首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

2.
Staphylococcus aureus are potent human pathogens possessing arsenal of virulence factors. Staphylococcal food poisoning (SFP) and respiratory infections mediated by staphylococcal enterotoxin B (SEB) are common clinical manifestations. Many diagnostic techniques are based on serological detection and quantification of SEB in different food and clinical samples. Aptamers are known as new therapeutic and detection tools which are available in different ssDNA, dsDNA and protein structures. In this study, we used a new set of ssDNA aptamers against SEB. The methods used included preparation of a dsDNA library using standard SEB protein as the target analyte, affinity chromatography matrix in microfuge tubes, SELEX procedures to isolate specific ssDNA‐aptamer as an affinity ligand, aptamer purification using ethanol precipitation method, affinity binding assay using ELISA, aptamer cloning and specificity test. Among 12 readable sequences, three of them were selected as the most appropriate aptamer because of their affinity and specificity to SEB. This study presents a new set of ssDNA aptamer with favorable selectivity to SEB through 12 rounds of SELEX. Selected aptamers were used to detect SEB in infected serum samples. Results showed that SEB c1 aptamer (2 µg SEB/100 nM aptamer) had favorable specificity to SEB (kd = 2.3 × 10?11). In conclusion, aptamers can be considered as useful tools for detecting and evaluating SEB. The results showed that affinity chromatography was an affordable assay with acceptable accuracy to isolate sensitive and selective novel aptamers. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
Staphylococcal enterotoxin B (SEB) is one of many toxins produced by the Gram-positive bacterium Staphylococcal aureus. While SEB is known as the causative agent of certain food poisonings it is also considered abiological select agent. Thus, rapid and accurate identification of SEB during either surveillance or in response to a biothreat is critical to the mitigation of the suspect agent. This report presents a new conductometric immune-biosensor for the detection of SEB based on immobilization of horseradish peroxidase (HRP)-labeled SEB antibody (HRP-anti-SEB) onto nanogold/chitosan-multiwalled carbon nanotube (Au/CTS-MWNT)-functionalized biorecognition interface. The formation of the antibody-antigen complex by a simple one-step immunoreaction between the immobilized HRP-anti-SEB and SEB in sample solution introduced a barrier of electrical communication between the immobilized HRP and the base surface, thus local conductivity variations could be evaluated by the bio-electrocatalytic reaction of HRP in 0.02 M PBS (pH 6.8) containing 0.15 mM H(2)O(2), 0.06 M KI and 0.1 M NaCl. Under optimal conditions, the proposed immune-biosensor exhibited a good conductometric response relative to SEB concentration in a linear range from 0.5 to 83.5 ng/ml with a correlation coefficient of 0.998. The developed immune-biosensor showed an acceptable accuracy, reproducibility and stability. Milk samples spiked with various concentrations of SEB gave an average of 116% recovery of the toxin.  相似文献   

4.
Detection of Staphylococcus enterotoxin B (SEB) by biomolecular interaction analysis mass spectrometry (BIA/MS) is presented in this work. The BIA/MS experiments were based on a surface plasmon resonance (SPR) MS immunoassay that detects affinity-captured SEB both via SPR and by means of exact and direct mass measurement by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. Experiments were performed with standard samples and food samples to assess the BIA/MS limit of detection for SEB and to set the experimental parameters for proper quantitation. Single and double SPR referencing was performed to accurately estimate the amount of the bound toxin. Reproducible detection of 1 ng of SEB per ml, corresponding to affinity capture and MS analysis of ~500 amol of SEB, was readily achieved from both the standard and mushroom samples. A certain amount of SEB degradation was indicated by the signals in the mass spectra. The combination of MS with SPR-based methods of detection creates a unique approach capable of quantifying and qualitatively analyzing protein toxins from pathogenic organisms.  相似文献   

5.
Staphylococcal enterotoxin B (SEB) and toxic shock syndrome toxin-1 are the super antigens responsible for diseases such as staphylococcal food poisoning and toxic shock syndrome. At low serum concentrations, SEB can trigger toxic shock, profound hypotension and multi organ failure and hence is recognized as biowarfare molecule. In this study, a multidomain fusion protein (r-TE) was generated with specificity for SEB and toxic shock syndrome toxin (Tsst-1). The fusion gene comprising the conserved regions of seb and the tsst genes was codon-optimized for expression in Escherichia coli and encoded a 26 kDa recombinant multidomain chimeric protein (r-TE). Hyperimmune antiserum raised against r-TE specifically reacted with SEB (~28 kDa) and Tsst-1 (~22 kDa) components during Western blot analysis and by plate ELISA in confirmed toxin producing strains of S. aureus. The antigenicity of the SEB component of the r-TE protein was also confirmed using TECRA kit. The described procedure of creating a single protein molecule carrying components of two different toxins whilst still retaining the original antigenic determinants of individual toxins proved highly advantageous in the development of rapid, reliable and cost effective immunoassays and may also have the potential to serve as candidate molecule for vaccine studies.  相似文献   

6.
The work of fabricating a piezoelectric (PZ) immunosensor for the detection of staphylococcal enterotoxin B (SEB) is presented in this paper. Three different immobilization methods using anti-SEB antibody onto a gold electrode of the PZ have been conducted. The electrode coated with polyethyleneimine (PEI) has shown the best result. The fabricated PZ sensor can be used for SEB determination in the range of 2.5–60 μg/ml with a correlation coefficient of 0.997. Milk samples spiked with various concentrations of SEB gave an average of 111% recovery of the toxin. The SEB assay is specific. For example the presence of staphylococcal enterotoxin A (SEA) at 40 μg/ml gave 6.44% of the signal while staphylococcal enterotoxin D (SED) appeared to give no detectable signal. After regeneration with 1.2 M NaOH, the coated crystal could be reused three times with retention of 66% of the initial signal. The crystal has also been found to be stable for 3 days when stored at 4 °C in a dry atmosphere without appreciable loss of activity.  相似文献   

7.
从噬菌体表面展示肽库中筛选葡萄球菌B型肠毒素抑制剂   总被引:1,自引:0,他引:1  
通过生物淘选,从噬菌体表面展示12肽肽库中筛选能与葡萄球菌B型肠毒素(staphylococcalenterotoxinB ,SEB)结合且能抑制其肠毒活性的特异性短肽.采用Phage ELISA和MTT鉴定所得目的肽的亲和性;根据优势噬菌体阳性克隆序列合成相应多肽.利用竞争ELISA研究合成肽与SEB单克隆抗体竞争结合SEB的情况;通过动物实验考察其抑制SEB的超抗原特性和肠毒活性情况.筛选所得短肽在一定浓度范围内可以抑制SEB对鼠脾淋巴细胞的激活;合成肽与SEB质量比为16 0∶1时,合成肽可较好地抑制SEB对乳猫的肠毒活性,并对SEB引起的小鼠致死具有明显保护作用.结果表明,初步得到了能与SEB特异结合并能抑制SEB超抗原特性和肠毒活性的短肽,为进一步研制SEB高效抑制剂奠定了基础.  相似文献   

8.
Staphylococcal enterotoxin B (SEB) is an exotoxin produced by Staphylococcus aureus and commonly associated with food poisoning. In this study, SEB‐binding peptides were identified by screening a phage displayed peptide library. The binding of peptides to SEB was tested with isothermal titration calorimetry (ITC) and of the five selected peptides, three showed affinity to SEB, with one measured to have the highest affinity constant (105 M?1). ITC revealed that the interaction of peptide ligands with SEB was driven entropically and the binding was dominated by hydrophobic interactions. Circular dichroism (CD) measurements and molecular dynamics (MD) simulations, together, give a structural insight into the interaction of peptides with SEB. While SEB binding peptides showed random coil structure before binding, after complex formation they had more ordered structures. The peptide with highest affinity to SEB showed stable conformation during MD simulation. Taken together, our approach about thermodynamic and structural characterization of peptide ligands can be used to develop aptamers, with high affinity and selectivity, for biosensor applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
A new approach for the detection of virulence factors of Staphylococcus aureus and Staphylococcus epidermidis using an electrical protein array chip technology is presented. The procedure is based on an enzyme-linked sandwich immunoassay, which includes recognition and binding of virulence factors by specific capture and detection antibodies. Detection of antibody-bound virulence factors is achieved by measuring the electrical current generated by redox recycling of an enzymatically released substance. The current (measured in nanoampere) corresponds to the amount of the target molecule in the analyzed sample. The electrical protein chip allows for a fast detection of Staphylococcus enterotoxin B (SEB) of S. aureus and immunodominant antigen A homologue (IsaA homologue) of S. epidermidis in different liquid matrices. The S. aureus SEB virulence factor could be detected in minimal medium, milk, and urine in a concentration of 1 ng/ml within less than 23 min. Furthermore, a simultaneous detection of SEB of S. aureus and IsaA homologue of S. epidermidis in a single assay could be demonstrated.  相似文献   

10.
AIM: The aim of this study was to develop a loop-mediated isothermal amplification (LAMP) assay targeting the genes for the four classical enterotoxins, SEA, SEB, SEC and SED, in Staphylococcus aureus. METHODS AND RESULTS: Specific primers were designed which target each specific sequence of the enterotoxin genes. With 30 strains of Staph. aureus, the results of the LAMP assay to each enterotoxin, SEA, SEB, SEC and SED, completely accorded with the results of polymerase chain reaction (PCR) assay. Enterotoxin production, determined by a reverse passive latex agglutination assay, strongly correlated with the presence of the corresponding genes. Amplification was not observed when 14 strains of nonenterotoxigenic Staph. aureus and 20 strains consisting of 19 bacterial species other than Staph. aureus were tested. In addition, the sensitivity of the LAMP assay was generally higher than that of conventional PCR assay and it rapidly detected enterotoxigenic Staph. aureus strains within 60 min. CONCLUSIONS: The LAMP assay developed in this study is rapid, specific and sensitive for the detection of enterotoxigenic Staph. aureus. SIGNIFICANCE AND IMPACT OF THE STUDY: The method is suitable for clinical diagnosis and food safety applications.  相似文献   

11.
The growing importance of mass spectrometry for the identification and characterization of bacterial protein toxins is a consequence of the improved sensitivity and specificity of mass spectrometry-based techniques, especially when these techniques are combined with affinity methods. Here we describe a novel method based on the use of immunoaffinity capture and matrix-assisted laser desorption ionization-time of flight mass spectrometry for selective purification and detection of staphylococcal enterotoxin B (SEB). SEB is a potent bacterial protein toxin responsible for food poisoning, as well as a potential biological warfare agent. Unambiguous detection of SEB at low-nanogram levels in complex matrices is thus an important objective. In this work, an affinity molecular probe was prepared by immobilizing anti-SEB antibody on the surface of para-toluene-sulfonyl-functionalized monodisperse magnetic particles and used to selectively isolate SEB. Immobilization and affinity capture procedures were optimized to maximize the density of anti-SEB immunoglobulin G and the amount of captured SEB, respectively, on the surface of magnetic beads. SEB could be detected directly “on beads” by placing the molecular probe on the matrix-assisted laser desorption ionization target plate or, alternatively, “off beads” after its acidic elution. Application of this method to complex biological matrices was demonstrated by selective detection of SEB present in different matrices, such as cultivation media of Staphylococcus aureus strains and raw milk samples.  相似文献   

12.
A quadruplex real-time (RT) qPCR assay for the detection and quantification in 4 h of Staphylococcusaureus, Pseudomonasaeruginosa, Acinetobacterbaumannii and Stenotrophomonasmaltophilia directly from bronchoalveolar lavage specimens was developed. The specificity of the assay was 100% for all four species.  相似文献   

13.
Staphylococcal enterotoxins (SEs) are the second most common causal agents of food poisoning throughout the world. Staphylococcal enterotoxin B (SEB) is one of the most potent and a listed biological warfare agent. Therefore, its quick, accurate and sensitive detection is of paramount importance. But availability of sensitive and specific antibodies against SEB is the major bottleneck in the development of an immunodetection system. Therefore, in the present study seb gene was cloned and expressed in a heterologous host resulting in a yield of 92 mg pure toxin per litre of culture broth after Ni–NTA affinity purification. Antibodies raised against the recombinant toxin did not cross react with related enterotoxins and organisms that can gain access in the food. Further, a sandwich ELISA was developed to detect SEB after extraction from artificially spiked food samples like milk, orange juice, skim milk and khoya. The sandwich ELISA was able to detect SEB in the range of 0.25 to 0.49 ng/ml or g of food. The detection system developed in the present study is at least as specific and sensitive as other commercially available kits which use monoclonal antibodies.  相似文献   

14.
We isolated three species of phenanthrene-degrading bacteria from oil-contaminated soils and marine sediment, and assessed the potential use of these bacteria for bioremediation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs). Based on 16S rDNA sequences, these bacteria were Staphylococcus sp. KW-07 and Pseudomonas sp. CH-11 from soil, and Ochrobactrum sp. CH-19 from the marine sediment. By PCR amplification, catechol 2,3-dioxygenase genes (nahH genes) mediating PAH degradation in the chromosome of Staphylococcus sp. KW-07 and Ochrobactrum sp. CH-19, and in plasmid DNA of Pseudomonas sp. CH-11 were detected. All isolates had a similar optimal growth temperature (25 °C) and optimal growth pH (7.0) in a minimal salt medium (MSM) with 0.1% (w/v) phenanthrene as the sole source of carbon and energy. Pseudomonas sp. CH-11 and Staphylococcus sp. KW-07 degraded 90% of added phenanthrene in 3 days and Ochrobactrum sp. CH-19 degraded 90% of the phenanthrene in 7 days under laboratory batch culture conditions. However, Staphylococcus sp. KW-07 was the most effective among the three strains in degradation of phenanthrene in soil. After inoculation of 1 × 1011 cells of Staphylococcus sp. KW-07, over 90% degradation of 0.1% phenanthrene (0.1 g/100 g soil) was achieved after 1 month at 25 °C. The results collectively suggest that the Staphylococcus sp. KW-07 strain isolated may be useful in bioremediation of PAH-contaminated soils.  相似文献   

15.
Abstract Groups of BALB/c mice were treated with a sub-lethal dose (60 μg) of staphylococcal enterotoxin B (SEB) intraperitoneally and were sacrificed at 2, 5, 8, or 10 h post-injection. Organ, blood plasma and lymph node samples from these mice were analyzed. Plasma levels of urea, creatinine and alanine aminotransferase were significantly raised above normal by 5 h post-injection. However, alkaline phosphatase levels showed an erratic increase after toxin administration and, after administration of 10–40 μg SEB per mouse, were consistently at least 30% below normal levels at 24 h post-injection. Weight change was also monitored but found to be inconsistent. Lung, spleen and kidney samples appeared normal on histopathological examination, but liver samples showed minor polymorph infiltration and congestion. TNF-α, and IL-1 α levels in the plasma were raised by 8 h to picogram levels per ml of plasma, whereas IFN-γ and IL-2 were raised by 2 h to nanogram levels per ml of plasma. Lymph node cells taken from mice treated with toxin were given a secondary stimulation with toxin in vitro. Although the response of the cells was lower than normal on assay at four days, a time response curve showed a peak in cell responsiveness to secondary stimulation with toxin at three days. These data indicate that biochemical markers and cytokine levels are affected by the administration of SEB to mice and may be used as indicators of toxicity.  相似文献   

16.
Bacterial identification using rrs (16S rRNA) gene is widely reported. Bacteria possessing multiple copies of rrs lead to overestimation of its diversity. Staphylococcus genomes carries 5–6 copies of rrs showing high similarity in their nucleotide sequences, which lead to ambiguous results. The genomes of 31 strains of Staphylococcus representing 7 species were searched for the presence of common genes. In silico digestion of 34 common genes using 10 restriction endonucleases (REs) lead to select gene-RE combinations, which could be used as biomarkers. RE digestion of recA allowed unambiguous identification of 13 genomes representing all the 7 species. In addition, a few more genes (argH, argR, cysS, gyrB, purH, and pyrE) and RE combinations permitted further identification of 12 strains. By employing additional RE and genes unique to a particular strain, it was possible to identify the rest 6 Staphylococcus aureus strains. This approach has the potential to be utilized for rapid detection of Staphylococcus strains.

Electronic supplementary material

The online version of this article (doi:10.1007/s12088-016-0565-9) contains supplementary material, which is available to authorized users.  相似文献   

17.
The direct skin test in highly sensitized guinea pigs was developed as a rapid and extremely sensitive assay for detection of staphylococcal enterotoxin B (SEB) in foods. This report details the experimental conditions required to elicit optimal sensitization of guinea pigs to SEB. An intense and persistent immunoglobulin E (IgE) anti-SEB response was established in strain 13 guinea pigs pretreated with cyclophosphamide followed by four sensitizing doses of 10 micrograms of SEB 1 month apart. The conditions, however, optimal for eliciting IgE responses led to a sustained failure to produce antibody of the IgG1 subclass. With the use of highly sensitized guinea pigs, one can achieve a sensitivity ranging from 0.1 to 1.0 pg of purified SEB by the direct skin test for at least 7 months after the last challenge. For analysis of SEB in food extracts, the entire assay can be accomplished within 20 min with a sensitivity of 10 to 100 pg SEB per ml of prepared food samples, and the recovery of enterotoxin from spiked food products ranged between 75 and 89% of the amount added.  相似文献   

18.
《MABS-AUSTIN》2013,5(1):119-129
Staphylococcal enterotoxin (SE) B is among the potent toxins produced by Staphylococcus aureus that cause toxic shock syndrome (TSS), which can result in multi-organ failure and death. Currently, neutralizing antibodies have been shown to be effective immunotherapeutic agents against this toxin, but the structural basis of the neutralizing mechanism is still unknown. In this study, we generated a neutralizing monoclonal antibody, 3E2, against SEB, and analyzed the crystal structure of the SEB-3E2 Fab complex. Crystallographic analysis suggested that the neutralizing epitope overlapped with the MHC II molecule binding site on SEB, and thus 3E2 could inhibit SEB function by preventing interaction with the MHC II molecule. Mutagenesis studies were done on SEB, as well as the related Staphylococcus aureus toxins SEA and SEC. These studies revealed that tyrosine (Y)46 and lysine (K)71 residues of SEB are essential to specific antibody–antigen recognition and neutralization. Substitution of Y at SEA glutamine (Q)49, which corresponds to SEB Y46, increased both 3E2’s binding to SEA in vitro and the neutralization of SEA in vivo. These results suggested that SEB Y46 is responsible for distinguishing SEB from SEA. These findings may be helpful for the development of antibody-based therapy for SEB-induced TSS.  相似文献   

19.
Abstract Confrontation of the immune system with bacterial superantigens leads to an initial activation of the immune system followed by a state of profound immunosuppression. To investigate the role of a superantigen in an acute infection with a facultatively intracellular bacterium, we have studied the effect of staphylococcal enterotoxin B on the course of murine listeriosis. Intraperitoneal injection of SEB led to a statistically significant growth restriction of Listeria monocytogenes in the organs of mice infected intravenously or intraperitoneally when treatment with SEB and infection with L. monocytogenes were given simultaneously or when the mice were treated two days before infection. No effect of SEB on murine listeriosis was found when SEB was given more than two days before infection or one or more days after infection. We conclude that initial immunostimulation by SEB which is indicated by a massive liberation of all interleukins measured (IL1α, IL6, TNFα, IL2, IFNγ, IL4) is responsible for the growth restriction of L. monocytogenes in the organs of treated mice. Apoptosis of Vβ8 positive T cells which was accompanied by a 30% reduction of these cells at day 7 after treatment seems to be totally compensated.  相似文献   

20.
A group of 212 type and reference strains deposited in the Czech Collection of Microorganisms (Brno, Czech Republic) and covering 41 Staphylococcus species comprising 21 subspecies was characterised using rep-PCR fingerprinting with the (GTG)5 primer in order to evaluate this method for identification of staphylococci. All strains were typeable using the (GTG)5 primer and generated PCR products ranging from 200 to 4500 bp. Numerical analysis of the obtained fingerprints revealed (sub)species-specific clustering corresponding with the taxonomic position of analysed strains. Taxonomic position of selected strains representing the (sub)species that were distributed over multiple rep-PCR clusters was verified and confirmed by the partial rpoB gene sequencing. Staphylococcus caprae, Staphylococcus equorum, Staphylococcus sciuri, Staphylococcus piscifermentans, Staphylococcus xylosus, and Staphylococcus saprophyticus revealed heterogeneous fingerprints and each (sub)species was distributed over several clusters. However, representatives of the remaining Staphylococcus spp. were clearly separated in single (sub)species-specific clusters. These results showed rep-PCR with the (GTG)5 primer as a fast and reliable method applicable for differentiation and straightforward identification of majority of Staphylococcus spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号