首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production of a battery of arabinoxylan-degrading enzymes by the fungus Penicillium brasilianum grown on brewer’s spent grain (BSG) under solid-state fermentation was investigated. Initial moisture content, initial pH, temperature, and nitrogen source content were optimized to achieve maximum production of feruloyl esterase, xylanase, and α-l-arabinofuranosidase. Under the optimum growth conditions (80% moisture, pH 6, 26.5°C, and 5 g/l nitrogen source), the maximum level of feruloyl esterase (1,542 mU/g BSG) was found after 196 h, whereas xylanase (709 U/g BSG) and ArabF activity (3,567 mU/g BSG) were maximal after 108 h and 96 h, respectively. Based on substrate utilization data, the feruloyl esterases produced by P. brasilianum was anticipated to subclass B. A crude enzyme (CE) preparation from P. brasilianum culture grown on BSG was tested for the release of hydroxycinnamic acids and pentoses from BSG. The P. brasilianum CE produced in this work contains a balance of cell wall-modifying enzymes capable of degrading arabinoxylan of BSG by more than 40%.  相似文献   

2.
The addition of enzymes that are capable of degrading hemicellulose has a potential to reduce the need for commercial enzymes during biomass hydrolysis in the production of fermentable sugars. In this study, a high xylanase producing actinomycete strain (Kitasatospora sp. ID06-480) and the first ethyl ferulate producing actinomycete strain (Nonomuraea sp. ID06-094) were selected from 797 rare actinomycetes, respectively, which were isolated in Indonesia. The addition (30%, v/v) of a crude enzyme supernatant from the selected strains in sugarcane bagasse hydrolysis with low-level loading (1 FPU/g-biomass) of Cellic® CTec2 enhanced both the released amount of glucose and reducing sugars. When the reaction with Ctec2 was combined with crude enzymes containing either xylanase or feruloyl esterase, high conversion yield of glucose from cellulose at 60.5% could be achieved after 72 h-saccharification.  相似文献   

3.
Feruloyl esterases act as accessory enzymes for the complete saccharification of plant cell wall hemicelluloses. Although many fungal feruloyl esterases have been purified and characterized, few bacterial phenolic acid esterases have been characterized. This study shows the extracellular production of a feruloyl esterase by the thermophilic anaerobe Clostridium stercorarium when grown on birchwood xylan. The feruloyl esterase was purified 500-fold in successive steps involving ultrafiltration, preparative isoelectric focusing and column chromatography by anion exchange, gel filtration and hydrophobic interaction. The purified enzyme released ferulic, rho-coumaric, caffeic and sinapinic acid from the respective methyl esters. The purified enzyme also released ferulic acid from a de-starched wheat bran preparation. At pH 8.0 and 65 degrees C, the Km and Vmax values for the hydrolysis of methyl ferulate were 0.04 mmol l-l and 131 micromol min-1 mg-1, respectively; the respective values for methyl coumarate were 0.86 mmol l-l and 18 micromol min-1 mg-1. The purified feruloyl esterase had an apparent mass of 33 kDa under denaturing conditions and showed optimum activity at pH 8.0 and 65 degrees C. At a concentration of 5 mmol l-l, the ions Ca2+, Cu2+, Co2+ and Mn2+ reduced the activity by 70-80%.  相似文献   

4.
A fungal strain, Aspergillus terreus strain GA2, isolated from an agricultural field cultivating sweet sorghum, produced feruloyl esterase using maize bran. In order to obtain maximum yields of feruloyl esterase, the solid state fermentation (SSF) conditions for enzyme production were standardized. Effective feruloyl esterase production was observed with maize bran as substrate followed by wheat bran, coconut husk, and rice husk among the tested agro-waste crop residues. Optimum particle size of 0.71- 0.3 mm and moisture content of 80% favored enzyme production. Moreover, optimum feruloyl esterase production was observed at pH 6.0 and a temperature of 30 degrees C. Supplementation of potato starch (0.6%) as the carbon source and casein (1%) as the nitrogen source favored enzyme production. Furthermore, the culture produced the enzyme after 7 days of incubation when the C:N ratio was 5. Optimization of the SSF conditions revealed that maximum enzyme activity (1,162 U/gds) was observed after 7 days in a production medium of 80% moisture content and pH 6.0 containing 16 g maize bran [25% (w/v)] of particle size of 0.71-0.3 mm, 0.6% potato starch, 3.0% casein, and 64 ml of formulated basal salt solution. Overall, the enzyme production was enhanced by 3.2-fold as compared with un-optimized conditions.  相似文献   

5.
Fungal xylanases have been widely studied and various production methods have been proposed using submerged and solid-state fermentation. This class of enzyme is used to supplement cellulolytic enzyme cocktails in order to enhance the enzymatic hydrolysis of plant cell walls. The present work investigates the production of xylanase and other accessory enzymes by a recently isolated endophytic Aspergillus niger DR02 strain, using the pentose-rich liquor from hydrothermal pretreatment of sugarcane bagasse as carbon source. Batch and fed-batch submerged cultivation approaches were developed in order to minimize the toxicity of the liquor and increase enzyme production. Maximum xylanase activities obtained were 458.1 U/mL for constant fed-batch, 428.1 U/mL for exponential fed-batch, and 264.37 U/mL for pulsed fed-batch modes. The results indicated that carbon-limited fed-batch cultivation can reduce fungal catabolite repression, as well as overcome possible negative effects of toxic compounds present in the pentose-rich liquor. Enzymatic panel and mass spectrometric analyses of the fed-batch A. niger secretome showed high levels of xylanolytic enzymes (GH10, GH11, and GH62 Cazy families), together with cellobiohydrolase (G6 and GH7), β-glucosidase, β-xylosidase (GH3), and feruloyl esterase (CE1) accessory enzyme activities. The yields of glucose and xylose from enzymatic hydrolysis of hydrothermally pretreated sugarcane bagasse increased by 43.7 and 65.3%, respectively, when a commercial cellulase preparation was supplemented with the A. niger DR02 constant fed-batch enzyme complex.  相似文献   

6.
The gene estF27, encoding a protein with feruloyl esterase activity, was cloned through functional screening from a soil metagenomic library and expressed in Escherichiacoli BL21 (DE3) with high solubility. Sequence analysis showed that estF27 encoded a protein of 291 amino acids with a predicted molecular mass of 31.16 kDa. According to the substrate specificity, EstF27 was classified as a type A feruloyl esterase. EstF27 displayed optimal activity at 40°C and pH 6.8. This enzyme was stable in a broad pH range of 5.0-10.0 over 24 h, and retained more than 50% of its activity after 96 or 120 h incubation in the presence of 3 M KCl or 5 M NaCl. The enzyme activity was slightly enhanced by the addition of Mg(2+) and Fe(3+) at a low concentration, and completely inhibited by Cu(2+). In the enzymatic hydrolysis of destarched wheat bran, EstF27 could release ferulic acid from it in the presence of xylanase from Thermomyces lanuginosus. Given its alkalitolerance, halotolerance and highly soluble expression, EstF27 is a promising candidate for industrial applications.  相似文献   

7.
Fazary AE  Ju YH 《Biotechnology journal》2008,3(9-10):1264-1275
Microbial feruloyl esterases acting on plant cell wall polymers represent key tools for the degradation of plant cell wall. In this paper, we describe in detail the microbial production, partial purification and characterization of feruloyl esterase from a culture medium of Aspergillus awamori strain IFO4033 obtained from a crude hemicellulose preparation of wheat straw, corncobs and wheat germ. Feruloyl esterase was extracted using centrifugation and dialysis, and then purified by ion exchange chromatography and microfiltration to homogeneity, which was checked by SDSPAGE and isoelectric focusing-PAGE. Protein content and activity of the enzyme were measured in each step of extraction and purification. Biomass was determined by the dry weight method. pH and temperature optima of feruloyl esterase enzyme were also determined. The effects of culturing time, and carbon and nitrogen sources on enzyme production were systematically investigated. Finally, enzyme activities under different storage conditions were examined.  相似文献   

8.
Production of extracellular beta-1,4-xylanase, alpha-L-arabinofuranosidase, feruloyl esterase, and acetyl xylan esterase from Aspergillus kawachii was higher in a culture supplemented with ferulic acid than in a counterpart. Culture supernatant grown on oat spelt xylan supplemented with ferulic acid exhibited an increase in ferulic acid-releasing activity from insoluble arabinoxylan relative as compared to that from the ferulic acid-free culture.  相似文献   

9.
Feruloyl esterases constitute an interesting group of enzymes that have the potential for use over a broad range of applications in the agri–food industries. In order to expand the range of available enzymes, we have examined the presence of feruoyl esterase genes present in the genome sequence of the filamentous fungus Neurospora crassa. We have identified an orphan gene (contig 3.544), the translation of which shows sequence identity with known feruloyl esterases. This gene was cloned and the corresponding recombinant protein expressed in Pichia pastoris to confirm that the enzyme (NcFaeD-3.544) exhibits feruloyl esterase activity. Unusually the enzyme was capable of p-coumaric acid release from untreated crude plant cell wall materials. The substrate utilisation preferences of the recombinant enzyme place it in the recently recognised type-D sub-class of feruloyl esterase.  相似文献   

10.
The effects of phenolic monomers (i.e. rho-coumaric acid, ferulic acid, rho-hydroxybenzaldehyde and vanillin) on the enzymes and fermentation activities of Neocallimastix frontalis B9 grown in ball-milled filter paper and guinea grass media were studied. The enzymes studied were carboxymethylcellulase (CMCase), filterpaperase (FPase), xylanase and beta-glucosidase. At 96 h of incubation, N. frontalis grown in ball-milled filter paper medium produced comparable xylanase and CMCase activities (0.41, 0.5 micromol/min/mg protein) while in guinea grass medium, N. frontalis produced higher xylanase activity than that of CMCase activity (2.35, 0.05 micromol/min/mg protein). The other enzymes activities were low. When N. frontalis was grown in ball-milled filter paper medium, only acetic acid was produced. However, when grown in guinea grass medium, the major end-product was acetate, but propionic, butyric and isovaleric were also produced in lesser amount. Vanillin showed the least inhibitory effects to enzyme activities of N. frontalis B9 grown in both ball-milled filter paper and guinea grass media. For total volatile fatty acid production, all phenolic monomers showed inhibitory effects, but rho-coumaric and ferulic acids were the stronger inhibitors than rho-hydroxybenzaldehyde and vanillin.  相似文献   

11.
The culture medium for Rhodothermus marinus was optimised on a shake-flask scale by using statistical factorial designs for enhanced production of a highly thermostable alpha-L-arabinofuranosidase (AFase). The medium containing 3.6 g/l birch wood xylan and 8.2 g/l yeast extract yielded a maximum of 110 nkat/ml AFase activity together with 125 nkat/ml xylanase and 65 nkat/ml beta-xylosidase activity. In addition, low levels of beta-mannanase (30 nkat/ml), alpha-galactosidase (0.2 nkat/ml), beta-galactosidase (0.3 nkat/ml), endoglucanase (5 nkat/ml) and beta-glucosidase (30 nkat/ml) were detected in the culture filtrate. Among the various carbon sources tested, birchwood xylan was most effective for the formation of AFase and xylanase activities, followed by oat spelt and beechwood xylans, and xylan-rich lignocelluoses (e.g., starch-free sugar beet pulp and wheat bran). Constitutive levels of enzyme activities were detected when the bacterium was grown on other polysaccharides and low-molecular-weight carbohydrates. A fermentation in a 5-l fermenter (3-l working volume) using the optimised medium yielded 60 nkat/ml AFase associated with 65 nkat/ml xylanase and 35 nkat/ml beta-xylosidase activities. The crude AFase displayed optimal activity between pH 5.5 and 7 and at 85 degrees C. It had half-lives of 8.3 h at 85 degrees C and 17 min at 90 degrees C. It showed high stability between pH 5 and 9 (24 h at 65 degrees C). The combined use of AFase-rich xylanase and mannanase from R. marinus in the prebleaching of softwood kraft pulp gave a brightness increase of 1.8% ISO. To our knowledge, this is the first report on the production of a high AFase activity by an extreme thermophilic bacterium and this enzyme is the most thermostable AFase reported so far.  相似文献   

12.
Synergy in the degradation of two plant cell wall polysaccharides, water insoluble pentosan from wheat flour (an arabinoxylan) and sugar beet pectin, was studied using several main-chain cleaving and accessory enzymes. Synergy was observed between most enzymes tested, although not always to the same extent. Degradation of the xylan backbone by endo-xylanase and beta-xylosidase was influenced most strongly by the action of alpha-L-arabinofuranosidase and arabinoxylan arabinofuranohydrolase resulting in a 2.5-fold and twofold increase in release of xylose, respectively. Ferulic acid release by feruloyl esterase A and 4-O-methyl glucuronic acid release by alpha-glucuronidase depended largely on the degradation of the xylan backbone by endo-xylanase but were also influenced by other enzymes. Degradation of the backbone of the pectin hairy regions resulted in a twofold increase in the release of galactose by beta-galactosidase and endo-galactanase but did not significantly influence the arabinose release by arabinofuranosidase and endo-arabinase. Ferulic acid release from sugar beet pectin by feruloyl esterase A was affected most strongly by the presence of other accessory enzymes.  相似文献   

13.
Extracellular enzyme preparations from Streptomyces flavogriseus and Streptomyces olivochromogenes cultures grown on cellulose contained primarily cellulase activities, but similar preparations from cultures grown on xylan-containing materials possessed high levels of both cellulase and xylanase activities. Growth conditions that gave high endoxylanase levels also resulted in the production of enzymes involved in the hydrolysis of the nonxylose components of xylan. Specific acetyl xylan esterase activities were identified in enzyme preparations from both organisms. Both organisms also produced alpha-l-arabinofuranosidase activity that was not associated with endoxylanase activity. Other activities produced were alpha-l-O-methylglucuronidase and ferulic acid esterase. The latter enzyme was produced only by S. olivochromogenes and is an activity which has not previously been identified as a component of hemicellulase preparations.  相似文献   

14.
The bioconversion of waste residues (by-products) from cereal processing industries requires the cooperation of enzymes able to degrade xylanolytic and cellulosic material. The type A feruloyl esterase from Aspergillus niger, AnFaeA, works synergistically with (1→4)-β-d-xylopyranosidases (xylanases) to release monomeric and dimeric ferulic acid (FA) from cereal cell wall-derived material. The esterase was more effective with a family 11 xylanase from Trichoderma viride in releasing FA and with a family 10 xylanase from Thermoascus aurantiacus in releasing the 5,5′ form of diferulic acid from arabinoxylan (AX) derived from brewers’ spent grain. The converse was found for the release of the phenolic acids from wheat bran-derived AXs. This may be indicative of compositional differences in AXs in cereals.  相似文献   

15.
Agro-industrial by-products are a potential source of added-value phenolic acids with promising applications in the food and pharmaceutical industries. Here two purified feruloyl esterases from Aspergillus niger, FAEA and FAEB were tested for their ability to release phenolic acids such as caffeic acid, p-coumaric acid and ferulic acid from coffee pulp, apple marc and wheat straw. Their hydrolysis activity was evaluated and compared with their action on maize bran and sugar beet pulp. The specificity of both enzymes against natural and synthetic substrates was evaluated; particular attention was paid to quinic esters and lignin monomers. The efficiency of both enzymes on model substrates was studied. We show the ability of these enzymes to hydrolyze quinic esters and ester linkages between phenolic acids and lignin monomer.  相似文献   

16.
Feruloyl esterase (FAE) and xylanase activities were detected in culture supernatants from Humicola grisea var. thermoidea and Talaromyces stipitatus grown on brewers' spent grain (BSG) and wheat bran (WB), two agro-industrial by-products. Maximum activities were detected from cultures of H. grisea grown at 150 rpm, with 16.9 U/ml and 9.1 U/ml of xylanase activity on BSG and WB, respectively. Maximum FAE activity was 0.47 U/ml and 0.33 U/ml on BSG and WB, respectively. Analysis of residual cell wall material after microbial growth shows the preferential solubilisation of arabinoxylan and cellulose, two main polysaccharides present in BSG and WB. The production of low-cost cell-wall-deconstructing enzymes on agro-industrial by-products could lead to the production of low-cost enzymes for use in the valorisation of food processing wastes.  相似文献   

17.
Organic co-solvents can expand the use of enzymes in lignocellulose deconstruction through making substrates more soluble and thus more accessible. In choosing the most adequate co-solvent for feruloyl esterases, hydrolysis of methyl p-hydroxycinnamates by three pure enzymes (and a multi-enzyme preparation) was evaluated. Low concentrations of dimethylsulfoxide (DMSO) enhanced hydrolysis by two of the enzymes while at levels >20%, activity was reduced. DMSO also enhanced acetyl esterase-type activity of the enzymes. The co-solvent effect was different for each enzyme-substrate couple, indicating that other factors are also involved. Kinetic studies with a Talaromyces stipitatus feruloyl esterase showed low concentrations of dimethylsulfoxide enhanced the hydrolytic rate while Km also increased. Moreover, long-term incubation (96 h) of an Aspergillus niger feruloyl esterase in dimethylsulfoxide:water provided to the enzyme the ability to hydrolyze methyl p-coumarate, suggesting an active-site re-arrangement. Dimethylsulfoxide (10-30%) is proposed as an adequate co-solvent for feruloyl esterase treatment of water-insoluble substrates.  相似文献   

18.
The potential of crude enzyme extracts, obtained from solid state cultivation of four white-rot fungi (Trametes versicolor, Bjerkandera adusta, Ganoderma applanatum and Phlebia rufa), was exploited to modify wheat straw cell wall. At different fermentation times, manganese-dependent peroxidase (MnP), lignin peroxidase (LiP), laccase, carboxymethylcellulase (CMCase), avicelase, xylanase and feruloyl esterase activities were screened and the content of lignin as well as hydroxycinnamic acids in fermented straw were determined. All fungi secreted feruloyl esterase while LiP was only detected in crude extracts from B. adusta. Since no significant differences (P > 0.05) were observed in remaining lignin content of fermented straw, LiP activity was not a limiting factor of enzymatic lignin removal process. The levels of esterified hydroxycinnamic acids degradation were considerably higher than previous reports with lignocellulosic biomass. The data show that P. rufa, may be considered for more specific studies as higher ferulic and p-coumaric acids degradation was observed for earlier incubation times.  相似文献   

19.
To examine the influence of a phenolic compound on the production of cellulolytic and xylanolytic enzymes of a woodrotting fungusCoriolus versicolor, a two-dimensional map of enzyme activity was constructed with various concentrations of cellobiose and vanillin. The productions of CMCase, xylanase, β-glucosidase, and β-xylosidase increased with higher cellobiose concentration and were markedly enhanced by addition of vanillin. Higher ratio of vanillin/cellobiose activated the production of these enzymes. Only acetyl esterase, which is not actively produced at the ligninolytic stage ofC. versicolor, was inhibited by the monolignol vanillin. As the presence of vanillin is considered to approximate conditions of wood decay more closely than its absence, the present result demonstrates that addition of vanillin, a phenolic compound, enhanced the production of cellulolytic and xylanolytic enzymes for wood cell wall degradation.  相似文献   

20.
Ferulic acid (FA), a component of hemicellulose in plant cell walls, is a phenolic acid with several potential applications based on its antioxidant properties. Recent studies have shown that feruloyl esterase (FAE) is a key bacterial enzyme involved in FA production from agricultural biomass. In this study, we screened a library of 43 esterases from Streptomyces species and identified two enzymes, R18 and R43, that have FAE activity toward ethyl ferulate. In addition, we characterized their enzyme properties in detail. R18 and R43 showed esterase activity toward other hydroxycinnamic acid esters as well, such as methyl p-coumarate, methyl caffeate, and methyl sinapinate. The amino acid sequences of R18 and R43 were neither similar to each other, nor to other FAEs. We found that R18 and R43 individually showed the ability to produce FA from corn bran; however, combination with other Streptomyces enzymes, namely xylanase and α-l-arabinofuranosidase, increased FA production from biomass such as corn bran, defatted rice bran, and wheat bran. These results suggest that R18 and R43 are effective FAEs for the enzymatic production of FA from biomass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号