首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Mediterranean Basin is typified by a high degree of species rarity and endemicity that reflects its position, geomorphology, and history. Although the composition and cryptic variation of the bat faunas from the Iberian and Balkan Peninsulas are relatively well studied, data from the Apennine Peninsula are still incomplete. This is a significant shortfall, given the presumed refugial role of this region in the context of Europe's Pleistocene phylogeography. It was thus our aim to supplement the phylogeographical information from the region, generating mitochondrial sequences and reviewing published data, with a focus on the dispersal and diversification patterns characterizing taxa with different life strategies. Site‐specific lineages were ascertained, especially in the genera Myotis and Plecotus and amongst the pipistrelloid bats, representing speciose radiations. It was possible to observe disjunct ranges with patches isolated south of the Alps in several species, corresponding with evolution of elevated genetic distance. The genetic subdivision within the continuous Italian range into northern and southern lineages in several taxa indicated the possible past substructure of the refugium. Several shared lineages between the Apennine and Ibero‐Maghrebian regions were observed, indicating connectivity between the Adriatic and Atlantic?Mediterranean refuges, and raising questions as to which region these clades originated from and what was the direction of faunal exchange between them. In contrast to Europe's other two main refugia, the Apennine Peninsula is a smaller region with simpler phylogeographical patterns. Nevertheless, our results support the idea that the region generated novel lineages. Whereas diversification in sedentary bats may have been driven through the generation of in situ adaptations, specialization, and niche differentiation, the emergence of species with a tramp strategy could have entailed the utilization of faunal drift and the taxon cycle. © 2015 The Linnean Society of London  相似文献   

2.
Two distinct lineages of Rana temporaria are known in the Palaearctic region, but it is uncertain whether this species persisted in one or more Pleistocene refugia. We resolved the phylogeographic history and genetic variability of R. temporaria in the Italian peninsula, a 'traditional' Pleistocene refugium, and related our findings to patterns described for other European populations. We sequenced the mitochondrial markers Cox I and cytochrome b. Phylogenetic reconstruction only indicated the presence of haplotypes belonging to the Western lineage in the Italian peninsula. Overall, the genetic variability of Italian populations was higher than other European populations, which shared haplotypes with the Alpine populations. We demonstrated subdivision into five main Italian sublineages, which was associated with a geographical structure of populations in two divergent groups. In particular, one Apennine group might have resulted from bottlenecks during the last interglacials ages. In contrast, Alpine populations were recently diverged and showed incomplete lineage sorting. Our data indicate that the Italian peninsula served as refugium for the Western lineage of R. temporaria. Dispersion towards Central Europe probably started only from the western slope of the Alps via a rapid leading edge expansion. The identified structure is partially congruent with traditional peripheral refugia identified for plants. This evolutionary scenario does not support any taxonomic distinction at the subspecific level for R. temporaria.  相似文献   

3.
The genus Abies has a complex history in southern México and Guatemala. In this region, four closely related species, Abies flinckii , A. guatemalensis , A. hickelii , and A. religiosa , are distributed in fragmented and isolated montane populations. Range-wide genetic variation was investigated across species using cytoplasmic DNA markers with contrasted inheritance. Variation at two maternally inherited mitochondrial DNA markers was low. All species shared two of the nine mitotypes detected, while the remaining seven mitochondrial DNA types were restricted to a few isolated stands. Mitochondrial genetic differentiation across taxa was high ( G ST = 0.933), it was not related to the taxonomic identity ( amova ; P  > 0.05) of the populations, and it was not phylogeographically structured ( G ST ≈  N ST). In contrast, variation at three paternally inherited chloroplast DNA microsatellites was high. Chloroplast genetic differentiation was lower ( G ST = 0.402; R ST = 0.547) than for mitochondrial DNA, but it was significantly related to taxonomy ( amova ; P  < 0.001), and exhibited a significant phylogeographical structure ( G ST <  R ST). Different analyses of population structure indicated that A. flinckii was the most divergent taxon, while the remaining three species formed a relatively homogeneous group. However, a small number of the populations of these three taxa, all located at the limits of their respective ranges or in the Transverse Volcanic Belt, diverged from this main cluster. These trends suggest that the Mesoamerican Abies share a recent common ancestor and that their divergence and speciation is mainly driven by genetic drift and isolation during the warm interglacial periods.  相似文献   

4.
Habitat fragmentation is one of the greatest threats to biodiversity. Despite their importance for conservation, the genetic consequences of small-scale habitat fragmentation for bat populations are largely unknown. In this study, we linked genetic with ecological and demographic data to assess the effects of habitat fragmentation on two species of phyllostomid bats ( Uroderma bilobatum and Carollia perspicillata ) that differ in their dispersal abilities and demographic response to fragmentation. We hypothesized that population differentiation and the effect of habitat fragmentation on levels of genetic diversity will be a function of the species' mobility. We sequenced mtDNA from 232 bats caught on 11 islands in Gatún Lake, Panamá, isolated from the mainland for ca 90 yr, and in adjacent, continuous forest on the mainland. Populations of both species showed significant genetic differentiation ( F ST). Consistent with our prediction, population subdivision was lower in the highly mobile U. bilobatum ( F ST= 0.01) compared to the less vagile C. perspicillata ( F ST= 0.06), and only the latter species showed a pattern indicative of isolation by distance and, in addition, an effect of fragmentation. Genetic erosion as a result of fragmentation was also only detectable in the less mobile species, C. perspicillata , where haplotype diversity was lower in island compared to mainland populations. Our results suggest that some Neotropical bat species are prone to loss of genetic variation in response to anthropogenic small-scale habitat fragmentation. In this context, our findings point toward mobility as a good predictor of a species' vulnerability to fragmentation and altered population genetic structure.  相似文献   

5.
The freshwater faunas of the Italian peninsula are isolated from the rest of Europe by the geographic barrier of the Alps and consequently have developed many endemic forms and contain few non-endemic species. However, some 'non-endemics' may either represent recent invaders of the Adriatic basin or cryptic endemic species. To test these two hypotheses against each other, we studied the origin and phylogenetic relationships of bullheads, cold adapted freshwater fishes of the genus Cottus, from both sides of the Alps and Dinaric Mountains. From the Adriatic basin, Cottus ferrugineus () was described as an endemic species, but the present analyses of sequences of the complete mitochondrial control region of 146 individuals from 43 localities showed no major differentiation between bullheads from both sides of the Alps. The very low diversification between representatives across the Alps suggests active transfers of haplotypes across this geographic barrier from the glacial cycles up to recent times. The transfers are most likely based on stream capture, since the cold-adapted bullhead is able to colonise the highest stretches of the water courses. No other freshwater fish in Europe is known to have experienced such an extensive gene flow across the highest European Mountains. In contrast, the Dinaric Mountains seem to have been a much more effective barrier between the Danube and the Adriatics. Our data reject the hypothesis of C. ferrugineus as an endemic species in the whole Adriatic drainage.  相似文献   

6.
The Kuhl’s pipistrelle (Pipistrellus kuhlii) is a Western Palaearctic species of bat that exhibits several deeply divergent mitochondrial lineages across its range. These lineages could represent cryptic species or merely ancient polymorphism, but no nuclear markers have been studied so far to properly assess the taxonomic status of these lineages. We examined here two lineages occurring in Western Europe, and used both mitochondrial and nuclear markers to measure degrees of genetic isolation between bats carrying them. The sampling focused on an area of strict lineage sympatry in Switzerland but also included bats from further south, in North Africa. All individuals were barcoded for the COI gene to identify their mitochondrial lineages and five highly polymorphic microsatellite loci were used to cluster them according to their nuclear genotypes. Despite this low number of nuclear markers, all North African nuclear genotypes were grouped in a highly distinct subpopulation when compared with European samples sharing the same mitochondrial barcodes. The reverse situation prevailed in Switzerland where bats carrying distinct barcodes had similar nuclear genotypes. There was a weak east/west nuclear structure of populations, but this was independent of mitochondrial lineages as bats carrying either variant were completely admixed. Thus, the divergent mitochondrial barcodes present in Western Europe do not represent cryptic species, but are part of a single biological species. We argue that these distinct barcodes evolved in allopatry and came recently into secondary contact in an area of admixture north of the Alps. Historical records from this area and molecular dating support such a recent bipolar spatial expansion. These results also highlight the need for using appropriate markers before claiming the existence of cryptic species based on highly divergent barcodes.  相似文献   

7.
Pleistocene climatic oscillations strongly influenced the genetic composition of many species which are often divided into several genetic lineages. In this context, we studied the allozymes of a common and widely distributed butterfly, the common blue Polyommatus icarus, over a large part of Europe. The species had a rather high genetic diversity within populations with a strikingly high mean number of alleles per locus (2.98). In contrast, differentiation between populations was very low ( F ST: 0.0187). Only a marginal trend of decline in genetic diversity from the south to the north was observed. Isolation-by-distance existed on a European scale ( r =  0.826), but not at a regional level. Regional differentiation between populations in western Germany was extremely low ( F ST: 0.0041). It is probable that P. icarus was widely distributed in the Mediterranean region during the last ice age and expanded into central Europe in the postglacial period without major genetic erosion. Moderate present and past gene flow in an intact metapopulation structure may have occurred on local, regional and perhaps even continental scales.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 529–538.  相似文献   

8.
We assessed colony- and island-level genetic differentiation for the flightless cormorant ( Phalacrocorax harrisi ), an endangered Galápagos endemic that has one of the most limited geographical distributions of any seabird, consisting of only two adjacent islands. We screened 223 individuals from both islands and nine colonies at five microsatellite loci, recovering 23 alleles. We found highly significant genetic differentiation throughout the flightless cormorant's range on Fernandina and Isabela Islands (global F ST = 0.097; P  < 0.0003) both between islands (supported by Bayesian analyses, F ST and R ST values) and within islands (supported only by F ST and R ST values). An overall pattern of isolation-by-distance was evident throughout the sampled range ( r =  0.4169, one-sided P  ≤ 0.02) and partial Mantel tests of this relationship confirmed that ocean is a dispersal barrier ( r =  0.500, one-sided P  ≤ 0.003), especially across the 5-km gap between the two islands. The degree of detected genetic differentiation among colonies is surprising, given the flightless cormorant's limited range, and suggests a role for low vagility, behavioural philopatry, or both to limit dispersal where physical barriers are absent. We argue that this population should be managed as at least two genetic populations to better preserve the species-level genetic diversity, but, for demographic reasons, advocate the continued conservation of all breeding colonies.  相似文献   

9.
Because of their role in limiting gene flow, geographical barriers like mountains or seas often coincide with intraspecific genetic discontinuities. Although the Strait of Gibraltar represents such a potential barrier for both plants and animals, few studies have been conducted on its impact on gene flow. Here we test this effect on a bat species (Myotis myotis) which is apparently distributed on both sides of the strait. Six colonies of 20 Myotis myotis each were sampled in southern Spain and northern Morocco along a linear transect of 1350 km. Results based on six nuclear microsatellite loci reveal no significant population structure within regions, but a complete isolation between bats sampled on each side of the strait. Variability at 600 bp of a mitochondrial gene (cytochrome b) confirms the existence of two genetically distinct and perfectly segregating clades, which diverged several million years ago. Despite the narrowness of the Gibraltar Strait (14 km), these molecular data suggest that neither males, nor females from either region have ever reproduced on the opposite side of the strait. Comparisons of molecular divergence with bats from a closely related species (M. blythii) suggest that the North African clade is possibly a distinct taxon warranting full species rank. We provisionally refer to it as Myotis cf punicus Felten 1977, but a definitive systematic understanding of the whole Mouse-eared bat species complex awaits further genetic sampling, especially in the Eastern Mediterranean areas.  相似文献   

10.
For a better understanding of the complex coevolutionary processes between hosts and parasites, accurate identification of the actors involved in the interaction is of fundamental importance. Blood parasites of the Order Haemosporidia, responsible for malaria, have become the focus of a broad range of studies in evolutionary biology. Interestingly, molecular-based studies on avian malaria have revealed much higher species diversity than previously inferred with morphology. Meanwhile, studies on bat haemosporidian have been largely neglected. In Europe, only one genus (Polychromophilus) and two species have been morphologically described. To evaluate the presence of potential cryptic species and parasite prevalence, we undertook a molecular characterization of Polychromophilus in temperate zone bats. We used a nested-PCR approach on the cytochrome b mitochondrial gene to detect the presence of parasites in 237 bats belonging to four different species and in the dipteran bat fly Nycteribia kolenatii, previously described as being the vector of Polychromophilus. Polychromophilus murinus was found in the four bat species and in the insect vector with prevalence ranging from 4% for Myotis myotis to 51% for M. daubentoni. By sequencing 682 bp, we then investigated the phylogenetic relationships of Polychromophilus to other published malarial lineages. Seven haplotypes were found, all very closely related, suggesting the presence of a single species in our samples. These haplotypes formed a well-defined clade together with Haemosporidia of tropical bats, revealing a worldwide distribution of this parasite mostly neglected by malarial studies since the 1980s.  相似文献   

11.
ABSTRACT.   Great Kiskadees ( Pitangus sulphuratus ) are found in a variety of habitats from Argentina north to the United States and are the most generalist tyrant flycatcher in both foraging behavior and food habits. These kiskadees are known to occasionally prey on small vertebrates, but, to our knowledge, bats have never been reported as a prey item. We observed a breeding pair of Great Kiskadees preying on bats ( Myotis spp.) at the field station Base de Estudos do Pantanal (BEP) in the southern Pantanal, Brazil. At BEP, there are fissures under the building's floor slabs that allow two species of bats, black myotis ( Myotis nigricans ) and silver-tipped myotis ( M. albescens ), to access internal galleries and use them as day roosts. We found that bats, insects, and fruits were the most common food items fed to nestlings by adult kiskadees. Bats ( N = 10) were captured when kiskadees landed on ground below a building, looked up through a fissure, and then reached through the fissure and captured a bat in their bill. On one occasion, a kiskadee flew from a perch and captured a bat in flight. Our observations provide further evidence of the opportunistic feeding behavior of Great Kiskadees.  相似文献   

12.
The two sibling bat species Myotis myotis and Myotis blythii occur in sympatry over wide areas of Southern and Central Europe. Morphological, ecological and previous genetic evidence supported the view that the two species constitute two well-differentiated groups, but recent phylogenetic analyses have shown that the two species share some mtDNA haplotypes when they occur in sympatry. In order to see whether some genetic exchange has occurred between the two species, we sequenced a highly variable segment of the mitochondrial control region in both species living in sympatry and in allopatry. We also analysed the nuclear diversity of 160 individuals of both species found in two mixed nursery colonies located north and south of the Alps. MtDNA analysis confirmed that European M. blythii share multiple, identical or very similar haplotypes with M. myotis. Since allopatric Asian M. blythii presents mtDNA sequences that are very divergent from those of the two species found in Europe, we postulate that the mitochondrial genome of the European M. blythii has been replaced by that of M. myotis. The analysis of nuclear diversity shows a strikingly different pattern, as both species are well differentiated within mixed nursery colonies (F(ST) = 0.18). However, a Bayesian analysis of admixture reveals that the hybrids can be frequently observed, as about 25% of sampled M. blythii show introgressed genes of M. myotis origin. In contrast, less than 4% of the M. myotis analysed were classified as non-parental genotypes, revealing an asymmetry in the pattern of hybridization between the two species. These results show that the two species can interbreed and that the hybridization is still ongoing in the areas of sympatry. The persistence of well-differentiated nuclear gene pools, in spite of an apparent replacement of mitochondrial genome in European M. blythii by that of M. myotis, is best explained by a series of introgression events having occurred repeatedly during the recent colonization of Europe by M. blythii from Asia. The sharp contrast obtained from the analysis of mitochondrial and nuclear markers further points to the need to cautiously interpret results based on a single class of genetic markers.  相似文献   

13.
Genetic variation and population structure of Penaeus monodon in the coastal waters of South China were detected using mitochondrial DNA control region sequences. Eighty individuals were collected at Sanya, Shenzhen, Zhanjiang and Beihai; 69 haplotypes with 157 polymorphic sites were detected. Nucleotide diversity (π) of the combined samples (6.16 ± 3.01%) was much higher than many other species in Chinese seas, such as Penaeus japonicus , Portunus trituberculatus , and Acanthopagrus schlegeli . Genetic differentiation was significant between Beihai and Sanya (pairwise F ST = 0.09836, P < 0.05), and between Beihai and Shenzhen (pairwise F ST = 0.12153, P < 0.05). Significant genetic differentiation among all populations was found by analysis of molecular variance ( amova ) ( F ST = 0.053, P = 0.037 < 0.05). The upgma dendrogram of the four populations showed Sanya and Shenzhen as the closest to each other, with Beihai having the greatest genetic distance from Sanya and Shenzhen. The tiger prawn of the coastal waters of South China should therefore be bred as two separated stocks, avoiding inbreeding or outbreeding selection of P. monodon in the captive breeding program. According to our results one source population is Beihai, and the others are from Sanya and Shenzhen.  相似文献   

14.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

15.
It is well known that the current genetic pattern of many European species has been highly influenced by climatic changes during the Pleistocene. While there are many well known vertebrate examples, knowledge about squamate reptiles is sparse. To obtain more data, a range‐wide sampling of Lacerta viridis was conducted and phylogenetic relations within the L. viridis complex were analysed using an mtDNA fragment encompassing part of cytochrome b, the adjacent tRNA genes and the noncoding control region. Most genetic divergence was found in the south of the distribution range. The Carpathian Basin and the regions north of the Carpathians and Alps are inhabited by the same mitochondrial lineage, corresponding to Lacerta viridis viridis. Three distinct lineages occurred in the south‐eastern Balkans — corresponding to L. v. viridis, L. v. meridionalis, L. v. guentherpetersi— as well as a fourth lineage for which no subspecies name is available. This distribution pattern suggests a rapid range expansion of L. v. viridis after the Holocene warming, leading to a colonization of the northern part of the species range. An unexpected finding was that a highly distinct genetic lineage occurs along the western Balkan coast. Phylogenetic analyses (Bayesian, maximum likelihood, maximum parsimony) suggested that this west Balkan lineage could represent the sister taxon of Lacerta bilineata. Due to the morphological similarity of taxa within the L. viridis complex this cryptic taxon was previously assigned to L. v. viridis. The distribution pattern of several parapatric, in part highly, distinct genetic lineages suggested the existence of several refuges in close proximity on the southern Balkans. Within L. bilineata sensu stricto a generally similar pattern emerged, with a high genetic diversity on the Apennine peninsula, arguing for two distinct refuges there, and a low genetic diversity in the northern part of the range. Close to the south‐eastern Alps, three distinct lineages (L. b. bilineata, L. v. viridis, west Balkan taxon) occurred within close proximity. We suggest that the west Balkan lineage represents an early offshoot of L. bilineata that was isolated during a previous Pleistocene glacial from the more western L. bilineata populations, which survived in refuges on the Apennine peninsula.  相似文献   

16.
Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations ( Q ST −  F ST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation ( Q ST) with its expectation under neutrality ( F ST) revealed no evidence of disruptive selection ( Q ST >  F ST) or stabilizing selection ( Q ST <  F ST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research.  相似文献   

17.
Sensitivity of bats to land use change depends on their foraging ecology, which varies among species based on ecomorphological traits. Additionally, because prey availability, vegetative clutter, and temperature change throughout the year, some species may display seasonal shifts in their nocturnal habitat use. In the Coastal Plain of South Carolina, USA, the northern long-eared bat (Myotis septentrionalis), southeastern myotis (Myotis austroriparius), tri-colored bat (Perimyotis subflavus), and northern yellow bat (Lasiurus intermedius) are species of conservation concern that are threatened by habitat loss. Our objective was to identify characteristics of habitat used by these species during their nightly active period and compare use between summer and winter. We conducted acoustic surveys at 125 sites during May–August and at 121 of the same 125 sites December–March 2018 and 2019 in upland forests, bottomland forests, fields, ponds, and salt marsh and used occupancy models to assess habitat use. The northern long-eared bat and southeastern myotis (i.e., myotis bats) used sites that were closer to hardwood stands, pine stands, and fresh water year-round. We did not identify any strong predictors of tri-colored bat habitat use in summer, but during winter they used bottomland forests, fields, and ponds more than salt marsh and upland forests. During summer and winter, northern yellow bats used sites close to fresh water and salt marsh. Additionally, during summer they used fields, ponds, and salt marsh more than upland and bottomland forests, but in winter they used bottomland forests, fields, and ponds more than upland forest and salt marsh. Our results highlight important land cover types for bats in this area (e.g., bottomland forests, ponds, and salt marsh), and that habitat use changes between seasons. Accounting for and understanding how habitat use changes throughout the year will inform managers about how critical habitat features may vary in their importance to bats throughout the year. © 2021 The Wildlife Society.  相似文献   

18.
Genetic divergence in bat communities was assessed on both sides of the Straits of Gibraltar and cryptic diversity was examined. Screening was carried out using partial sequences of the mitochondrial (mt)DNA cytochrome b gene on 399 individual bats belonging to the 18 species found on both sides of the Straits of Gibraltar. For those bats that showed important genetic discontinuities, molecular markers (ND1 and nuclear RAG2 genes) were added to expand the sampling process. Phylogenetic reconstructions were obtained using maximum parsinomy, genetic distances, maximum likelihood, and Bayesian criteria. As an estimate of bats' flight performance, we measured for each species the wing aspect ratio and wing loading indexes, and correlated them with the maximum pairwise genetic distances obtained between southern Iberian and northern Moroccan populations. Genetic mtDNA distances between populations on both continents exceed 5% in seven out of 18 bat species analysed and unknown lineages were uncovered within the species complexes Myotis nattereri and Myotis mystacinus . We did not find a general pattern in the degree of permeability of the Straits of Gibraltar for bats. Genetic distances were not correlated with the ability to cross the Straits. Our study shows that the cryptic diversity uncovered among bats continues to increase as more regions are studied.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 434–450.  相似文献   

19.
The Italian peninsula is a biodiversity hotspot, with its freshwater fish fauna characterized by high levels of local endemism. Two endemic fluvio‐lacustrine fishes of the genus Barbus (barbel, family Cyprinidae) have allopatric distributions in the Tyrrhenian and Adriatic basins of Italy. Barbus plebejus inhabits the mid‐ to northern Adriatic basins, while B. tyberinus is widespread in all central‐northern basins draining into the Tyrrhenian Sea. For basins in Southern Italy draining into the southern parts of these seas, there remains a knowledge gap on their barbel populations due to no previous genetic and morphological studies, despite their apparent biogeographic isolation. Correspondingly, this study quantified the presence and distribution of barbels in the Adriatic and Tyrrhenian basins of Southern Italy through genetic and morphological analyses of 197 fish sampled across eight populations. Testing of how local isolation has influenced the evolution and persistence of these populations was completed by examining sequence variation at two mitochondrial loci (cytochrome b and D‐loop) and performing geometric morphometric analyses of body shape, plus measuring 11 morphometric and meristic characters. Phylogenetic and morphological analyses revealed the presence of two genetically distinct lineages that differed significantly from adjacent B. tyberinus and B. plebejus populations. These two new taxa, here described as SI1 and SI2 Barbus lineages, are highly structured and reflect a complex mosaic biogeographic pattern that is strongly associated with the underlying hydrographical scenarios of the basins. The geographic isolation of these basins thus has high evolutionary importance that has to be considered for maintaining endemism.  相似文献   

20.
Different species of bat can be morphologically very similar. In order to estimate the amount of cryptic diversity among European bats we screened the intra- and interspecific genetic variation in 26 European vespertilionid bat species. We sequenced the DNA of subunit 1 of the mitochondrial protein NADH dehydrogenase (ND1) from several individuals of a species, which were sampled in a variety of geographical regions. A phylogeny based on the mitochondrial (mt) DNA data is in good agreement with the current classification in the family. Highly divergent mitochondrial lineages were found in two taxa, which differed in at least 11% of their ND1 sequence. The two mtDNA lineages in Plecotus austriacus correlated with the two subspecies Plecotus austriacus austriacus and Plecotus austriacus kolombatovici. The two mtDNA lineages in Myotis mystacinus were partitioned among two morphotypes. The evidence for two new bat species within Europe is discussed. Convergent adaptive evolution might have contributed to the morphological similarity among distantly related species if they occupy similar ecological niches. Closely related species may differ in their ecology but not necessarily in their morphology. On the other hand, two morphologically clearly different species (Eptesicus serotinus and Eptesicus nilssonii) were found to be genetically very similar. Neither morphological nor mitochondrial DNA sequence analysis alone can be guaranteed to identify species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号