首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Searches using position specific scoring matrices (PSSMs) have been commonly used in remote homology detection procedures such as PSI-BLAST and RPS-BLAST. A PSSM is generated typically using one of the sequences of a family as the reference sequence. In the case of PSI-BLAST searches the reference sequence is same as the query. Recently we have shown that searches against the database of multiple family-profiles, with each one of the members of the family used as a reference sequence, are more effective than searches against the classical database of single family-profiles. Despite relatively a better overall performance when compared with common sequence-profile matching procedures, searches against the multiple family-profiles database result in a few false positives and false negatives. Here we show that profile length and divergence of sequences used in the construction of a PSSM have major influence on the performance of multiple profile based search approach. We also identify that a simple parameter defined by the number of PSSMs corresponding to a family that is hit, for a query, divided by the total number of PSSMs in the family can distinguish effectively the true positives from the false positives in the multiple profiles search approach.  相似文献   

2.
MOTIVATION: Position specific scoring matrices (PSSMs) corresponding to aligned sequences of homologous proteins are commonly used in homology detection. A PSSM is generated on the basis of one of the homologues as a reference sequence, which is the query in the case of PSI-BLAST searches. The reference sequence is chosen arbitrarily while generating PSSMs for reverse BLAST searches. In this work we demonstrate that the use of multiple PSSMs corresponding to a given alignment and variable reference sequences is more effective than using traditional single PSSMs and hidden Markov models. RESULTS: Searches for proteins with known 3-D structures have been made against three databases of protein family profiles corresponding to known structures: (1) One PSSM per family; (2) multiple PSSMs corresponding to an alignment and variable reference sequences for every family; and (3) hidden Markov models. A comparison of the performances of these three approaches suggests that the use of multiple PSSMs is most effective. CONTACT: ns@mbu.iisc.ernet.in.  相似文献   

3.
A structure-based method for protein sequence alignment   总被引:1,自引:0,他引:1  
MOTIVATION: With the continuing rapid growth of protein sequence data, protein sequence comparison methods have become the most widely used tools of bioinformatics. Among these methods are those that use position-specific scoring matrices (PSSMs) to describe protein families. PSSMs can capture information about conserved patterns within families, which can be used to increase the sensitivity of searches for related sequences. Certain types of structural information, however, are not generally captured by PSSM search methods. Here we introduce a program, Structure-based ALignment TOol (SALTO), that aligns protein query sequences to PSSMs using rules for placing and scoring gaps that are consistent with the conserved regions of domain alignments from NCBI's Conserved Domain Database. RESULTS: In most cases, the alignment scores obtained using the local alignment version follow an extreme value distribution. SALTO's performance in finding related sequences and producing accurate alignments is similar to or better than that of IMPALA; one advantage of SALTO is that it imposes an explicit gapping model on each protein family. AVAILABILITY: A stand-alone version of the program that can generate global or local alignments is available by ftp distribution (ftp://ftp.ncbi.nih.gov/pub/SALTO/), and has been incorporated to Cn3D structure/alignment viewer. CONTACT: bryant@ncbi.nlm.nih.gov.  相似文献   

4.
As a basic tool of modern biology, sequence alignment can provide us useful information in fold, function, and active site of protein. For many cases, the increased quality of sequence alignment means a better performance. The motivation of present work is to increase ability of the existing scoring scheme/algorithm by considering residue-residue correlations better. Based on a coarse-grained approach, the hydrophobic force between each pair of residues is written out from protein sequence. It results in the construction of an intramolecular hydrophobic force network that describes the whole residue-residue interactions of each protein molecule, and characterizes protein's biological properties in the hydrophobic aspect. A former work has suggested that such network can characterize the top weighted feature regarding hydrophobicity. Moreover, for each homologous protein of a family, the corresponding network shares some common and representative family characters that eventually govern the conservation of biological properties during protein evolution. In present work, we score such family representative characters of a protein by the deviation of its intramolecular hydrophobic force network from that of background. Such score can assist the existing scoring schemes/algorithms, and boost up the ability of multiple sequences alignment, e.g. achieving a prominent increase (∼50%) in searching the structurally alike residue segments at a low identity level. As the theoretical basis is different, the present scheme can assist most existing algorithms, and improve their efficiency remarkably.  相似文献   

5.
For applications such as comparative modelling one major issue is the reliability of sequence alignments. Reliable regions in alignments can be predicted using sub-optimal alignments of the same pair of sequences. Here we show that reliable regions in alignments can also be predicted from multiple sequence profile information alone.Alignments were created for a set of remotely related pairs of proteins using five different test methods. Structural alignments were used to assess the quality of the alignments and the aligned positions were scored using information from the observed frequencies of amino acid residues in sequence profiles pre-generated for each template structure. High-scoring regions of these profile-derived alignment scores were a good predictor of reliably aligned regions.These profile-derived alignment scores are easy to obtain and are applicable to any alignment method. They can be used to detect those regions of alignments that are reliably aligned and to help predict the quality of an alignment. For those residues within secondary structure elements, the regions predicted as reliably aligned agreed with the structural alignments for between 92% and 97.4% of the residues. In loop regions just under 92% of the residues predicted to be reliable agreed with the structural alignments. The percentage of residues predicted as reliable ranged from 32.1% for helix residues to 52.8% for strand residues.This information could also be used to help predict conserved binding sites from sequence alignments. Residues in the template that were identified as binding sites, that aligned to an identical amino acid residue and where the sequence alignment agreed with the structural alignment were in highly conserved, high scoring regions over 80% of the time. This suggests that many binding sites that are present in both target and template sequences are in sequence-conserved regions and that there is the possibility of translating reliability to binding site prediction.  相似文献   

6.
Identifying non-coding RNA regions on the genome using computational methods is currently receiving a lot of attention. In general, it is essentially more difficult than the problem of detecting protein-coding genes because non-coding RNA regions have only weak statistical signals. On the other hand, most functional RNA families have conserved sequences and secondary structures which are characteristic of their molecular function in a cell. These are known as sequence motifs and consensus structures, respectively. In this paper, we propose an improved method which extends a pairwise structural alignment method for RNA sequences to handle position specific scoring matrices and hence to incorporate motifs into structural alignment of RNA sequences. To model sequence motifs, we employ position specific scoring matrices (PSSMs). Experimental results show that PSSMs enable us to find individual RNA families efficiently, especially if we have biological knowledge such as sequence motifs. K. Sato and K. Morita contributed equally to this work.  相似文献   

7.
RNA sequence analysis using covariance models.   总被引:43,自引:8,他引:35       下载免费PDF全文
We describe a general approach to several RNA sequence analysis problems using probabilistic models that flexibly describe the secondary structure and primary sequence consensus of an RNA sequence family. We call these models 'covariance models'. A covariance model of tRNA sequences is an extremely sensitive and discriminative tool for searching for additional tRNAs and tRNA-related sequences in sequence databases. A model can be built automatically from an existing sequence alignment. We also describe an algorithm for learning a model and hence a consensus secondary structure from initially unaligned example sequences and no prior structural information. Models trained on unaligned tRNA examples correctly predict tRNA secondary structure and produce high-quality multiple alignments. The approach may be applied to any family of small RNA sequences.  相似文献   

8.
Sequence comparison methods based on position-specific score matrices (PSSMs) have proven a useful tool for recognition of the divergent members of a protein family and for annotation of functional sites. Here we investigate one of the factors that affects overall performance of PSSMs in a PSI-BLAST search, the algorithm used to construct the seed alignment upon which the PSSM is based. We compare PSSMs based on alignments constructed by global sequence similarity (ClustalW and ClustalW-pairwise), local sequence similarity (BLAST), and local structure similarity (VAST). To assess performance with respect to identification of conserved functional or structural sites, we examine the accuracy of the three-dimensional molecular models predicted by PSSM-sequence alignments. Using the known structures of those sequences as the standard of truth, we find that model accuracy varies with the algorithm used for seed alignment construction in the pattern local-structure (VAST) > local-sequence (BLAST) > global-sequence (ClustalW). Using structural similarity of query and database proteins as the standard of truth, we find that PSSM recognition sensitivity depends primarily on the diversity of the sequences included in the alignment, with an optimum around 30-50% average pairwise identity. We discuss these observations, and suggest a strategy for constructing seed alignments that optimize PSSM-sequence alignment accuracy and recognition sensitivity.  相似文献   

9.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9.  相似文献   

10.
11.
Sequence alignment is a common method for finding protein structurally conserved/similar regions. However, sequence alignment is often not accurate if sequence identities between to-be-aligned sequences are less than 30%. This is because that for these sequences, different residues may play similar structural roles and they are incorrectly aligned during the sequence alignment using substitution matrix consisting of 20 types of residues. Based on the similarity of physicochemical features, residues can be clustered into a few groups. Using such simplified alphabets, the complexity of protein sequences is reduced and at the same time the key information encoded in the sequences remains. As a result, the accuracy of sequence alignment might be improved if the residues are properly clustered. Here, by using a database of aligned protein structures (DAPS), a new clustering method based on the substitution scores is proposed for the grouping of residues, and substitution matrices of residues at different levels of simplification are constructed. The validity of the reduced alphabets is confirmed by relative entropy analysis. The reduced alphabets are applied to recognition of protein structurally conserved/similar regions by sequence alignment. The results indicate that the accuracy or efficiency of sequence alignment can be improved with the optimal reduced alphabet with N around 9. Supported by the National Natural Science Foundation of China (Grant Nos. 90403120, 10474041 and 10021001) and the Nonlinear Project (973) of the NSM  相似文献   

12.
SUMMARY: We introduce an algorithm that uses the information gained from simultaneous consideration of an entire group of related proteins to create multiple structure alignments (MSTAs). Consistency-based alignment (CBA) first harnesses the information contained within regions that are consistently aligned among a set of pairwise superpositions in order to realign pairs of proteins through both global and local refinement methods. It then constructs a multiple alignment that is maximally consistent with the improved pairwise alignments. We validate CBA's alignments by assessing their accuracy in regions where at least two of the aligned structures contain the same conserved sequence motif. RESULTS: CBA correctly aligns well over 90% of motif residues in superpositions of proteins belonging to the same family or superfamily, and it outperforms a number of previously reported MSTA algorithms.  相似文献   

13.
Kinjo AR  Nakamura H 《PloS one》2008,3(4):e1963
Position-specific scoring matrices (PSSMs) are useful for detecting weak homology in protein sequence analysis, and they are thought to contain some essential signatures of the protein families. In order to elucidate what kind of ingredients constitute such family-specific signatures, we apply singular value decomposition to a set of PSSMs and examine the properties of dominant right and left singular vectors. The first right singular vectors were correlated with various amino acid indices including relative mutability, amino acid composition in protein interior, hydropathy, or turn propensity, depending on proteins. A significant correlation between the first left singular vector and a measure of site conservation was observed. It is shown that the contribution of the first singular component to the PSSMs act to disfavor potentially but falsely functionally important residues at conserved sites. The second right singular vectors were highly correlated with hydrophobicity scales, and the corresponding left singular vectors with contact numbers of protein structures. It is suggested that sequence alignment with a PSSM is essentially equivalent to threading supplemented with functional information. In addition, singular vectors may be useful for analyzing and annotating the characteristics of conserved sites in protein families.  相似文献   

14.
Melo F  Marti-Renom MA 《Proteins》2006,63(4):986-995
Reduced or simplified amino acid alphabets group the 20 naturally occurring amino acids into a smaller number of representative protein residues. To date, several reduced amino acid alphabets have been proposed, which have been derived and optimized by a variety of methods. The resulting reduced amino acid alphabets have been applied to pattern recognition, generation of consensus sequences from multiple alignments, protein folding, and protein structure prediction. In this work, amino acid substitution matrices and statistical potentials were derived based on several reduced amino acid alphabets and their performance assessed in a large benchmark for the tasks of sequence alignment and fold assessment of protein structure models, using as a reference frame the standard alphabet of 20 amino acids. The results showed that a large reduction in the total number of residue types does not necessarily translate into a significant loss of discriminative power for sequence alignment and fold assessment. Therefore, some definitions of a few residue types are able to encode most of the relevant sequence/structure information that is present in the 20 standard amino acids. Based on these results, we suggest that the use of reduced amino acid alphabets may allow to increasing the accuracy of current substitution matrices and statistical potentials for the prediction of protein structure of remote homologs.  相似文献   

15.
An automated algorithm is presented that delineates protein sequence fragments which display similarity. The method incorporates a selection of a number of local nonoverlapping sequence alignments with the highest similarity scores and a graphtheoretical approach to elucidate the consistent start and end points of the fragments comprising one or more ensembles of related subsequences. The procedure allows the simultaneous identification of different types of repeats within one sequence. A multiple alignment of the resulting fragments is performed and a consensus sequence derived from the ensemble(s). Finally, a profile is constructed form the multiple alignment to detect possible and more distant members within the sequence. The method tolerates mutations in the repeats as well as insertions and deletions. The sequence spans between the various repeats or repeat clusters may be of different lengths. The technique has been applied to a number of proteins where the repeating fragments have been derived from information additional to the protein sequences. © 1993 Wiley-Liss, Inc.  相似文献   

16.

Background

BLAST is a commonly-used software package for comparing a query sequence to a database of known sequences; in this study, we focus on protein sequences. Position-specific-iterated BLAST (PSI-BLAST) iteratively searches a protein sequence database, using the matches in round i to construct a position-specific score matrix (PSSM) for searching the database in round i?+?1. Biegert and S?ding developed Context-sensitive BLAST (CS-BLAST), which combines information from searching the sequence database with information derived from a library of short protein profiles to achieve better homology detection than PSI-BLAST, which builds its PSSMs from scratch.

Results

We describe a new method, called domain enhanced lookup time accelerated BLAST (DELTA-BLAST), which searches a database of pre-constructed PSSMs before searching a protein-sequence database, to yield better homology detection. For its PSSMs, DELTA-BLAST employs a subset of NCBI??s Conserved Domain Database (CDD). On a test set derived from ASTRAL, with one round of searching, DELTA-BLAST achieves a ROC5000 of 0.270 vs. 0.116 for CS-BLAST. The performance advantage diminishes in iterated searches, but DELTA-BLAST continues to achieve better ROC scores than CS-BLAST.

Conclusions

DELTA-BLAST is a useful program for the detection of remote protein homologs. It is available under the ??Protein BLAST?? link at http://blast.ncbi.nlm.nih.gov.

Reviewers

This article was reviewed by Arcady Mushegian, Nick V. Grishin, and Frank Eisenhaber.  相似文献   

17.
Kaur H  Raghava GP 《FEBS letters》2004,564(1-2):47-57
In this study, an attempt has been made to develop a neural network-based method for predicting segments in proteins containing aromatic-backbone NH (Ar-NH) interactions using multiple sequence alignment. We have analyzed 3121 segments seven residues long containing Ar-NH interactions, extracted from 2298 non-redundant protein structures where no two proteins have more than 25% sequence identity. Two consecutive feed-forward neural networks with a single hidden layer have been trained with standard back-propagation as learning algorithm. The performance of the method improves from 0.12 to 0.15 in terms of Matthews correlation coefficient (MCC) value when evolutionary information (multiple alignment obtained from PSI-BLAST) is used as input instead of a single sequence. The performance of the method further improves from MCC 0.15 to 0.20 when secondary structure information predicted by PSIPRED is incorporated in the prediction. The final network yields an overall prediction accuracy of 70.1% and an MCC of 0.20 when tested by five-fold cross-validation. Overall the performance is 15.2% higher than the random prediction. The method consists of two neural networks: (i) a sequence-to-structure network which predicts the aromatic residues involved in Ar-NH interaction from multiple alignment of protein sequences and (ii) a structure-to structure network where the input consists of the output obtained from the first network and predicted secondary structure. Further, the actual position of the donor residue within the 'potential' predicted fragment has been predicted using a separate sequence-to-structure neural network. Based on the present study, a server Ar_NHPred has been developed which predicts Ar-NH interaction in a given amino acid sequence. The web server Ar_NHPred is available at and (mirror site).  相似文献   

18.
Han Si  Lee SG  Kim KH  Choi CJ  Kim YH  Hwang KS 《Bio Systems》2006,84(3):175-182
Most multiple gene sequence alignment methods rely on conventions regarding the score of a multiple alignment in pairwise fashion. Therefore, as the number of sequences increases, the runtime of sequencing expands exponentially. In order to solve the problem, this paper presents a multiple sequence alignment method using a linear-time suffix tree algorithm to cluster similar sequences at one time without pairwise alignment. After searching for common subsequences, cross-matching common subsequences were generated, and sometimes inexact matching was found. So, a procedure aimed at masking the inexact cross-matching pairs was suggested here. In addition, BLAST was combined with a clustering tool in order to annotate the clusters generated by suffix tree clustering. The proposed method for clustering and annotating genes consists of the following steps: (1) construction of a suffix tree; (2) searching and overlapping common subsequences; (3) grouping subsequence pairs; (4) masking cross-matching pairs; (5) clustering gene sequences; (6) annotating gene clusters by the BLAST search. The performance of the proposed system, CLAGen, was successfully evaluated with 42 gene sequences in a TCA cycle (a citrate cycle) of bacteria. The system generated 11 clusters and found the longest subsequences of each cluster, which are biologically significant.  相似文献   

19.
The Saccharomyces cerevisiae adhesion protein alpha-agglutinin is expressed by cells of alpha mating type. On the basis of sequence similarities, alpha-agglutinin has been proposed to contain variable-type immunoglobulin-like (IgV) domains. The low level of sequence similarity to IgV domains of known structure made homology modeling using standard sequence-based alignment algorithms impossible. We have therefore developed a secondary structure-based method that allowed homology modeling of alpha-aggulutinin domain III, the domain most similar to IgV domains. The model was assessed and where necessary refined to accommodate information obtained by biochemical and molecular genetic approaches, including the positions of a disulfide bond, glycosylation sites, and proteolytic sites. The model successfully predicted surface exposure of glycosylation and proteolytic sites, as well as identifying residues essential for binding activity. One side of the domain was predicted to be covered by carbohydrate residues. Surface accessibility and volume packing analyses showed that the regions of the model that have greatest sequence dissimilarity from the IgV consensus sequence are poorly structured in the biophysical sense. Nonetheless, the utility of the model suggests that these alignment and testing techniques should be of general use for building and testing of models of proteins that share limited sequence similarity with known structures.  相似文献   

20.
Fifty-nine amino acid sequences belonging to family 57 (GH-57) of the glycoside hydrolases were collected using the CAZy server, Pfam database and blast tools. Owing to the sequence heterogeneity of the GH-57 members, sequence alignments were performed using mainly manual methods. Likewise, five conserved regions were identified, which are postulated to be GH-57 consensus motifs. In the 659 amino acid-long 4-alpha-glucanotransferase from Thermococcus litoralis, these motifs correspond to 13_HQP (region I), 76_GQLEIV (region II), 120_WLTERV (region III), 212_HDDGEKFGVW (region IV), and 350_AQCNDAYWH (region V). The third and fourth conserved regions contain the catalytic nucleophile and the proton donor, respectively. Based on our sequence alignment, residues Glu291 and Asp394 were proposed as the nucleophile and proton donor, respectively, in a GH-57 amylopullulanase from Thermococcus hydrothermalis. To validate this prediction, site-directed mutagenesis was performed. The results of this work reveal that both residues are critical for the pullulanolytic and amylolytic activities of the amylopullulanase. Therefore, these data support the prediction and strongly suggest that the bifunctionality of the amylopullulanase is determined by a single catalytic centre. Despite this positive validation, our alignment also reveals that certain GH-57 members do not possess the Glu and Asp corresponding to the predicted GH-57 catalytic residues. However, the sequences concerned by this anomaly encode putative proteins for which no biochemical or enzymatic data are yet available. Finally, the evolutionary trees generated for GH-57 reveal that the entire family can be divided into several subfamilies that may reflect the different enzyme specificities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号