首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We recently described a nonradioactive method for in situ hybridization with 5-bromo-2-deoxyuridine (BrdU) labelled oligonucleotide probes. An antibody to BrdU and immunocytochemistry were used in order to detect the hybridization signal. We have now applied this method to semithin Epon sections, in order to hybridize consecutive sections through single cells with different probes and to stain them with antibodies to neuropeptides. It could be shown that Epon embedding reserves mRNA well. In the present study we used a BrdU labelled synthetic oligonucleotide probe complementary to a fragment of the vasopressin precursor and an antibody to Arg-vasopressin. Vasopressin mRNA was demonstrable in a fraction of the vasopressin immunoreactive neurons in the magnocellular nuclei. In addition some of the magnocellular neurons showed either hybridization or vasopressin immunostaining only, perhaps indicating different stages of synthetic and secretory activity. The method described seems to be a valuable tool for studying synthetic activity in peptidergic neurons on a single cell level. The method might also have potential for in situ hybridization on the electron-microscopical level.  相似文献   

2.
A synthetic oligonucleotide probe, complementary to oxytocin m-RNA was labelled enzymatically with 5-bromo-2'-deoxyuridine (5-BrdU) and with [gamma-32P]-ATP. The labelled probes were used for in situ hybridization of histological sections of the mouse hypothalamus. A monoclonal antibody to 5-BrdU and the streptavidine-peroxidase technique were used in order to visualize hybridization with the 5-BrdU labelled probe. In situ hybridization with [32P] labelling was detected autoradiographically. With both methods hybridized neurons were visible in the magnocellular hypothalamic nuclei. While immunostaining and radio-labelling provided similar localization of oxytocin m-RNA, only the immunocytochemical technique showed clear cellular resolution of the reaction product. In situ hybridization with 5-BrdU labelled probes followed by 5-brdU immunocytochemistry seems to be a powerful alternative to common autoradiographic techniques.  相似文献   

3.
A protocol was developed combining non-radioactive in situ hybridization histochemistry with enzyme based immunohistochemistry, detect the expression of mRNA in phenotypically defined neurons. Freefloating brain sections were hybridized with the oligonucleotide probes which have been 3-end labelled with biotin-11-dUTP. The hybridized probe was visualized by a combined avidin-biotin bridge method, anti-avidin immunohistochemistry, and horseradish peroxidase detection using diaminobenzidine as a substrate. The in situ hybridization step yielded a very stable reaction product enabling subsequent immunohistochemical reactions using horseradish peroxidase and benzidine dihydrochloride as a chromogen. Magnocellular neurons of the hypothalamo-neurophypophysial system synthesize either vasopressin or oxytocin; water deprivation and chronic saline ingestion are potent stimuli for the expression of both of the genes encoding these neuropeptides. A number of other neuropeptides with putative transmitter action are synthesized in magnocellular neurons during such stimulation. Experiments were performed to explore whether neuropeptide Y immunoreactivity is present within magnocellular vasopressin mRNA-expressing neurons of the hypothalamo-neurophypophysial system. The results clearly demonstrated that neuropeptide Y-immunoreactive elements were present within a number of magnocellular vasopressin mRNA-containing cells. In addition, immunohistochemical detection of the neuropeptides ocytocin and cholecystokinin was carried out on sections hybridized non-radioactively for vasopressin; as expected vasopressin mRNA did not co-exist with cholecystokinin, whereas a few oxytocin immunoreactive neurons in osmotically stimulated animals also contained vasopressin mRNA. The developed method makes possible the immunohistochemical detection of intracellular antigens with concomitant detection of intracellular mRNA.  相似文献   

4.
1. The use of radioactive and biotinylated oligonucleotide probes has been optimized to detect and analyze by in situ hybridization, neurons expressing neuropeptide genes (vasopressin, oxytocin, somatostatin). 2. In situ hybridization was performed on cryostat-cut sections obtained from tissues perfused with 1% formaldehyde. Radioactive probes were labeled by tailing with 35S-dATP and revealed with autoradiography. Biotinylated probes were obtained either by the incorporation of 11-biotin dUTP or by the addition of biotinylated nucleotides to the oligonucleotide during its synthesis. Biotin was revealed with streptavidin alkaline phosphatase and the appropriate substrate. 3. In the adult rat brain, radioactive and biotinylated probes revealed peptidergic neurons. The biotinylated probes provided an optimal cellular and subcellular resolution with a sensitivity similar to that observed with radioactive probes. Staining was selectively restricted to the cytoplasm and to the proximal part of processes. 4. Biotinylated vasopressin probes with 10 biotins added demonstrated magnocellular neurons and parvocellular neurons in the suprachiasmatic nucleus and the bed nucleus stria terminalis. 5. Vasopressin gene expression was studied during ontogeny in the rat fetus and neonate. Vasopressin mRNA was first detectable at gestational day 16 in the supraoptic nucleus in neurons of neuroblastic appearance. An aspect similar to the one present in adult was found at gestational day 19 in magnocellular neurons and at day 3 postnatal in parvocellular neurons. 6. The results confirm that radioactive oligonucleotide probes are efficient tools to investigate neuropeptide gene expression by in situ hybridization and demonstrate that biotinylated oligonucleotides are very efficient and provide a much higher resolution than radioactive probes with a reasonable sensitivity.  相似文献   

5.
Summary A synthetic oligonucleotide probe, complementary to oxytocin m-RNA was labelled enzymatically with 5-bromo-2-deoxyuridine (5-BrdU) and, with [-32P]-ATP. The labelled probes were used for in situ, hybridization of histological sections of the mouse hypothalamus. A monoclonal antibody to 5-BrdU and the streptavidine-peroxidase technique were used in order to visualize hybridization with the 5-BrdU labelled probe. In situ hybridization with [32P] labelling was detected autoradiographically. With both methods hybridized neurons were visible in the magnocellular hypothalamic nuclei. While immunostaining and radio-labelling provided similar localization of oxytocin m-RNA, only the immunocytochemical technique showed clear cellular resolution of the reaction product. In situ hybridization with 5-BrdU labelled probes followed by 5-BrdU immunocytochemistry seems to be a powerful alternative to common autoradiographic techniques.  相似文献   

6.
In this report we present immunocytochemical and in situ hybridization evidence that magnocellular vasopressin and oxytocin neurons in the hypothalamic supraoptic and paraventricular nuclei express type-2 vesicular glutamate transporter, a marker for their glutamatergic neuronal phenotype. To address the issue of whether an increase in magnocellular neuron activity coincides with the altered synthesis of the endogenous glutamate marker, we have introduced a new dual-label in situ hybridization method which combines fluorescent and autoradiographic signal detection components for vasopressin and vesicular glutamate transporter-2 mRNAs, respectively. Application of this technique provided evidence that 2% sodium chloride in the drinking water for 7 days produced a robust and significant increase of vesicular glutamate transporter-2 mRNA in vasopressin neurons of the supraoptic nucleus. The immunocytochemical labeling of pituitary sections, followed by the densitometric analysis of vesicular glutamate transporter-2 immunoreactivity in the posterior pituitary, revealed a concomitant increase in vesicular glutamate transporter-2 protein levels at the major termination site of the magnocellular axons. These data demonstrate that magnocellular oxytocin as well as vasopressin cells contain the glutamatergic marker vesicular glutamate transporter-2, similarly to most of the parvicellular neurosecretory neurons examined so far. The robust increase in vesicular glutamate transporter-2 mRNA and immunoreactivity after salt loading suggests that the cellular levels of vesicular glutamate transporter-2 in vasopressin neurons are regulated by alterations in water–electrolyte balance. In addition to the known synaptic actions of excitatory amino acids in magnocellular nuclei, the new observations suggest novel mechanisms whereby glutamate of endogenous sources can regulate magnocellular neuronal functions.  相似文献   

7.
8.
In situ hybridization provides a method for identifying cells that contain specific nucleic acid sequences. This report outlines an in situ hybridization procedure for mammalian neural tissue. The method maintains morphological quality and produces excellent specificity. Seven tritiated nucleic acid probes were examined: two ribosomal RNA probes, a control pBR322 plasmid probe, two probes encoding portions of the gene for oxytocin, one probe each encoding a portion of vasopressin glycoprotein, and neurophysin. Using cryostat-cut rat brain sections, rRNA probes labeled the cytoplasm of all cells and the nucleoli of larger neurons. The plasmid probe failed to produce a strong signal. Oxytocin and vasopressin probes appropriately labeled the cytoplasm of hypothalamic magnocellular neurons. Vasopressin parvocellular neurons were not identified by the current method, and the shorter length neurophysin probe failed to produce a signal. Methodological variables were examined by counting autoradiographic grains in cells. The longer oxytocin probe produced a stronger signal than the shorter oxytocin and vasopressin probes, and higher probe concentrations resulted in stronger signal. Hybridization could be abolished by tissue pretreatment with RNAse A, and longer exposure time increased signal strength. The outlined fixation steps with fresh-frozen tissue produced a superior signal compared to paraformaldehyde-perfused tissue.  相似文献   

9.
We describe a procedure for combining pre-embedding peroxidase immunocytochemistry with pre-embedding autoradiographic in situ hybridization in the same vibratome sections of paraformaldehyde-fixed brain tissue. The simultaneous detection of Met-enkephalin (Met-enk)-immunoreactive product and pro-enkephalin (PE) mRNA in neurons of the magnocellular dorsal nucleus (MDN) in the guinea pig hypothalamus was carried out as a model for this procedure. Vibratome slices were processed for Met-enk immunodetection followed by the incubation with a 45-base synthetic oligonucleotide complementary to PE mRNA labeled with 35S. Tissues were embedded in araldite, cut into semi-thin sections, and processed for autoradiography. Many neurons double labeled for Met-enk and PE mRNA were viewed in the MDN. The histological quality and the spatial resolution of both signals were optimized, since precise intracellular localization of hybridization sites was possible. This method allows simultaneous study of peptide immunoreactivity and mRNA expression levels in neurons within the same semi-thin sections. It may be useful for a variety of quantitative analyses, and might also be extended to ultrastructural analysis.  相似文献   

10.
Summary In situ hybridization procedure with a 32P-labelled synthetic oligonucleotide probe was used to detect corticotropin-releasing factor-encoding messenger RNA (CRF mRNA) in the hypothalamus of the white sucker, Catostomus commersoni. Adjacent sections were immunostained by a sucker CRF-specific antiserum. CRF mRNA-containing neurons were identified by autoradiography in the magnocellular and parvocellular subdivisions of the preoptic nucleus (PON). Many of these neurons were also immunostained by sucker antiserum, showing the same distribution patterns. These results confirm the presence of CRF mRNA and CRF peptide in the white sucker hypothalamus and support the view that the magnocellular and parvocellular neurons of the PON may be involved in the control of adrenocorticotropic hormone secretion from the pituitary in the white sucker.  相似文献   

11.
A protocol was developed to achieve the simultaneous determination of gene expression and bacterial identity at the level of single cells; a chromogenic beta-galactosidase activity assay was combined with in situ hybridization of fluorescently labelled oligonucleotide probes to rRNA. The method allows monitoring of gene expression and quantification of beta-galactosidase activity in single cells.  相似文献   

12.
We analyzed expression of the vasopressin (AVP) gene in semi-thin sections in normal and Brattleboro rats by using in situ hybridization and immunohistochemistry. AVP mRNA was detected as follows: vibratome sections of rat hypothalamus were hybridized with a biotinylated oligonucleotide probe, embedded in Araldite, and cut into semi-thin sections which were reacted with streptavidin-alkaline phosphatase and the appropriate substrate. Adjacent serial sections were treated by immunohistochemistry to detect AVP or oxytocin immunoreactivity. In normal rat, AVP mRNA can be detected in magnocellular neurons of the supraoptic and paraventricular nuclei and in parvocellular neurons of the suprachiasmatic nucleus. AVP mRNA was present throughout the cytoplasm of the cell bodies, their processes, and in punctate structures in the vicinity of the AVP cell bodies. Most neurons containing AVP mRNA also contain AVP immunoreactivity, but the staining intensity was not consistently correlated for each reaction. A few neurons contained AVP mRNA without detectable AVP immunoreactivity. In the Brattleboro rat, staining intensity of the reaction was lower than in normal rat and the AVP mRNA was restricted mostly to the periphery of the cytoplasm. In this strain, the neurons containing the AVP mRNA did not contain AVP or oxytocin immunoreactivity. These results demonstrate that neuropeptide mRNA can be detected in semi-thin sections with a biotinylated oligonucleotide probe, and that AVP gene deletion provokes modification of the intracellular localization of the AVP mRNA.  相似文献   

13.
14.
15.
A bromodeoxyuridine (BrdU) labeled DNA probe was used for in situ hybridization at the electron microscopic (EM) level. A BrdU labeled DNA probe was hybridized in situ to cryostat sections of paraformaldehyde fixed OCT compound embedded cultured HL-60 cells. After hybridization, some sections were incubated with FITC-conjugated anti-BrdU monoclonal antibody for fluorescence microscopy (FM). and others were embedded in Quetol for electron microscopy (EM). The ultrathin sections of Quetol-embedded specimens were incubated with the anti-BrdU monoclonal antibody and the immunoglobulin: gold colloid. In both FM and EM studies, the signals were concentrated in the rough endoplasmic reticulum. Moreover, some label was arranged from the nucleus to the cytoplasm at the EM level. Relatively simple methods using the BrdU labeled DNA probe for the detection of the defined nucleic acid sequence with reasonable tissue preservation and high resolution are described here. This method may be useful for developmental and disease related studies of specific mRNA in cells and tissues.  相似文献   

16.
In situ hybridization (ISH) using a 25 mer tritiated oligonucleotide probe has been performed to study at the electron microscopic level the subcellular localization of the oxytocin mRNA in the rat hypothalamic magnocellular neurons. After high resolution radioautography, silver grains appeared to be localized over the cytoplasm of some magnocellular neurons of the supra-optic nucleus and frequently overlapped the ergastoplasmic "cisternae" of the Nissl bodies. These results demonstrate the possible application of ISH at a subcellular level using high resolution radioautography and a tritiated probe.  相似文献   

17.
In situ hybridization studies with [32P] and [3H] labelled antisense RNA probes were undertaken to determine optimal methods of tissue fixation, tissue sectioning, and conditions of hybridization, and to compare the relative merits of the two different radioactive labels. The distribution of somatostatin mRNA in neurons of rat brain using a labelled antisense somatostatin RNA probe was employed as a model for these studies. The highest degree of sensitivity for in situ hybridization was obtained using paraformaldehyde fixation and vibratome sectioning. Optimal autoradiographic localization of mRNA was obtained within 7 days using [32P] labelled probes. However, due to the high energy emittance of [32P], precise intracellular localization of hybridization sites was not possible. [3H] labelled RNA probes gave more precise cellular localization but required an average of 18-20 days autoradiographic exposure. The addition of the scintillator, PPO, decreased the exposure time for the localization of [3H] labelled probes to seven days. We also report a method for combined in situ hybridization and immunocytochemistry for the simultaneous localization of somatostatin in mRNA and peptide in individual neurons.  相似文献   

18.
In situ hybridization histochemical techniques were used in an attempt to demonstrate atrial natriuretic peptide (ANP) messenger RNA (mRNA) in the rat brain. A synthetic oligonucleotide derived from previously reported ANF cDNA sequence was used as a probe. Northern blot analysis of total RNA isolated from rat heart demonstrated that the oligonucleotide recognized a single species of RNA (0.9 kb), a size consistent with previous reports. Rat heart sections revealed dense accumulations of ANF mRNA in the cardiac atria and lesser densities in the ventricles. Rat brain sections hybridized with the same oligonucleotide did not label ANF mRNA accumulations in any neuronal cell bodies. A possible explanation for this latter observation is either sparsely distributed expressing neurons or low expression and high turnover of ANF mRNA in brain.  相似文献   

19.
We observed coexistence of corticosteroid-binding globulin (CBG) with vasopressin (VP) and oxytocin (OT) in magnocellular neurons in rat hypothalamus by combined immunoperoxidase staining and immunofluorescence. A portion of the supraoptic and of the paraventricular neurons showed double immunostaining of CBG with either VP or with OT. CBG staining was intensified by pretreating animals with colchicine to block axonal transport. CBG was also observed in widespread axonal projections throughout the lateral hypothalamus, the median eminence and the posterior pituitary lobe. Single ependymal cells and some of the endocrine cells in the anterior lobe contained specific CBG immunoreactivity. IN SITU hybridization of semithin sections with a synthetic oligonucleotide probe to CBG mRNA provided staining of magnocellular hypothalamic neurons, but not ependymal cells or anterior lobe cells. Western blots of CBG extracted by affinity chromatography from hypothalamus homogenates showed a band at approximately 50 kDa. Our observations indicate the intrinsic expression of CBG in peptidergic hypothalamus neurons in rat. The multiple locations of CBG-expressing neurons indicate multiple functional properties, probably exceeding the role of a mere steroid transporter. CBG is likely to be subject to axonal transport and secretion in a neuropeptide-like fashion, perhaps involved in neuroendocrine regulation, which may include stress responses.  相似文献   

20.
We assessed the effects of cold and isolation stress on arginine vasopressin (AVP) mRNA in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. Vasopressin mRNA levels were determined by in situ hybridization histochemistry at the cellular level. In posterior magnocellular neurons of the PVN isolation stress for 7 or 14 days increased vasopressin mRNA levels 28 and 29%, respectively, compared to group-housed controls. No significant alterations in vasopressin gene expression were observed in the SON after 7 or 14 days of isolation stress. Scattered magnocellular AVP mRNA-expressing cells of the medial parvocellular PVN showed increases of 19 and 34% after 7 and 14 days of isolation, respectively. We also studied the effect of cold or combined cold and isolation stress on vasopressin gene expression in the PVN and SON. Cold stress for 3 h daily for 4 consecutive days increased AVP mRNA levels in the posterior magnocellular PVN by 15%. Cold-isolated animals showed an increase of 21%. No significant effect on AVP mRNA levels in the SON was observed. In contrast to the posterior magnocellular PVN, cold or cold-isolation stress increased AVP mRNA in magnocellular neurons of the medial parvocellular region of the PVN by 25 and 43%, respectively, relative to control rats. These results suggest that psychological and metabolic stress may be added to the list of stressors that activate the hypothalamo-neurohypophysial system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号