首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
2.
TO apply the bromodeoxyuridine (BrdU) labeling method using a monoclonal antibody to the study of cell proliferation in the mouse uterus, methods of fixation and embedding of tissues and of immunofluorescent staining were compared in terms of the rate of detection of labeled cells and specificity and stability of fluorescence obtained. BrdU was administered intravenously 2 hr before death and uterine blocks were embedded in polyester wax and Technovit resin after fixation in formalin and periodate-lysine-paraformaldehyde, respectively. The indirect method with anti-BrdU and fluorescein isothiocyanate (FITC) conjugated antimouse IgG antisera and the direct method with FITC conjugated anti-BrdU antibody were applied to both wax- and resin-embedded sections. Labeled and total cells were counted in luminal and glandular epithelia and stromata adjoining them. Counterstaining with hematoxylin for counting total cells produced intense fluorescence over the whole of resin sections and made counting of labeled cells impossible. On wax sections, on the other hand, the results were satisfactory, although the number of labeled cells detected was decreased slightly. In wax sections fluorescence due to nuclear incorporation of BrdU in the indirect method could be easily distinguished from the cytoplasmic or extracellular emission seen in some cells by its location and characteristic color. In resin sections, however, more careful observation was needed since the second antibody used in the indirect method cross-reacted with IgG in eosinophils and produced cyctoplasmic fluorescence of the same color. By the indirect method greater numbers of labeled cells were detected in wax sections than in resin sections. The difference was distinct in tissues with extensive cell proliferation. By the direct method the fluorescence obtained was weaker and apt to fade more quickly than that obtained by the indirect method; use of the direct method reduced the number of labeled cells detected in both wax- and resin-embedded sections.  相似文献   

3.
To apply the bromodeoxyuridine (BrdU) labeling method using a monoclonal antibody to the study of cell proliferation in the mouse uterus, methods of fixation and embedding of tissues and of immunofluorescent staining were compared in terms of the rate of detection of labeled cells and specificity and stability of fluorescence obtained. BrdU was administered intravenously 2 hr before death and uterine blocks were embedded in polyester wax and Technovit resin after fixation in formalin and periodate-lysine-paraformaldehyde, respectively. The indirect method with anti-BrdU and fluorescein isothiocyanate (FITC) conjugated antimouse IgG antisera and the direct method with FITC conjugated anti-BrdU antibody were applied to both wax- and resin-embedded sections. Labeled and total cells were counted in luminal and glandular epithelia and stomata adjoining them. Counterstaining with hematoxylin for counting total cells produced intense fluorescence over the whole of resin sections and made counting of labeled cells impossible. On wax sections, on the other hand, the results were satisfactory, although the number of labeled cells detected was decreased slightly. In wax sections fluorescence due to nuclear incorporation of BrdU in the indirect method could be easily distinguished from the cytoplasmic or extracellular emission seen in some cells by its location and characteristic color. In resin sections, however, more careful observation was needed since the second antibody used in the indirect method cross-reacted with IgG in eosinophils and produced cytoplasmic fluorescence of the same color. By the indirect method greater numbers of labeled cells were detected in wax sections than in resin sections. The difference was distinct in tissues with extensive cell proliferation. By the direct method the fluorescence obtained was weaker and apt to fade more quickly than that obtained by the indirect method; use of the direct method reduced the number of labeled cells detected in both wax- and resin-embedded sections.  相似文献   

4.
We present an immunochemical technique for the detection of 5-bromo-2'-deoxyuridine (BrdU) incorporated discontinuously into the chromosomal DNA. A monoclonal anti-BrdU antibody and a protein A-gold complex were used to produce chromosome banding of human and equine chromosomes, specific for electron microscopy (EM). Well-defined bands, symmetry of sister chromatids, concordance between homologues, and band patterns similar to those observed by light microscopy facilitate chromosome identification and karyotyping. From prophase to late metaphase, chromosomes condense and bands appear to fuse. The fusion appears to be owing to chromatin reorganization. Our results underline the value of using immunogold reagents, which are ideal probes for antigen localization on chromosomes.  相似文献   

5.
The standard method for assessment of cell proliferation in paraffin-embedded tissue sections is 5-bromodeoxyuridine (BrdU) immunohistochemistry (IHC). BrdU can be administered to laboratory animals via IP injections, is readily incorporated into nuclei during the DNA synthetic phase of the cell cycle, and is detected with an anti-BrdU antibody. This method has several disadvantages, and an accurate method for evaluation of proliferative activity that can substitute for BrdU IHC, when necessary, is of great interest to investigators. Alternative methods for detection of proliferating cells in tissue sections are proliferating cell nuclear antigen (PCNA) IHC, Ki-67 IHC, and in situ hybridization (ISH) for histone mRNA. To determine the optimal choice, we analyzed the correlation of anti-PCNA, anti-Ki-67(MIB-5), and histone mRNA labeling indices (LIs) with anti-BrdU LI in rat highly replicative (renewing) tissues. The correlation between anti-BrdU and histone mRNA LIs, as well as the correlation between anti-BrdU and anti-Ki-67 LIs, was statistically significant. There was no significant correlation between anti-BrdU and anti-PCNA LIs. These results suggest that both ISH for histone mRNA and IHC with MIB-5 are preferable techniques for assessment of cell proliferation in rat paraffin-embedded renewing tissues compared to PCNA IHC. They can substitute for BrdU IHC when necessary.  相似文献   

6.
A post-embedding in situ hybridization procedure was developed to detect hepatopancreatic parvovirus (HPV) of penaeid shrimp at the ultrastructural level. The procedure was optimized using sections of resin-embedded hepatopancreas from HPV-infected juvenile Penaeus monodon and postlarval P. chinensis. The hepatopancreata were fixed using various fixatives, dehydrated, and embedded in the hydrophilic resin Unicryl. A 592 bp HPV-specific DNA probe, labeled with DIG-11-dUTP, was tested both on semi-thin and ultra-thin sections and examined by light and electron microscopy, respectively. Hybridized probe was detected by means of an anti-DIG antibody conjugated to 10 nm gold particles and subsequent silver enhancement. Hybridization signal intensities were similar with all fixatives tested, but ultrastructure was best preserved with either 2 or 6% glutaraldehyde. Post-fixation with 1% osmium tetroxide improved ultrastructure but markedly decreased hybridization signal and induced non-specific deposition of gold and silver. Under optimized conditions, this technique was used to successfully follow the development of HPV from absorption and transport through the cytoplansm to nuclear penetration, replication and release by cytolysis. The probe signal was consistently observed among necrotic cell debris within the lumen of hepatopancreatic tubules, within the microvillous border of tubule epithelial cells, within the cytoplasm, and within diagnostic HPV intranuclear inclusion bodies. The nucleolus and karyoplasm of patently infected cells (i.e., showing HPV intranuclear inclusion bodies) were almost devoid of signal. Electron-lucent structures, known as intranuclear bodies, commonly found within the virogenic stroma, showed only weak labeling. This is the first use of in situ hybridization to detect HPV nucleic acids with the electron microscope. The technique should be useful for studying the pathogenesis of HPV.  相似文献   

7.
A new procedure is described to generate single-stranded DNA by exonuclease III (Exo III) digestion for bromodeoxyuridine (BrdU) immunocytochemistry on tissue sections. We compared this procedure with the most widely used procedure of DNA denaturation with 2 N HCl. In vivo and in vitro pulse and continuous labelling of tissues and cells were used. The specimens were fixed in formalin, ethanol, glutaraldehyde, Carnoy's, Bouin's or Zamboni's fixative and embedded in paraffin or used unfixed as cryostat sections or cytospin preparations. After Exo III digestion, BrdU substituted DNA was detected irrespective of the fixation procedure applied. The optimal protocol for nuclease digestion appeared to be simultaneous incubation, of 10 Units Exo III per ml EcoRI buffer and anti-BrdU monoclonal antibody at 37 degrees C. The advantages of Exo III digestion for BrdU immunocytochemistry compared to acid denaturation were: less non-specific nuclear background reactivity, no DNA renaturation, less DNA loss, optimal nuclear morphology, increase in antibody efficiency and the possibility for simultaneous detection of acid-sensitive tissue constituents. Disadvantages of the Exo III digestion are decreased sensitivity and the need for more rigorous pepsin pretreatment. We conclude that Exo III digestion of DNA is an appropriate alternative for acid denaturation for BrdU immunocytochemistry on sections of pulse-labelled specimens.  相似文献   

8.
Most techniques used to assay the growth of microbes in natural communities provide no information on the relationship between microbial productivity and community structure. To identify actively growing bacteria, we adapted a technique from immunocytochemistry to detect and selectively isolate DNA from bacteria incorporating bromodeoxyuridine (BrdU), a thymidine analog. In addition, we developed an immunocytochemical protocol to visualize BrdU-labeled microbial cells. Cultured bacteria and natural populations of aquatic bacterioplankton were pulse-labeled with exogenously supplied BrdU. Incorporation of BrdU into microbial DNA was demonstrated in DNA dot blots probed with anti-BrdU monoclonal antibodies and either peroxidase- or Texas red-conjugated secondary antibodies. BrdU-containing DNA was physically separated from unlabeled DNA by using antibody-coated paramagnetic beads, and the identities of bacteria contributing to both purified, BrdU-containing fractions and unfractionated, starting-material DNAs were determined by length heterogeneity PCR (LH-PCR) analysis. BrdU-containing DNA purified from a mixture of DNAs from labeled and unlabeled cultures showed >90-fold enrichment for the labeled bacterial taxon. The LH-PCR profile for BrdU-containing DNA from a labeled, natural microbial community differed from the profile for the community as a whole, demonstrating that BrdU was incorporated by a taxonomic subset of the community. Immunocytochemical detection of cells with BrdU-labeled DNA was accomplished by in situ probing with anti-BrdU monoclonal antibodies and Texas red-labeled secondary antibodies. Using this suite of techniques, microbial cells incorporating BrdU into their newly synthesized DNA can be quantified and the identities of these actively growing cells can be compared to the composition of the microbial community as a whole. Since not all strains tested could incorporate BrdU, these methods may be most useful when used to gain an understanding of the activities of specific species in the context of their microbial community.  相似文献   

9.
Summary A new procedure is described to generate single-stranded DNA by exonuclease III (Exo III) digestion for bromodeoxyuridine (BrdU) immunocytochemistry on tissue sections. We compared this procedure with the most widely used procedure of DNA denaturation with 2 N HCl. In vivo and in vitro pulse and continuous labelling of tissues and cells were used. The specimens were fixed in formalin, ethanol, glutaraldehyde, Carnoy's, Bouin's or Zamboni's fixative and embedded in paraffin or used unfixed as cryostat sections or cytospin preparations. After Exo III digestion, BrdU substituted DNA was detected irrespective of the fixation procedure applied. The optimal protocol for nuclease digestion appeared to be simultaneous incubation, of 10 Units Exo III per ml EcoRI buffer and anti-BrdU monoclonal antibody at 37° C. The advantages of Exo III digestion for BrdU immunocytochemistry compared to acid denaturation were: less non-specific nuclear background reactivity, no DNA renaturation, less DNA loss, optimal nuclear morphology, increase in antibody efficiency and the possibility for simultaneous detection of acid-sensitive tissue constituents. Disadvantages of the Exo III digestion are decreased sensitivity and the need for more rigorous pepsin pretreatment. We conclude that Exo III digestion of DNA is an appropriate alternative for acid denaturation for BrdU immunocytochemistry on sections of pulse-labelled specimens.  相似文献   

10.
Summary A rapid and convenient method for the large scale, immunogold-silver staining (IGSS) of bromodeoxyuridine (BrdU) incorporated by S phase cells, by means of a monoclonal antibody (anti-BrdU) is described. Nineteen slides at a time can be incubated with the antibodies and the protein A-gold (PAG) in staining jars. The antibody and protein A-gold solutions could be used at least five times to incubate new batches of slides. The incubation times with these solutions were shortened by means of microwave irradiation. In this way 200 slides carrying at least 800 sections could be easily processed under the same conditions in one day, using 1.25ml neat antibody solutions of anti-BrdU and rabbit anti-mouse.For light microscopy bothpplastic embedding systems: methylmethacrylate (MMA) and glycolmethacrylate (GMA) can be stained with this technique. The MMA sections, of which the plastic has to be removed before the IGSS, has the advantage of a stronger labelling intensity. The GMA plastic, which contains a cross-linking, agent cannot be removed and consequently for GMA sections it is necessary to incubate the sections with a proteolytic enzyme (trypsin) before the IGSS, to reexpose the antigenic binding sides. However, the GMA sections can be allowed to air dry during the IGSS without negative effects on the morphology. This makes it possible to perform the antibody and the PAG-incubating steps on one day and to finish the IGSS the next day. In this way twice as many GMA slides can be incubated with the same antibody and PAG solutions than with MMA slides.In both plastic embedding systems the intensity of the BrdU labelling was found to be stronger in Carnoy's than in Bouin's fixed sections.  相似文献   

11.
A method for the detection by electron microscopy of chromosome banding after in situ hybridization of small, nonradioactive DNA sequences is described. Typical high-resolution G-banding is produced by adding 5-bromodeoxyuridine (BrdU) during the last part of the S-phase and by applying a monoclonal antibody against the BrdU-substituted chromosome segments, followed by the addition of protein G, but no further treatment. A protocol for in situ hybridization of small, single-copy biotinylated DNA sequences and their detection by immunogold tagging on banded chromosomes is also described. This combined approach permits high-resolution mapping of small DNA sequences and should be useful in discriminating between neighboring DNA fragments.  相似文献   

12.
We recently described a nonradioactive method for in situ hybridization with 5-bromo-2-deoxyuridine (BrdU) labelled oligonucleotide probes. An antibody to BrdU and immunocytochemistry were used in order to detect the hybridization signal. We have now applied this method to semithin Epon sections, in order to hybridize consecutive sections through single cells with different probes and to stain them with antibodies to neuropeptides. It could be shown that Epon embedding reserves mRNA well. In the present study we used a BrdU labelled synthetic oligonucleotide probe complementary to a fragment of the vasopressin precursor and an antibody to Arg-vasopressin. Vasopressin mRNA was demonstrable in a fraction of the vasopressin immunoreactive neurons in the magnocellular nuclei. In addition some of the magnocellular neurons showed either hybridization or vasopressin immunostaining only, perhaps indicating different stages of synthetic and secretory activity. The method described seems to be a valuable tool for studying synthetic activity in peptidergic neurons on a single cell level. The method might also have potential for in situ hybridization on the electron-microscopical level.  相似文献   

13.
Summary We recently described a nonradioactive method for in situ hybridization with 5-bromo-2-deoxyuridine (BrdU) labelled oligonucleotide probes. An antibody to BrdU and immunocytochemistry were used in order to detect the hybridization signal. We have now applied this method to semithin Epon sections, in order to hybridize consecutive sections through single cells with different probes and to stain them with antibodies to neuropeptides. It could be shown that Epon embedding preserves mRNA well. In the present study we used a BrdU labelled synthetic oligonucleotide probe complementary to a fragment of the vasopressin precursor and an antibody to Arg-vasopressin. Vasopressin mRNA was demonstrable in a fraction of the vasopressin immunoreactive neurons in the magnocellular nuclei. In addition some of the magnocellular neurons showed either hybridization or vasopressin immunostaining only, perhaps indicating different stages of synthetic and secretory activity. The method described seems to be a valuable tool for studying synthetic activity in peptidergic neurons on a single cell level. The method might also have potential for in situ hybridization on the electronmicroscopical level.  相似文献   

14.
目的 以标记在人巨细胞病毒(HCMV)DNA上的BrdU为示踪剂,研究病毒在受染HEL细胞中的移动过程;同时结合病毒蛋白pp65的表达探讨病毒复制、增殖的过程。方法 以BrdU标记的HCMV(MOI=4)感染HEL细胞,分别选取感染后2h、4h、6h、24h及48h 5个时间点的细胞,用抗BrdU单克隆抗体,研究病毒核酸的胞内定位;同时用抗HCMV蛋白pp65的单克隆抗体检测此蛋白的表达及分布。结果 免疫细胞荧光染色结果提示:在感染5个时间点,病毒DNA依次位于胞质、胞核及同时位于胞核和胞质;蛋白pp65的表达及分布规律为:胞内无表达、胞核分布、胞核与胞质同时分布及巨细胞和融合细胞内分布。结论 以BrdU为标记物标记双链DNA病毒核酸不仅为研究HCMV.的胞内移动提供了良好的模型,同时也为其他病毒的研究提供了良好的工具;本实验结合HCMV蛋白pp65的表达和分布直观地反应了HCMV感染HEL细胞并在其中复制、增殖的过程。  相似文献   

15.
DNA synthesis was detected by the incorporation of 5-bromo-2' deoxy-uridine (BrdU) in adult Anopheles albimanus organs in culture in response to a challenge with Saccharomyces cerevisiae. Abdomens of mosquitoes inoculated with Roswell Park Memorial Institute medium (RPMI, control) or yeast were cultivated in RPMI plus ConA and BrdU for 5 days. DNA was obtained by phenolic extraction and the incorporated BrdU was quantified by ELISA using anti-BrdU peroxidase-labeled antibodies. Abdomen tissues of mosquitoes inoculated with yeast showed higher DNA synthesis than controls. Organs from untreated mosquitoes cultured in the presence of zymosan also synthesized DNA but at a lower level than tissues from yeast-inoculated mosquitoes. In similar experiments, DNA synthesis was inhibited by the addition of colchicine. DNA synthesis, evidenced by epifluorescence using an anti-BrdU fluorescein-labeled antibody, occurred in fat body, epithelial cells in pleural membranes, and the dorsal vessel. Pleural membranes showed the highest number of labeled cells. These tissues were also labeled with anti-PCNA (proliferating cell nuclear antigen) antibodies, two of which were able to produce polytene chromosomes under yeast stimulation. These results demonstrate that different An. albimanus tissues undergo DNA synthesis in response to foreign particles.  相似文献   

16.
We describe an in situ DNA nick end-labeling method that can be performed at the electron microscopic level and can also be combined with immunoelectron microscopy. As the materials, we used skin tissues from normal skin and from Bowen's disease that had been cryofixed, freeze-substituted, and embedded in Lowicryl K11M resin. Ultrathin sections were cut and incubated with a reaction buffer containing digoxigenin-dUTP and terminal deoxynucleotidyl transferase. Digoxigenin nucleotides were labeled with anti-digoxigenin antibodies conjugated with colloidal gold. Specific signals were detected in the condensed chromatin of differentiated epidermal cells and hair follicles in normal skin and of dyskeratotic cells in Bowen's disease. The labeling density over chromosomal areas of apoptotic cells was significantly higher than that over chromosomal areas of mitotic cells or cytoplasmic areas. Ultrastructure was well preserved and double staining with an anti-keratin antibody was also successfully performed. This simple method has a wide range of applications to identify the nature of apoptotic cells and explore the mechanisms of apoptosis.  相似文献   

17.
Thin viable slices of normal or pathological human tissues were incubated in vitro with bromodeoxyuridine (BrdU). Later, cryostatic sections and histological sections from the same samples embedded in paraffin were examined by an immunohistochemical method using a monoclonal antibody anti-bromodeoxyuridine (anti-BrdU-MAb): on both cryostatic and histological sections, the nuclei of the S-phase cells proved positive. The optimization of the technique depends on the concentration of bromodeoxyuridine in the culture medium (160 microM), the duration of incubation (not less than two h), the method of DNA denaturation (2N or 4N HCl) and the dilution of the anti-BrdU-MAb (1:50). In vitro, immunohistochemical application of the BrdU/anti-BrdU-MAb method permits a quantitative assessment of the proliferative activity of a tissue as well as the direct location of the actively replicating cells in histological sections.  相似文献   

18.
19.
We have developed a novel approach for in situ labeling and detection of nucleic acids in cultured cells. It is based on in vivo incorporation of chlorouridine (ClU) or iododeoxyuridine (IdU) into Chinese hamster ovary cells with the aim of labeling RNA and DNA, respectively. The halogenated nucleotides are immunolabeled on ultrathin sections with anti-bromodeoxyuridine (BrdU) monoclonal antibodies that specifically react with either IdU or ClU. Furthermore, we combined ClU and IdU incubation to label simultaneously RNA and DNA in the same cell. Both were visualized by means of anti-BrdU antibodies exhibiting strong affinity for one of the two halogenated epitopes. Confocal imaging of interphase nuclei and electron microscopic analysis showed evidence of a partial colocalization of newly synthesized DNA and RNA inside the cell nucleus. RNase and DNase digestion of ultrathin sections after formaldehyde fixation and acrylic resin embedding confirmed the specificity of incorporation. Consequently, this method allows us to differentially label DNA and RNA on the same section. Using short pulses with the precursors, we could show that newly synthesized DNA and RNA both preferentially occur within the perichromatin region at the border of condensed chromatin domains.  相似文献   

20.
Durations of S-phase (Ts) and total cell cycle times (Tc) were measured from the peripheral blood (PB) and bone marrow aspirates (BM) of five patients with acute nonlymphocytic leukemia (ANLL). Intravenous bromodeoxyuridine (BrdU) was used as the first label for S-phase cells and a monoclonal anti-BrdU antibody was used to detect the positive cells. Tritiated thymidine [( 3H]Tdr) was used as a second label in vitro, and the Ts was calculated by counting the number of cells labeled either by BrdU or by [3H]Tdr or by both. Our data demonstrate that the duration of S-phase in myeloblasts obtained from BM is quite similar to that of circulating leukemic cells. Finally, the most accurate assessment of percentage of myeloblasts actively engaged in DNA synthesis can be obtained only from bone marrow biopsies following in vivo labeling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号