca(2+) concentration ([Ca(2+)](SR)), its modulation by physiological stimuli such as catecholamines, and the concomitant changes in cAMP handling have never been directly determined. We used two-photon microscopy imaging of GFP-based probes expressed in mouse skeletal muscles to monitor, for the first time in a live animal, the dynamics of [Ca(2+)](SR) and cAMP. Our data, which were obtained in highly physiological conditions, suggest that free [Ca(2+)](SR) decreases by approximately 50 microM during single twitches elicited through nerve stimulation. We also demonstrate that cAMP levels rise upon beta-adrenergic stimulation, leading to an increased efficacy of the Ca(2+) release/reuptake cycle during motor nerve stimulation.  相似文献   

8.
Early cardiovascular changes evoked by pressure overload (PO) may reveal adaptive strategies that allow immediate survival to the increased hemodynamic load. In this study, systolic and diastolic Ca(2+) cycling was analyzed in left ventricular rat myocytes before (day 2, PO-2d group) and after (day 7, PO-7d group) development of hypertrophy subsequent to aortic constriction, as well as in myocytes from time-matched sham-operated rats (sham group). Ca(2+) transient amplitude was significantly augmented in the PO-2d group. In the PO-7d group, intracellular Ca(2+) concentration ([Ca(2+)](i)) was reduced during diastole, and mechanical twitch relaxation (but not [Ca(2+)](i) decline) was slowed. In PO groups, fractional sarcoplasmic reticulum (SR) Ca(2+) release at a twitch, SR Ca(2+) content, SR Ca(2+) loss during diastole, and SR-dependent integrated Ca(2+) flux during twitch relaxation were significantly greater than in sham-operated groups, whereas the relaxation-associated Ca(2+) flux carried by the Na(+)/Ca(2+) exchanger was not significantly changed. In the PO-7d group, mRNA levels of cardiac isoforms of SR Ca(2+)-ATPase (SERCA2a), phospholamban, calsequestrin, ryanodine receptor, and NCX were not significantly altered, but the SERCA2a-to-phospholamban ratio was increased 2.5-fold. Moreover, greater sensitivity to the inotropic effects of the beta-adrenoceptor agonist isoproterenol was observed in the PO-7d group. The results indicate enhanced Ca(2+) cycling between SR and cytosol early after PO imposition, even before hypertrophy development. Increase in SR Ca(2+) uptake may contribute to enhancement of excitation-contraction coupling (augmented SR Ca(2+) content and release) and protection against arrhythmogenesis due to buildup of [Ca(2+)](i) during diastole.  相似文献   

9.
The goal of the study was to determine whether defects in intracellular Ca(2+) signaling contribute to cardiomyopathy in streptozotocin (STZ)-induced diabetic rats. Depression in cardiac systolic and diastolic function was traced from live diabetic rats to isolated individual myocytes. The depression in contraction and relaxation in myocytes was found in parallel with depression in the rise and decline of intracellular free Ca(2+) concentration ([Ca(2+)](i)). The sarcoplasmic reticulum (SR) Ca(2+) store and rates of Ca(2+) release and resequestration into SR were depressed in diabetic rat myocytes. The rate of Ca(2+) efflux via sarcolemmal Na(+)/Ca(2+) exchanger was also depressed. However, there was no change in the voltage-dependent L-type Ca(2+) channel current that triggers Ca(2+) release from the SR. The depression in SR function was associated with decreased SR Ca(2+)-ATPase and ryanodine receptor proteins and increased total and nonphosphorylated phospholamban proteins. The depression of Na(+)/Ca(2+) exchanger activity was associated with a decrease in its protein level. Thus it is concluded that defects in intracellular Ca(2+) signaling caused by alteration of expression and function of the proteins that regulate [Ca(2+)](i) contribute to cardiomyopathy in STZ-induced diabetic rats. The increase in phospholamban, decrease in Na(+)/Ca(2+) exchanger, and unchanged L-type Ca(2+) channel activity in this model of diabetic cardiomyopathy are distinct from other types of cardiomyopathy.  相似文献   

10.
Although the Na(+)/H(+) exchanger (NHE) is considered to be involved in regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) through the Na(+)/Ca(2+) exchanger, the exact mechanisms of its participation in Ca(2+) handling by cardiomyocytes are not fully understood. Isolated rat cardiomyocytes were treated with or without agents that are known to modify Ca(2+) movements in cardiomyocytes and exposed to an NHE inhibitor, 5-(N-methyl-N-isobutyl)amiloride (MIA). [Ca(2+)](i) in cardiomyocytes was measured spectrofluorometrically with fura 2-AM in the absence or presence of KCl, a depolarizing agent. MIA increased basal [Ca(2+)](i) and augmented the KCl-induced increase in [Ca(2+)](i) in a concentration-dependent manner. The MIA-induced increase in basal [Ca(2+)](i) was unaffected by extracellular Ca(2+), antagonists of the sarcolemmal (SL) L-type Ca(2+) channel, and inhibitors of the SL Na(+)/Ca(2+) exchanger, SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. However, the MIA-induced increase in basal [Ca(2+)](i) was attenuated by inhibitors of SL Na(+)-K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+) transport. On the other hand, the MIA-mediated augmentation of the KCl response was dependent on extracellular Ca(2+) concentration and attenuated by agents that inhibit SL L-type Ca(2+) channels, the SL Na(+)/Ca(2+) exchanger, SL Na(+)-K(+)-ATPase, and SR Ca(2+) release channels and the SR Ca(2+) pump. However, the effect of MIA on the KCl-induced increase in [Ca(2+)](i) remained unaffected by treatment with inhibitors of SL Ca(2+) pump ATPase and mitochondrial Ca(2+) uptake. MIA and a decrease in extracellular pH lowered intracellular pH and increased basal [Ca(2+)](i), whereas a decrease in extracellular pH, in contrast to MIA, depressed the KCl-induced increase in [Ca(2+)](i) in cardiomyocytes. These results suggest that NHE may be involved in regulation of [Ca(2+)](i) and that MIA-induced increases in basal [Ca(2+)](i), as well as augmentation of the KCl-induced increase in [Ca(2+)](i), in cardiomyocytes are regulated differentially.  相似文献   

11.
Mitochondrial Ca(2+) concentration ([Ca(2+)](m)) was monitored in C2C12 skeletal muscle cells stably expressing the Ca(2+)-sensitive photoprotein aequorin targeted to mitochondria. In myotubes, KCl-induced depolarization caused a peak of 3.03 +/- 0.14 micrometer [Ca(2+)](m) followed by an oscillatory second phase (5.1 +/- 0.1 per min). Chelation of extracellular Ca(2+) or blockade of the voltage-operated Ca(2+) channel attenuated both phases of the KCl response. The inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, cyclopiazonic acid, reduced the amplitude of the KCl-induced [Ca(2+)](m) peak and prevented the oscillations, suggesting that these were generated intracellularly. No such [Ca(2+)](m) oscillations occurred with the nicotinic agonist carbachol, cyclopiazonic acid alone, or the purinergic agonist ATP. In contrast, caffeine produced an oscillatory behavior, indicating a role of ryanodine receptors as mediators of the oscillations. The [Ca(2+)](m) response was desensitized when cells were exposed to two consecutive challenges with KCl separated by a 5-min wash, whereas a second pulse of carbachol potentiated [Ca(2+)](m), indicating differences in intracellular Ca(2+) redistribution. Cross-desensitization between KCl and carbachol and cross-potentiation between carbachol and KCl were observed. These results suggest that close contacts between mitochondria and sarcoplasmic reticulum exist permitting Ca(2+) exchanges during KCl depolarization. These newly demonstrated dynamic changes in [Ca(2+)](m) in stimulated skeletal muscle cells might contribute to the understanding of physiological and pathological processes in muscular disorders.  相似文献   

12.
Membrane depolarization triggers Ca(2+) release from the sarcoplasmic reticulum (SR) in skeletal muscles via direct interaction between the voltage-gated L-type Ca(2+) channels (the dihydropyridine receptors; VGCCs) and ryanodine receptors (RyRs), while in cardiac muscles Ca(2+) entry through VGCCs triggers RyR-mediated Ca(2+) release via a Ca(2+)-induced Ca(2+) release (CICR) mechanism. Here we demonstrate that in phasic smooth muscle of the guinea-pig small intestine, excitation evoked by muscarinic receptor activation triggers an abrupt Ca(2+) release from sub-plasmalemmal (sub-PM) SR elements enriched with inositol 1,4,5-trisphosphate receptors (IP(3)Rs) and poor in RyRs. This was followed by a lesser rise, or oscillations in [Ca(2+)](i). The initial abrupt sub-PM [Ca(2+)](i) upstroke was all but abolished by block of VGCCs (by 5 microM nicardipine), depletion of intracellular Ca(2+) stores (with 10 microM cyclopiazonic acid) or inhibition of IP(3)Rs (by 2 microM xestospongin C or 30 microM 2-APB), but was not affected by block of RyRs (by 50-100 microM tetracaine or 100 microM ryanodine). Inhibition of either IP(3)Rs or RyRs attenuated phasic muscarinic contraction by 73%. Thus, in contrast to cardiac muscles, excitation-contraction coupling in this phasic visceral smooth muscle occurs by Ca(2+) entry through VGCCs which evokes an initial IP(3)R-mediated Ca(2+) release activated via a CICR mechanism.  相似文献   

13.
In skeletal muscle, the waveform of Ca(2+) release under clamp depolarization exhibits an early peak. Its decay reflects an inactivation, which locally corresponds to the termination of Ca(2+) sparks, and is crucial for rapid control. In cardiac muscle, both the frequency of spontaneous sparks (i.e., their activation) and their termination appear to be strongly dependent on the Ca(2+) content in the sarcoplasmic reticulum (SR). In skeletal muscle, no such role is established. Seeking a robust measurement of Ca(2+) release and a way to reliably modify the SR content, we combined in the same cells the "EGTA/phenol red" method (Pape et al., 1995) to evaluate Ca(2+) release, with the "removal" method (Melzer et al., 1987) to evaluate release flux. The cytosol of voltage-clamped frog fibers was equilibrated with EGTA (36 mM), antipyrylazo III, and phenol red, and absorbance changes were monitored simultaneously at three wavelengths, affording largely independent evaluations of Delta[H(+)] and Delta[Ca(2+)] from which the amount of released Ca(2+) and the release flux were independently derived. Both methods yielded mutually consistent evaluations of flux. While the removal method gave a better kinetic picture of the release waveform, EGTA/phenol red provided continuous reproducible measures of calcium in the SR (Ca(SR)). Steady release permeability (P), reached at the end of a 120-ms pulse, increased as Ca(SR) was progressively reduced by a prior conditioning pulse, reaching 2.34-fold at 25% of resting Ca(SR) (four cells). Peak P, reached early during a pulse, increased proportionally much less with SR depletion, decreasing at very low Ca(SR). The increase in steady P upon depletion was associated with a slowing of the rate of decay of P after the peak (i.e., a slower inactivation of Ca(2+) release). These results are consistent with a major inhibitory effect of cytosolic (rather than intra-SR) Ca(2+) on the activity of Ca(2+) release channels.  相似文献   

14.
In pulmonary arterial smooth muscle cells (PASMC), acute hypoxia increases intracellular Ca(2+) concentration ([Ca(2+)](i)) by inducing Ca(2+) release from the sarcoplasmic reticulum (SR) and Ca(2+) influx through store- and voltage-operated Ca(2+) channels in sarcolemma. To evaluate the mechanisms of hypoxic Ca(2+) release, we measured [Ca(2+)](i) with fluorescent microscopy in primary cultures of rat distal PASMC. In cells perfused with Ca(2+)-free Krebs Ringer bicarbonate solution (KRBS), brief exposures to caffeine (30 mM) and norepinephrine (300 μM), which activate SR ryanodine and inositol trisphosphate receptors (RyR, IP(3)R), respectively, or 4% O(2) caused rapid transient increases in [Ca(2+)](i), indicating intracellular Ca(2+) release. Preexposure of these cells to caffeine, norepinephrine, or the SR Ca(2+)-ATPase inhibitor cyclopiazonic acid (CPA; 10 μM) blocked subsequent Ca(2+) release to caffeine, norepinephrine, and hypoxia. The RyR antagonist ryanodine (10 μM) blocked Ca(2+) release to caffeine and hypoxia but not norepinephrine. The IP(3)R antagonist xestospongin C (XeC, 0.1 μM) blocked Ca(2+) release to norepinephrine and hypoxia but not caffeine. In PASMC perfused with normal KRBS, acute hypoxia caused a sustained increase in [Ca(2+)](i) that was abolished by ryanodine or XeC. These results suggest that in rat distal PASMC 1) the initial increase in [Ca(2+)](i) induced by hypoxia, as well as the subsequent Ca(2+) influx that sustained this increase, required release of Ca(2+) from both RyR and IP(3)R, and 2) the SR Ca(2+) stores accessed by RyR, IP(3)R, and hypoxia functioned as a common store, which was replenished by a CPA-inhibitable Ca(2+)-ATPase.  相似文献   

15.
The time course and magnitude of the Ca(2+) fluxes underlying spontaneous Ca(2+) waves in single permeabilized ventricular cardiomyocytes were derived from confocal Fluo-5F fluorescence signals. Peak flux rates via the sarcoplasmic reticulum (SR) release channel (RyR2) and the SR Ca(2+) ATPase (SERCA) were not constant across a range of cellular [Ca(2+)] values. The Ca(2+) affinity (K(mf)) and maximum turnover rate (V(max)) of SERCA and the peak permeability of the RyR2-mediated Ca(2+) release pathway increased at higher cellular [Ca(2+)] loads. This information was used to create a computational model of the Ca(2+) wave, which predicted the time course and frequency dependence of Ca(2+) waves over a range of cellular Ca(2+) loads. Incubation of cardiomyocytes with the Ca(2+) calmodulin (CaM) kinase inhibitor autocamtide-2-related inhibitory peptide (300 nM, 30 mins) significantly reduced the frequency of the Ca(2+) waves at high Ca(2+) loads. Analysis of the Ca(2+) fluxes suggests that inhibition of CaM kinase prevented the increases in SERCA V(max) and peak RyR2 release flux observed at high cellular [Ca(2+)]. These data support the view that modification of activity of SERCA and RyR2 via a CaM kinase sensitive process occurs at higher cellular Ca(2+) loads to increase the maximum frequency of spontaneous Ca(2+) waves.  相似文献   

16.
We have studied the effects of ryanodine and inhibition of the sarco/endoplasmic reticulum Ca(2+) ATPase (SERCA) with thapsigargin, on both [Ca(2+)](i) and the sarcoplasmic reticulum (SR) Ca(2+) level during caffeine-induced Ca(2+) release in single smooth muscle cells. Incubation with 10 microM ryanodine did not inhibit the first caffeine-induced [Ca(2+)](i) response, although it abolished the [Ca(2+)](i) response to a second application of caffeine. To assess whether ryanodine was inducing a permanent depletion of the internal Ca(2+) stores, we measured the SR Ca(2+) level with Mag-Fura-2. The magnitude of the caffeine-induced reduction in the SR Ca(2+) level was not augmented by incubating cells with 1 microM ryanodine. Moreover, on removal of caffeine, the SR Ca(2+) levels partially recovered in 61% of the cells due to the activity of thapsigargin-sensitive SERCA pumps. Unexpectedly, 10 microM ryanodine instead of inducing complete depletion of SR Ca(2+) stores markedly reduced the caffeine-induced SR Ca(2+) response. It was necessary to previously inhibit SERCA pumps with thapsigargin for ryanodine to be able to induce caffeine-triggered permanent depletion of SR Ca(2+) stores. These data suggest that the effect of ryanodine on smooth muscle SR Ca(2+) stores was markedly affected by the activity of SERCA pumps. Our data highlight the importance of directly measuring SR Ca(2+) levels to determine the effect of ryanodine on the internal Ca(2+) stores.  相似文献   

17.
Regulation of intracellular Ca(2+) concentration ([Ca(2+)](i)) in airway smooth muscle (ASM) during agonist stimulation involves sarcoplasmic reticulum (SR) Ca(2+) release and reuptake. The sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) is key to replenishment of SR Ca(2+) stores. We examined regulation of SERCA in porcine ASM: our hypothesis was that the regulatory protein phospholamban (PLN) and the calmodulin (CaM)-CaM kinase (CaMKII) pathway (both of which are known to regulate SERCA in cardiac muscle) play a role. In porcine ASM microsomes, we examined the expression and extent of PLN phosphorylation after pharmacological inhibition of CaM (with W-7) vs. CaMKII (with KN-62/KN-93) and found that PLN is phosphorylated by CaMKII. In parallel experiments using enzymatically dissociated single ASM cells loaded with the Ca(2+) indicator fluo 3 and imaged using fluorescence microscopy, we measured the effects of PLN small interfering RNA, W-7, and KN-62 on [Ca(2+)](i) responses to ACh and direct SR stimulation. PLN small interfering RNA slowed the rate of fall of [Ca(2+)](i) transients to 1 microM ACh, as did W-7 and KN-62. The two inhibitors additionally slowed reuptake in the absence of PLN. In other cells, preexposure to W-7 or KN-62 did not prevent initiation of ACh-induced [Ca(2+)](i) oscillations (which were previously shown to result from repetitive SR Ca(2+) release/reuptake). However, when ACh-induced [Ca(2+)](i) oscillations reached steady state, subsequent exposure to W7 or KN-62 decreased oscillation frequency and amplitude and slowed the fall time of [Ca(2+)](i) transients, suggesting SERCA inhibition. Exposure to W-7 completely abolished ongoing ACh-induced [Ca(2+)](i) oscillations in some cells. Preexposure to W-7 or KN-62 did not affect caffeine-induced SR Ca(2+) release, indicating that ryanodine receptor channels were not directly inhibited. These data indicate that, in porcine ASM, the CaM-CaMKII pathway regulates SR Ca(2+) reuptake, potentially through altered PLN phosphorylation.  相似文献   

18.
Intracellular Ca(2+) is actively sequestered into the sarcoplasmic reticulum (SR), whereas the release of Ca(2+) from the SR can be triggered by activation of the inositol 1,4,5-trisphosphate and ryanodine receptors. Uptake and release of Ca(2+) across the SR membrane are electrogenic processes; accumulation of positive or negative charge across the SR membrane could electrostatically hinder the movement of Ca(2+) into or out of the SR, respectively. We hypothesized that the movement of intracellular Cl(-) (Cl(i)(-)) across the SR membrane neutralizes the accumulation of charge that accompanies uptake and release of Ca(2+). Thus inhibition of SR Cl(-) fluxes will reduce Ca(2+) sequestration and agonist-induced release. The Cl(-) channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB; 10(-4) M), previously shown to inhibit SR Cl(-) channels, significantly reduced the magnitude of successive acetylcholine-induced contractions of airway smooth muscle (ASM), suggesting a "run down" of sequestered Ca(2+) within the SR. Niflumic acid (10(-4) M), a structurally different Cl(-) channel blocker, had no such effect. Furthermore, NPPB significantly reduced caffeine-induced contraction and increases in intracellular Ca(2+) concentration ([Ca(2+)](i)). Depletion of Cl(i)(-), accomplished by bathing ASM strips in Cl(-)-free buffer, significantly reduced the magnitude of successive acetylcholine-induced contractions. In addition, Cl(-) depletion significantly reduced caffeine-induced increases in [Ca(2+)](i). Together these data suggest a novel role for Cl(i)(-) fluxes in Ca(2+) handling in smooth muscle. Because the release of sequestered Ca(2+) is the predominate source of Ca(2+) for contraction of ASM, targeting Cl(i)(-) fluxes may prove useful in the control of ASM hyperresponsiveness associated with asthma.  相似文献   

19.
Previous studies have shown lower systolic intracellular Ca(2+) concentrations ([Ca(2+)](i)) and reduced sarcoplasmic reticulum (SR)-releasable Ca(2+) contents in myocytes isolated from rat hearts 3 wk after moderate myocardial infarction (MI). Ca(2+) entry via L-type Ca(2+) channels was normal, but that via reverse Na(+)/Ca(2+) exchange was depressed in 3-wk MI myocytes. To elucidate mechanisms of reduced SR Ca(2+) contents in MI myocytes, we measured SR Ca(2+) uptake and SR Ca(2+) leak in situ, i.e., in intact cardiac myocytes. For sham and MI myocytes, we first demonstrated that caffeine application to release SR Ca(2+) and inhibit SR Ca(2+) uptake resulted in a 10-fold prolongation of half-time (t(1/2)) of [Ca(2+)](i) transient decline compared with that measured during a normal twitch. These observations indicate that early decline of the [Ca(2+)](i) transient during a twitch in rat myocytes was primarily mediated by SR Ca(2+)-ATPase and that the t(1/2) of [Ca(2+)](i) decline is a measure of SR Ca(2+) uptake in situ. At 5.0 mM extracellular Ca(2+), systolic [Ca(2+)](i) was significantly (P 相似文献   

20.
Calcium release from the sarcoplasmic reticulum (SR) in cardiac muscle occurs through a specialised release channel, the ryanodine receptor, RyR, via the process of Ca-induced Ca release (CICR). The open probability of the RyR is increased by elevation of cytoplasmic Ca concentration ([Ca(2+)](i)). However, in addition to Ca, other modulators affect the RyR open probability. Agents which increase the RyR opening during systole produce a transient increase of systolic [Ca(2+)](i) followed by a return to the initial level due to a compensating decrease of SR Ca content. Increasing RyR opening during diastole decreases SR Ca content and thereby decreases systolic [Ca(2+)](i). We therefore conclude that potentiation of RyR opening will, if anything, decrease systolic [Ca(2+)](i). The effects of specific examples of modulators of the RyR, such as phosphorylation, metabolic changes, heart failure and polyunsaturated fatty acids, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号