首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Comparative analyses of the genetic differentiation in microsatellite markers ( F ST) and leaf morphology characters ( Q ST) of Amphicarpaea edgeworthii Benth. were conducted to gain insight into the roles of random processes and natural selection in the population divergence. Simple sequence repeat analyses on 498 individuals of 19 natural populations demonstrate that a significant genetic differentiation occurs among populations (mean F ST = 0.578), and A. edgeworthii is a highly self-fertilized species (mean selfing rate s  = 0.989). The distribution pattern of genetic diversity in this species shows that central populations possess high genetic diversity (e.g. population WL with H E = 0.673 and population JG with H E = 0.663), whereas peripheral ones have a low H E as in population JD (0.011). The morphological divergence of leaf shape was estimated by the elliptical Fourier analysis on the data from 11 natural and four common garden populations. Leaf morphology analyses indicate the morphological divergence does not show strong correlation with the genetic differentiation ( R  = 0.260, P  = 0.069). By comparing the 95% confidence interval of Q ST with that of F ST, Q ST values for five out of 12 quantitative traits are significantly higher than the average F ST value over eight microsatellite loci. The comparison of F ST and Q ST suggests that two kinds of traits can be driven by different evolutionary forces, and the population divergence in leaf morphology is shaped by local selections.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 96 , 505–516.  相似文献   

2.
Levels of allozyme variation and intrapopulation spatial genetic structure of the two terrestrial clonal orchids Liparis kumokiri , a self-compatible relatively common species, and L. makinoana , a self-incompatible rare species, were examined for 17 ( N  = 1875) and four ( N  = 425) populations, respectively, in South Korea. Populations of L. makinoana harboured high levels of genetic variation ( H e = 0.319) across 15 loci. In contrast, L. kumokiri exhibited a complete lack of allozyme variation ( H e = 0.000). Considering the lack of genetic variability, it is suggested that current populations of L. kumokiri in South Korea originated from a genetically depauperate ancestral population. For L. makinoana , a significant deficit of heterozygosity (mean F IS = 0.198) was found in population samples excluding clonal ramets, suggesting that pollen dispersal is localized, generating biparental inbreeding. The significant fine-scale genetic structuring (≤ 2 m) found in a previous study, in addition to the moderate levels of population differentiation ( F ST = 0.107) and the significant relationship between genetic and geographical distances ( r  = 0.680) found here, suggests a leptokurtic distribution of seed dispersal for L. makinoana . Although populations of L. makinoana harbour high levels of genetic variation, they are affected by a recent genetic bottleneck. This information suggests that genetic drift and limited gene flow could be the main evolutionary forces for speciation of a species-rich genus such as Liparis .  © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society , 2007, 153 , 41–48.  相似文献   

3.
Theory predicts that the impact of gene flow on the genetic structure of populations in patchy habitats depends on its scale and the demographic attributes of demes (e.g. local colony sizes and timing of reproduction), but empirical evidence is scarce. We inferred the impact of gene flow on genetic structure among populations of water voles Arvicola terrestris that differed in average colony sizes, population turnover and degree of patchiness. Colonies typically consisted of few reproducing adults and several juveniles. Twelve polymorphic microsatellite DNA loci were examined. Levels of individual genetic variability in all areas were high ( H O= 0.69–0.78). Assignments of juveniles to parents revealed frequent dispersal over long distances. The populations showed negative F IS values among juveniles, F IS values around zero among adults, high F ST values among colonies for juveniles, and moderate, often insignificant, F ST values for parents. We inferred that excess heterozygosity within colonies reflected the few individuals dispersing from a large area to form discrete breeding colonies. Thus pre-breeding dispersal followed by rapid reproduction results in a seasonal increase in differentiation due to local family groups. Genetic variation was as high in low-density populations in patchy habitats as in populations in continuous habitats used for comparison. In contrast to most theoretical predictions, we found that populations living in patchy habitats can maintain high levels of genetic variability when only a few adults contribute to breeding in each colony, when the variance of reproductive success among colonies is likely to be low, and when dispersal between colonies exceeds nearest-neighbour distances.  相似文献   

4.
The diversification of the teleost suborder Notothenioidei (Perciformes) in Antarctic waters provides one of the most striking examples of a marine adaptive radiation. Along with a number of adaptations to the cold environment, such as the evolution of antifreeze glycoproteins, notothenioids diversified into eight families and at least 130 species. Here, we investigate the genetic population structure of the humped rockcod ( Gobionotothen gibberifrons ), a benthic notothenioid fish. Six populations were sampled at different locations around the Scotia Sea, comprising a large part of the species' distribution range ( N  = 165). Our analyses based on mitochondrial DNA sequence data (352 bp) and eight microsatellite markers reveal a lack of genetic structuring over large geographic distances (ΦST ≤ 0.058, F ST ≤ 0.005, P values nonsignificant). In order to test whether this was due to passive larval dispersal, we used GPS-tracked drifter trajectories, which approximate movement of passive surface particles with ocean currents. The drifter data indicate that the Antarctic Circumpolar Current (ACC) connects the sampling locations in one direction only (west–east), and that passive transport is possible within the 4-month larval period of G. gibberifrons . Indeed, when applying the isolation-with-migration model in IMA, strong unidirectional west-east migration rates are detected in the humped rockcod. This leads us to conclude that, in G. gibberifrons , genetic differentiation is prevented by gene flow via larval dispersal with the ACC.  相似文献   

5.
Pleistocene climatic oscillations strongly influenced the genetic composition of many species which are often divided into several genetic lineages. In this context, we studied the allozymes of a common and widely distributed butterfly, the common blue Polyommatus icarus, over a large part of Europe. The species had a rather high genetic diversity within populations with a strikingly high mean number of alleles per locus (2.98). In contrast, differentiation between populations was very low ( F ST: 0.0187). Only a marginal trend of decline in genetic diversity from the south to the north was observed. Isolation-by-distance existed on a European scale ( r =  0.826), but not at a regional level. Regional differentiation between populations in western Germany was extremely low ( F ST: 0.0041). It is probable that P. icarus was widely distributed in the Mediterranean region during the last ice age and expanded into central Europe in the postglacial period without major genetic erosion. Moderate present and past gene flow in an intact metapopulation structure may have occurred on local, regional and perhaps even continental scales.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 529–538.  相似文献   

6.
Study of adaptive evolutionary changes in populations of invasive species can be advanced through the joint application of quantitative and population genetic methods. Using purple loosestrife as a model system, we investigated the relative roles of natural selection, genetic drift and gene flow in the invasive process by contrasting phenotypical and neutral genetic differentiation among native European and invasive North American populations ( Q ST −  F ST analysis). Our results indicate that invasive and native populations harbour comparable levels of amplified fragment length polymorphism variation, a pattern consistent with multiple independent introductions from a diverse European gene pool. However, it was observed that the genetic variation reduced during subsequent invasion, perhaps by founder effects and genetic drift. Comparison of genetically based quantitative trait differentiation ( Q ST) with its expectation under neutrality ( F ST) revealed no evidence of disruptive selection ( Q ST >  F ST) or stabilizing selection ( Q ST <  F ST). One exception was found for only one trait (the number of stems) showing significant sign of stabilizing selection across all populations. This suggests that there are difficulties in distinguishing the effects of nonadaptive population processes and natural selection. Multiple introductions of purple loosestrife may have created a genetic mixture from diverse source populations and increased population genetic diversity, but its link to the adaptive differentiation of invasive North American populations needs further research.  相似文献   

7.
Abstract In order to clarify the genetic diversity and population structure of Ranunculus japonicus , allozymic analysis was conducted on 60 populations in southwestern Japan. Considerable genetic variati ons were detected among the populations of R. japonicus . The genetic diversities within species ( H es = 0.215) and within populations ( H ep = 0.172) were slightly higher than those of other perennial herbs with widespread distribution and outcrossing plants. Significantly higher values of fixation index were detected in some populations, which might have arisen from restricted mating partners. The majority of genetic variation (approx. 80%) resided within a population and a moderate level of genetic differentiation ( G ST = 0.203) was observed among populations. The F ST value (0.203) suggests the existence of a substantial population structure in this species. The highly significant correlation between geographic distance and F ST values indicates that isolation by distance has played an important role in the construction of the genetic structure of this species.  相似文献   

8.
Several recent studies have found amphibian populations to be genetically highly structured over rather short geographical distances, and that the rate of genetically effective dispersal may differ between the sexes. However, apart from the common frog ( Rana temporaria ) little is known about the genetic structuring and sex-biased dispersal in northern European amphibians. We investigated the patterns of genetic diversity and differentiation within and among Scandinavian populations of the moor frog ( Rana arvalis ) using microsatellite markers. The genetic diversity within local R. arvalis populations was not a simple linear negative function of latitude but a convex one: genetic diversity peaked in mid-latitude populations, and declined thereafter dramatically towards the north. The average degree of genetic differentiation among populations ( F ST = 0.14) was lower than that observed for the common frog ( F ST = 0.21), though the pattern of isolation by distance was similar for both species. Contrary to common frogs, no evidence for female-biased dispersal was found. The results reinforce the view that amphibian populations are—in general—highly structured over relatively small geographical distances, even in comparatively recently colonized areas.  相似文献   

9.
Sex-based differences in dispersal distances can affect critical population parameters such as inbreeding rates and the spatial scale of local adaptation. Males tend to disperse further than females in mammals, whereas the reverse is true for birds; too few reptiles have been studied to reveal generalities for that group. Although reptiles are most diverse and abundant in the tropics, few tropical reptiles have been studied in this respect. We combine data from a long-term (10-year) mark–recapture study with genetic information (based on nine microsatellite markers) on slatey-grey snakes ( Stegonotus cucullatus , Colubridae) in the Australian wet-dry tropics. Males attain larger body sizes than females, and both genetic and mark–recapture data show that males also disperse further than females. Recapture records show that hatchling males dispersed away from their release points whereas hatchling females did not, and adult males moved further than adult females. In the genetic analysis, males contributed less to overall F ST and relatedness than did females ( F STm = 0.0025, F STf = 0.0275, P  < 0.001; r m = 0.0053; r f = 0.0550; P  < 0.001). Spatial autocorrelation analyses within the largest population revealed a similar pattern, with spatial structuring stronger for females than males. Overall, our genetic analyses not only supported the mark–recapture data, but also extended our insights by revealing occasional long-distance dispersal not detected by the mark–recapture study.  相似文献   

10.
1. Previously, the Yangtze River connected thousands of shallow lakes which together formed a potamo-lacustrine system capable of sustaining a rich variety of submerged macrophytes.
2.  Potamogeton malaianus is one of the dominant submerged macrophytes in many lakes of this area. Genetic variation and population structure of P. malaianus populations from ten lakes in the potamo-lacustrine system were assessed using inter-simple sequence repeat markers.
3. Twelve primer combinations produced a total of 166 unambiguous bands of which 117 (70.5%) were polymorphic. Potamogeton malaianus exhibited a moderate level of population genetic diversity ( P P = 70.5%, H E = 0.163 and I =  0.255), as compared with that of plants in the same habitat and range. The main factors responsible for this moderate value were the plant's mixed breeding system (both sexual and asexual) and the hydrological connectivity among habitats.
4.  F statistics, calculated using different approaches, consistently revealed a moderate genetic differentiation among populations, contributing about 20% of total genetic diversity. An estimate of gene flow (using F ST) suggested that gene flow played a more important role than genetic drift in the current population genetic structure of P. malaianus ( Nm  = 1.131).
5. The genetic diversity of P. malaianus did not increase downstream. A high level of linkage–disequilibrium at the whole population level suggested that metapopulation processes may affect genetic structure. The migration pattern of P. malaianus was best explained by a two-dimensional stepping stone model, indicating that bird-mediated dispersal could greatly influence gene movements among lakes.  相似文献   

11.
The genus Abies has a complex history in southern México and Guatemala. In this region, four closely related species, Abies flinckii , A. guatemalensis , A. hickelii , and A. religiosa , are distributed in fragmented and isolated montane populations. Range-wide genetic variation was investigated across species using cytoplasmic DNA markers with contrasted inheritance. Variation at two maternally inherited mitochondrial DNA markers was low. All species shared two of the nine mitotypes detected, while the remaining seven mitochondrial DNA types were restricted to a few isolated stands. Mitochondrial genetic differentiation across taxa was high ( G ST = 0.933), it was not related to the taxonomic identity ( amova ; P  > 0.05) of the populations, and it was not phylogeographically structured ( G ST ≈  N ST). In contrast, variation at three paternally inherited chloroplast DNA microsatellites was high. Chloroplast genetic differentiation was lower ( G ST = 0.402; R ST = 0.547) than for mitochondrial DNA, but it was significantly related to taxonomy ( amova ; P  < 0.001), and exhibited a significant phylogeographical structure ( G ST <  R ST). Different analyses of population structure indicated that A. flinckii was the most divergent taxon, while the remaining three species formed a relatively homogeneous group. However, a small number of the populations of these three taxa, all located at the limits of their respective ranges or in the Transverse Volcanic Belt, diverged from this main cluster. These trends suggest that the Mesoamerican Abies share a recent common ancestor and that their divergence and speciation is mainly driven by genetic drift and isolation during the warm interglacial periods.  相似文献   

12.
Aim  To explore the genetic and phylogeographic structure of a temperate forest species, Pinus strobiformis Englem., in a subtropical region in the context of climate change during the Pleistocene. It is expected that the colder conditions during glacial stages favoured range expansions of P. strobiformis , thus promoting gene flow.
Location  Mexico and the United States.
Methods  Estimates of genetic diversity and structure were obtained using chloroplast microsatellite loci of 23 populations of P. strobiformis across its entire range, seven neighbouring populations of Pinus ayacahuite Ehrenb. ex. Schtdl, and one population of Pinus flexilis James.
Results  The genetic diversity of P. strobiformis ( H e = 0.856) was found to be high, especially in western populations, whereas eastern populations were less variable and more genetically similar to P. ayacahuite of central Mexico. We found evidence of significant phylogeographic structure ( N ST = 0.444; P  =   0.026), high genetic structure ( R ST = 0.270), and isolation by distance. Pairwise R ST and samova (spatial analysis of molecular variance) results indicated an east–west partition of genetic variation, with populations within each group showing little differentiation and no isolation by distance.
Main conclusions  The phylogeographic structure of P. strobiformis across the entire range was pronounced, with two main genetic and geographic groups separated by the Chihuahuan Desert. However, within each of the two groups there was little population differentiation and no isolation by distance, suggesting genetic connectivity as a result of population expansions within these areas during glacial stages.  相似文献   

13.
The pied flycatcher is one of the most phenotypically variable bird species in Europe. The geographic variation in phenotypes has often been attributed to spatial variation in selection regimes that is associated with the presence or absence of the congeneric collared flycatcher. Spatial variation in phenotypes could however also be generated by spatially restricted gene flow and genetic drift. We examined the genetic population structure of pied flycatchers across the breeding range and applied the phenotypic Q ST ( P ST)– F ST approach to detect indirect signals of divergent selection on dorsal plumage colouration in pied flycatcher males. Allelic frequencies at neutral markers were found to significantly differ among populations breeding in central and southern Europe whereas northerly breeding pied flycatchers were found to be one apparently panmictic group of individuals. Pairwise differences between phenotypic ( P ST) and neutral genetic distances ( F ST) were positively correlated after removing the most differentiated Spanish and Swiss populations from the analysis, suggesting that genetic drift may have contributed to the observed phenotypic differentiation in some parts of the pied flycatcher breeding range. Differentiation in dorsal plumage colouration however greatly exceeded that observed at neutral genetic markers, which indicates that the observed pattern of phenotypic differentiation is unlikely to be solely maintained by restricted gene flow and genetic drift.  相似文献   

14.
Microsatellite DNA markers were applied for the first time in a population genetic study of a cephalopod and compared with previous estimates of genetic differentiation obtained using allozyme and mitochondrial DNA (mtDNA) markers. Levels of genetic variation detected with microsatellites were much higher than found with previous markers (mean number of alleles per locus=10.6, mean expected heterozygosity ( H E)=0.79; allozyme H E=0.08; mtDNA restriction fragment length polymorphism (RFLP) H E=0.16). In agreement with previous studies, microsatellites demonstrated genetic uniformity across the population occupying the European shelf seas of the North East Atlantic, and extreme genetic differentiation of the Azores population ( R ST/ F ST=0.252/0.245; allozyme F ST=0.536; mtDNA F ST=0.789). In contrast to other markers, microsatellites detected more subtle, and significant, levels of differentiation between the populations of the North East Atlantic offshore banks (Rockall and Faroes) and the shelf population ( R ST=0.048 and 0.057). Breakdown of extensive gene flow among these populations is indicated, with hydrographic (water depth) and hydrodynamic (isolating current regimes) factors suggested as possible barriers to migration. The demonstration of genetic subdivision in an abundant, highly mobile marine invertebrate has implications for the interpretation of dispersal and population dynamics, and consequent management, of such a commercially exploited species. Relative levels of differentiation indicated by the three different marker systems, and the use of measures of differentiation (assuming different mutation models), are discussed.  相似文献   

15.
Habitat fragmentation is one of the greatest threats to biodiversity. Despite their importance for conservation, the genetic consequences of small-scale habitat fragmentation for bat populations are largely unknown. In this study, we linked genetic with ecological and demographic data to assess the effects of habitat fragmentation on two species of phyllostomid bats ( Uroderma bilobatum and Carollia perspicillata ) that differ in their dispersal abilities and demographic response to fragmentation. We hypothesized that population differentiation and the effect of habitat fragmentation on levels of genetic diversity will be a function of the species' mobility. We sequenced mtDNA from 232 bats caught on 11 islands in Gatún Lake, Panamá, isolated from the mainland for ca 90 yr, and in adjacent, continuous forest on the mainland. Populations of both species showed significant genetic differentiation ( F ST). Consistent with our prediction, population subdivision was lower in the highly mobile U. bilobatum ( F ST= 0.01) compared to the less vagile C. perspicillata ( F ST= 0.06), and only the latter species showed a pattern indicative of isolation by distance and, in addition, an effect of fragmentation. Genetic erosion as a result of fragmentation was also only detectable in the less mobile species, C. perspicillata , where haplotype diversity was lower in island compared to mainland populations. Our results suggest that some Neotropical bat species are prone to loss of genetic variation in response to anthropogenic small-scale habitat fragmentation. In this context, our findings point toward mobility as a good predictor of a species' vulnerability to fragmentation and altered population genetic structure.  相似文献   

16.
We examined population substructure of bottlenose dolphins ( Tursiops sp). in Shark Bay, Western Australia, using 10 highly polymorphic microsatellite loci, and mitochondrial DNA (mtDNA). For microsatellite analysis, 302 different animals were sampled from seven localities throughout the bay. Analysis of genetic differentiation between sampling localities showed a significant correlation between the number of migrants ( Nm ) calculated from F ST, R ST and private alleles, and distance between localities–a pattern of isolation-by-distance. For mtDNA, 220 individuals from all seven localities were sequenced for a 351 base pair fragment of the control region, resulting in eight haplotypes, with two distinct clusters of haplotypes. Values of F ST and (φ)ST for mtDNA yielded statistically significant differences, mostly between localities that were not adjacent to each other, suggesting female gene flow over a scale larger than the sampled localities. We also observed a significant correlation between the number of female migrants calculated from F ST and φST and the distance of sampling localities. Our results indicate that dispersal in female dolphins in Shark Bay is more restricted than that of males.  相似文献   

17.
The genetic variability and structure of the European eel ( Anguilla anguilla L.) in populations throughout Europe was reassessed using 15 allozymic loci, seven of which were polymorphic. Seven sites were sampled on a latitudinal gradient across the natural continental range, extending from southern France to southern Norway. Heterozygosity ( H e = 0.05) and level of polymorphism (P = 0.43) were comparable to other marine fish. Populations were poorly differentiated ( G ST = 0.014, F ST = 0.002), which is not surprising considering the high dispersal capability of the European eel. However, a significant geographical cline was detected at two alleles ( IDH-1 * 100 and GPI-1 * 110 ), and genetic distances ( D CE) were concordant with geographical coastal distances. Mantel tests, pairwise F ST's and multidimensional scaling analyses identify three distinct groups: Northern Europe, Western Europe and the Mediterranean Sea. We propose that the clinal genetic structure in the European eel may be due to (1) isolation by distance (as recently detected with microsatellites), (2) temporal reproductive separation, (3) post-larval selective forces, (4) contact between formerly separated groups or (5) some combination thereof.  © 2002 The Linnean Society of London, Biological Journal of the Linnean Society , 2002, 77 , 509–521  相似文献   

18.
Landscape genetics is being increasingly applied to elucidate the role of environmental features on the population structure of terrestrial organisms. However, the potential of this framework has been little explored in aquatic ecosystems such as large rivers. Here, we used a landscape genetics approach in order to (i) document the population structure of the yellow perch ( Perca flavescens ) by means of genetic variation at microsatellite markers, (ii) assess to what extent the structure was explained by landscape heterogeneity, and (iii) interpret the relevance of interactions between genetics and landscape for management and conservation. Analysis of the genetic variation among 1715 individuals from 16 localities and distributed over 310 km in the freshwater section of the Saint Lawrence River (Québec, Canada) revealed a relatively modest level of genetic structuring ( F ST = 0.039). Application of the Monmonier's algorithm combining geographical and genetic information identified three zones of restricted gene flow defining four distinct populations. Physical barriers played a more important role on gene flow and genetic structure than waterway geographical distance. We found correlations between genetic differentiation and presence of distinct water masses in the sector of Lake Saint-Louis ( r =  0.7177, P  = 0.0340) and with fragmentation of spawning habitats in the sector of Lake Saint-Pierre ( r =  0.8578, P  = 0.0095). Our results support the treatment of four distinct biological units, which is in contrast with the current basis for yellow perch management. Finally, this study showed that landscape genetics is a powerful means to identify environmental barriers to gene flow causing genetic discontinuities in apparently highly connected aquatic landscapes.  相似文献   

19.
The construction of the world's largest hydroelectric scheme across the Yangtze River, the Three Gorges Dams (TGD), in the centre of a southern-central Chinese biodiversity hot spot, the Three Gorges Reservoir Area (TGRA), has attracted international concern and conservation action. To examine whether landscape changes to date have impacted regional flora, and to establish long-term monitoring baselines, we assessed the distribution and dynamics of an endangered and TGRA endemic fern, Adiantum reniforme var. sinense . For eight nuclear microsatellites, high levels of genetic diversity ( H E = 0.653–0.781) and slightly elevated inbreeding ( F IS = 0.077–0.197) were found across 13 surveyed populations. The population history of this fern is characterized by a balance of gene flow and genetic drift, where historical dispersal, inferred from coalescent ( F =  0.129) and genetic differentiation ( F ST = 0.094 and R ST = 0.180) approaches, is moderate, reflecting an isolation by distance relationship. Importantly, most populations exhibited mutation-drift disequilibrium, suggesting a recent population decline, which is congruent with the known demographic history of the species following dam-related activities. Based on these results, populations of A. reniforme var. sinense are expected to lose genetic diversity and increase genetic structure as dam-related activities decrease size and increase genetic isolation of remnants.  相似文献   

20.
Genetic variation and population structure of Penaeus monodon in the coastal waters of South China were detected using mitochondrial DNA control region sequences. Eighty individuals were collected at Sanya, Shenzhen, Zhanjiang and Beihai; 69 haplotypes with 157 polymorphic sites were detected. Nucleotide diversity (π) of the combined samples (6.16 ± 3.01%) was much higher than many other species in Chinese seas, such as Penaeus japonicus , Portunus trituberculatus , and Acanthopagrus schlegeli . Genetic differentiation was significant between Beihai and Sanya (pairwise F ST = 0.09836, P < 0.05), and between Beihai and Shenzhen (pairwise F ST = 0.12153, P < 0.05). Significant genetic differentiation among all populations was found by analysis of molecular variance ( amova ) ( F ST = 0.053, P = 0.037 < 0.05). The upgma dendrogram of the four populations showed Sanya and Shenzhen as the closest to each other, with Beihai having the greatest genetic distance from Sanya and Shenzhen. The tiger prawn of the coastal waters of South China should therefore be bred as two separated stocks, avoiding inbreeding or outbreeding selection of P. monodon in the captive breeding program. According to our results one source population is Beihai, and the others are from Sanya and Shenzhen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号