首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
2.
The Drosophila gene product Wingless (Wg) is a secreted glycoprotein and a member of the Wnt gene family. Genetic analysis of Drosophila epidermal development has defined a putative paracrine Wg signalling pathway involving the zeste-white 3/shaggy (zw3/sgg) gene product. Although putative components of Wg- (and by inference Wnt-) mediated signalling pathways have been identified by genetic analysis, the biochemical significance of most factors remains unproven. Here we show that in mouse 10T1/2 fibroblasts the activity of glycogen synthase kinase-3 (GSK-3), the murine homologue of Zw3/Sgg, is inactivated by Wg. This occurs through a signalling pathway that is distinct from insulin-mediated regulation of GSK-3 in that Wg signalling to GSK-3 is insensitive to wortmannin. Additionally, Wg-induced inactivation of GSK-3 is sensitive to both the protein kinase C (PKC) inhibitor Ro31-8220 and prolonged pre-treatment of 10T1/2 fibroblasts with phorbol ester. These findings provide the first biochemical evidence in support of the genetically defined pathway from Wg to Zw3/Sgg, and suggest a previously uncharacterized role for a PKC upstream of GSK-3/Zw3 during Wnt/Wg signal transduction.  相似文献   

3.
The mitogen activated protein (MAP) kinase pathway of eukaryotes is stimulated by many growth factors and is required for the integration of multiple cellular signals. In order to study the function of MAP kinases during plant ovule development we have synthesized a Petunia hybrida ovule-specific cDNA library and screened for MAP protein kinase-related sequences using a DNA probe obtained by PCR. A full-length cDNA clone was identified (PMEK for Petunia hybrida MAP/ERK-related protein kinase) and shown to encode a protein related to the family of MAP/ERK protein kinases. Southern blot analysis showed that PMEK is a member of a small multigene family in P. hybrida. The cDNA codes for a protein (PMEK1) of 44.4 kDa with an overall sequence identity of 44% to the products of the mammalian ERK/MAP kinase gene, and the budding yeast KSS1 and FUS3 genes. PMEK1 displays 96 and 80% identity respectively with the tobacco NTF3 and Arabidopsis ATMPK1 kinases, and only 50% to the more distantly related plant MAP kinase MsERK1 from alfalfa. The two phosphorylation sites found in the loop between subdomain VII and VIII in all the other MAP kinases are also present in PMEK1. RNA gel blot and RT-PCR analyses demonstrated that PMEK1 is expressed in vegetative organs and preferentially accumulated in female reproductive organs of P. hybrida. In situ hybridization experiments showed that in the reproductive organs PMEK1 is expressed only in the ovary and not in the stamen.  相似文献   

4.
Lack of both maternal and zygotic gene activity at the zeste-white 3 (zw3) locus causes severe developmental transformations. Embryos derived from germ cells that lack zw3+ gene activity die during embryogenesis and have a phenotype that is similar to that of embryos mutant for the segment polarity gene naked (nkd). In both nkd and germ line clone-derived zw3 embryos the pattern elements derived from the anterior-most part of each segment, the denticle belts, are deleted. Similar abnormal patterns of the zygotically expressed genes engrailed and Ultrabithorax are detected in both mutants, suggesting that the two genes are involved in the same developmental process. Additionally, the induction of clones of zw3 mutant cells in imaginal discs causes homeotic transformations of noninnervated hair cells into innervated sensory bristles. The multiple roles of zw3 during development and its possible interactions with the zygotic gene nkd are discussed.  相似文献   

5.
S Martinek  S Inonog  A S Manoukian  M W Young 《Cell》2001,105(6):769-779
Tissue-specific overexpression of the glycogen synthase kinase-3 (GSK-3) ortholog shaggy (sgg) shortens the period of the Drosophila circadian locomotor activity cycle. The short period phenotype was attributed to premature nuclear translocation of the PERIOD/TIMELESS heterodimer. Reducing SGG/GSK-3 activity lengthens period, demonstrating an intrinsic role for the kinase in circadian rhythmicity. Lowered sgg activity decreased TIMELESS phosphorylation, and it was found that GSK-3 beta specifically phosphorylates TIMELESS in vitro. Overexpression of sgg in vivo converts hypophosphorylated TIMELESS to a hyperphosphorylated protein whose electrophoretic mobility, and light and phosphatase sensitivity, are indistinguishable from the rhythmically produced hyperphosphorylated TIMELESS of wild-type flies. Our results indicate a role for SGG/GSK-3 in TIMELESS phosphorylation and in the regulated nuclear translocation of the PERIOD/TIMELESS heterodimer.  相似文献   

6.
7.
8.
Background Exposing eukaryotic cells to lithium ions (Li+) during development has marked effects on cell fate and organization. The phenotypic consequences of Li+ treatment on Xenopus embryos and sporulating Dictyostelium are similar to the effects of inhibition or disruption, respectively, of a highly conserved protein serine/threonine kinase, glycogen synthase kinase-3 (GSK-3). In Drosophila, the GSK-3 homologue is encoded by zw3sgg, a segment-polarity gene involved in embryogenesis that acts downstream of wg. In higher eukaryotes, GSK-3 has been implicated in signal transduction pathways downstream of phosphoinositide 3-kinase and mitogen-activated protein kinases.Results We investigated the effect of Li+ on the activity of the GSK-3 family. At physiological doses, Li+ inhibits the activity of human GSK-3β and Drosophila Zw3Sgg, but has no effect on other protein kinases. The effect of Li+ on GSK-3 is reversible in vitro. Treatment of cells with Li+ inhibits GSK-3-dependent phosphorylation of the microtubule-associated protein Tau. Li+ treatment of Drosophila S2 cells and rat PC12 cells induces accumulation of cytoplasmic Armadillo/β-catenin, demonstrating that Li+ can mimic Wingless signalling in intact cells, consistent with its inhibition of GSK-3.Conclusions Li+ acts as a specific inhibitor of the GSK-3 family of protein kinases in vitro and in intact cells, and mimics Wingless signalling. This reveals a possible molecular mechanism of Li+ action on development and differentiation.  相似文献   

9.
Phytosulfokine (PSK) is a peptide growth factor that requires tyrosine sulfation carried out by tyrosylprotein sulfotransferase (TPST) for its activity. PSK is processed from precursor proteins encoded by five genes in Arabidopsis thaliana and perceived by receptor kinases encoded by two genes in Arabidopsis. pskr1‐3 pskr2‐1 and tpst‐1 knockout mutants displayed reduced seed production, indicative of a requirement for PSK peptide signaling in sexual plant reproduction. Expression analysis revealed PSK precursor and PSK receptor gene activity in reproductive organs with strong expression of PSK2 in pollen. In support of a role for PSK signaling in pollen, in vitro pollen tube (PT) growth was enhanced by exogenously added PSK while PTs of pskr1‐3 pskr2‐1 and of tpst‐1 were shorter. In planta, growth of wild‐type pollen in pskr1‐3 pskr2‐1 and tpst‐1 flowers appeared slower than growth in wild‐type flowers. But PTs did eventually reach the base of the style, suggesting that PT elongation rate may not be responsible for the reduced fertility. Detailed analysis of anthers, style and ovules did not reveal obvious developmental defects. By contrast, a high percentage of unfertilized ovules in pskr1‐3 pskr2‐1 and in tpst‐1 siliques displayed loss of funicular PT guidance, suggesting that PSK signaling is required to guide the PT from the transmitting tract to the embryo sac. Cross‐pollination experiments with wild‐type, pskr1‐3 pskr2‐1 and tpst‐1 male and female parents revealed that both the PT and the female sporophytic tissue and/or female gametophyte contribute to successful PT guidance via PSK signaling and to fertilization success.  相似文献   

10.
11.
This paper reports on the isolation of a novel class of plant serine/threonine protein kinase genes, MsK-1 , MsK-2 and MsK-3 . They belong to the superfamily of cdc2 -like genes, but show highest identity to the Drosophila shaggy and rat GSK-3 proteins (66–70%). All of these kinases share a highly conserved catalytic protein kinase domain. Different amino-terminal extensions distinguish the different proteins. The different plant kinases do not originate from differential processing of the same gene as is found for shaggy , but are encoded by different members of a gene family. Similarly to the shaggy kinases, the plant kinases show different organ-specific and stage-specific developmental expression patterns. Since the shaggy kinases play an important role in intercellular communication in Drosophila development, the MsK kinases are expected to perform a similar function in plants.  相似文献   

12.
13.
In order to gain information about protein kinases acting during plant fertilization and embryogenesis, a reverse genetic approach was used to determine the role of protein kinases expressed in reproductive tissues. Two cDNA clones named ScFRK1 and ScFRK2 (Solanum chacoense fertilization-related kinase 1 and 2) were isolated from an expressed sequence tag (EST) library normalized for weakly expressed genes in fertilized ovaries. These showed significant sequence similarities to members of the mitogen-activated protein kinase kinase kinase (MAPKKK) family. RNA gel blot and RNA in situ hybridization analyses confirmed the strong up-regulation of ScFRK2 in ovules after fertilization. In addition, ScFRK2 mRNAs accumulate during early ovule development in the megasporocyte and in the integument of developing ovules. Overexpression of ScFRK2 led to the production of fruits with a severely reduced number of seeds. The seeds that were produced also exhibited developmental retardation. Analysis of ovaries prior to fertilization showed that the seedless phenotype was caused by a homeotic conversion of ovules into carpel-like structures. The present observations are consistent with the role of ScFRK2 in pre- and post-fertilization events. Furthermore, overexpression of ScFRK2 led to changes in the expression of the class D floral homeotic gene ScFBP11, suggesting that the ScFRK2 kinase may interact, directly or indirectly, with the FBP7/11 pathway that directs establishment of ovule identity.  相似文献   

14.
Degenerate polymerase chain reaction against conserved kinase catalytic subdomains identified 15 tyrosine and serine-threonine kinases expressed in surgically removed prostatic carcinoma tissues, including six receptor kinases (PDGFBR, IGF1-R, VEGFR2, MET, RYK, and EPH-A1), six non-receptor kinases (ABL, JAK1, JAK2, TYK2, PLK-1, and EMK), and three novel kinases. Several of these kinases are oncogenic, and may function in the development of prostate cancer. One of the novel kinases is a new member of the sterile 20 (STE20) family of serine-threonine kinases which we have called prostate-derived STE20-like kinase (PSK) and characterized functionally. PSK encodes an open reading frame of 3705 nucleotides and contains an N-terminal kinase domain. Immunoprecipitated PSK phosphorylates myelin basic protein and transfected PSK stimulates MKK4 and MKK7 and activates the c-Jun N-terminal kinase mitogen-activated protein kinase pathway. Microinjection of PSK into cells results in localization of PSK to a vesicular compartment and causes a marked reduction in actin stress fibers. In contrast, C-terminally truncated PSK (1-349) did not localize to this compartment or induce a decrease in stress fibers demonstrating a requirement for the C terminus. Kinase-defective PSK (K57A) was unable to reduce stress fibers. PSK is the first member of the STE20 family lacking a Cdc42/Rac binding domain that has been shown to regulate both the c-Jun N-terminal kinase mitogen-activated protein kinase pathway and the actin cytoskeleton.  相似文献   

15.
Free fatty acids (FFA)-induced proliferation and apoptosis was studied in human umbilical vein endothelial cells (HUVECs). A recombinant adenovirus containing a RNAi cassette targeting the GSK-3β gene was produced and its silencing effect on GSK-3β gene was detected by Western blot analysis and immunohistochemistry assay in HUVECs. The effect of the RNAi on the protein level of β-catenin was explored by transfecting the RNAi adenovirus to inhibit the expression of GSK-3β protein. The subsequent effect on the Wnt/GSK-3β/β-catenin signal pathway and on proliferation and apoptosis of HUVECs cultured with FFAs, was analyzed by BrdU assay, Annexin V-FITC/PI Apoptosis Detection Kit, and 4′,6-diamidino-2- phenylindole(DAPI) to explore the possible connection between the signaling pathway and FFA-induced proliferation and apoptosis. The Western blot results showed that the expression of GSK-3β protein in HUVECs could be inhibited efficiently by the RNAi adenovirus, and that the protein level of β-catenin was increased by RNAi adenovirus transfection. The results of the BrdU assay suggested that knockdown of GSK-3β with the RNAi adenovirus may stimulate the proliferation of HUVECs. Apoptosis was observed in HUVECs exposed to FFAs (0.75 mmol/L) for 72 h, and this effect could be partly reversed when interfering with the RNAi adenovirus. It may be concluded that the RNAi adenovirus specific to GSK-3β may partly protect HUVECs from apoptosis induced by FFAs, probably through the up-regulation of the Wnt/β-catenin signal pathway.  相似文献   

16.
Retroposition is increasingly recognized as an important mechanism for the acquisition of new genes. We show that a glycogen synthase kinase-3 gene, shaggy (sgg), retroposed at least 50 MYA in the Drosophila genus to generate a new gene, mojoless (mjl). We have extensively analyzed the function of mjl and examined its functional divergence from the parental gene sgg in Drosophila melanogaster. Unlike Sgg, which is expressed in many tissues of both sexes, Mjl is expressed specifically in the male germ line, where it is required for male germ line survival. Our analysis indicates that mjl has acquired a specific function in the maintenance of male germ line viability. However, it has not completely lost its ancestral biochemical function and can partially compensate for loss of the parental gene sgg when ectopically expressed in somatic cells. We postulate that mjl has undergone functional diversification and is now under stabilizing selection in the Drosophila genus.  相似文献   

17.
Protein kinases play key roles in cellular functions. They are involved in many cellular functions including; signal transduction, cell cycle regulation, cell division, and cell differentiation. Alterations of protein kinase by gene amplification, mutation or viral factors often induce tumor formation and tumor progression toward malignancy. The identification and cloning of kinase genes can provide a better understanding of the mechanisms of tumorigenesis as well as diagnostic tools for tumor staging. In this study, we have used degenerated polymerase-chain-reaction primers according to the consensus catalytic domain motifs to amplify protein kinase genes (protein-tyrosine kinase, PTK, and protein-serine/threonine kinase, PSK) from human stomach cancer cells. Following amplification, the protein kinase molecules expressed in the gastric cancer cells were cloned into plasmid vectors for cloning and sequencing. Sequence analysis of polymerase-chain-reaction products resulted in the identification of 25 protein kinases, including two novel ones. Expression of several relevant PTK/PSK genes in gastric cancer cells and tissues was further substantiated by RT-PCR using gene-specific primers. The identification of protein kinases expressed or activated in the gastric cancer cells provide the framework to understand the oncogenic process of stomach cancer.  相似文献   

18.
利用RT-PCR方法,从非洲菊(Gerbera hybrida)花瓣的CDNA中克隆到了查尔酮合酶(Chalcone Synthase,CHS)基因CHS,进行了序列分析。结果表明,克隆到的CHS基因全长为1197bps,编码一个由398个氨基酸残基组成的多肽,与Helariutta等发表的非洲菊查尔酮合酶CHSI基因的CDNA序列的CHS基因同源性高达99%。进一步将该基因克隆到表达载体pET32a上,经IPTG诱导表达,得到高效表达的融合蛋白。  相似文献   

19.
20.
Class B floral homeotic genes specify the identity of petals and stamens during the development of angiosperm flowers. Recently, putative orthologs of these genes have been identified in different gymnosperms. Together, these genes constitute a clade, termed B genes. Here we report that diverse seed plants also contain members of a hitherto unknown sister clade of the B genes, termed B(sister) (B(s)) genes. We have isolated members of the B(s) clade from the gymnosperm Gnetum gnemon, the monocotyledonous angiosperm Zea mays and the eudicots Arabidopsis thaliana and Antirrhinum majus. In addition, MADS-box genes from the basal angiosperm Asarum europaeum and the eudicot Petunia hybrida were identified as B(s) genes. Comprehensive expression studies revealed that B(s) genes are mainly transcribed in female reproductive organs (ovules and carpel walls). This is in clear contrast to the B genes, which are predominantly expressed in male reproductive organs (and in angiosperm petals). Our data suggest that the B(s) genes played an important role during the evolution of the reproductive structures in seed plants. The establishment of distinct B and B(s) gene lineages after duplication of an ancestral gene may have accompanied the evolution of male microsporophylls and female megasporophylls 400-300 million years ago. During flower evolution, expression of B(s) genes diversified, but the focus of expression remained in female reproductive organs. Our findings imply that a clade of highly conserved close relatives of class B floral homeotic genes has been completely overlooked until recently and awaits further evaluation of its developmental and evolutionary importance. Electronic supplementary material to this paper can be obtained by using the Springer Link server located at http://dx.doi.org/10.1007/s00438-001-0615-8.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号