首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aggregation is a serious obstacle for recovery of biologically active heterologous proteins from inclusion bodies (IBs) produced by recombinant bacteria. E. coli transformed with a vector containing the cDNA for Bothropstoxin-1 (BthTx-1) expressed the recombinant product as IBs. In order to obtain the native toxin, insoluble and aggregated protein was refolded using high hydrostatic pressure (HHP). IBs were dissolved and refolded (2 kbar, 16 h), and the effects of protein concentration, as well as changes in ratio and concentration of oxido-shuffling reagents, guanidine hydrochloride (GdnHCl), and pH in the refolding buffer, were assayed. A 32% yield (7.6 mg per liter of bacterial culture) in refolding of the native BthTx-1 was obtained using optimal conditions of the refolding buffer (Tris–HCl buffer, pH 7.5, containing 3 mM of a 2:3 ratio of GSH/GSSG, and 1 M GdnHCl). Scanning electron microscopy (SEM) showed that that disaggregation of part of IBs particles occurred upon compression and that the morphology of the remaining IBs, spherical particles, was not substantially altered. Dose-dependent cytotoxic activity of high-pressure refolded BthTx-1 was shown in C2C12 muscle cells.  相似文献   

2.
We investigated the relevance of the relationship between the compactness of β-galactosidase inclusion bodies (β-gal IBs) and their enhanced enzymatic activity with or without the addition of D-fucose (inducer analog) or methyl α-D-glucopyranoside (α-MG, catabolite repressor) after induction in the araBAD promoter system of Escherichia coli. Experiments conducted to evaluate the solubilization of β-gal IBs in guanidine hydrochloride as well as their trypsin degradation and temperature stability revealed that β-gal IBs expressed in response to the addition of D-fucose or α-MG had a looser structure. Additionally, β-gal IBs expressed when D-fucose or α-MG was added were more quickly solubilized in guanidine hydrochloride or degraded by trypsin-treatment than those produced when these compounds were not added. Moreover, the activity of β-gal IBs expressed when D-fucose or α-MG were added was less stable at various temperatures. Consequently, we deduced that the looser structure of β-gal IBs resulted in enhanced enzymatic activity of β-gal IBs upon addition of D-fucose or α-MG after induction.  相似文献   

3.
The effect of transient exposure of Staphylococcus aureus enterotoxin A (SEA) to high pressure and/or denaturing agents was examined by assessing the toxin superantigenicity and immunoreactivity, and by monitoring pressure-induced changes in fluorescence emission spectra. Pressurization of SEA at 600 MPa and 45 °C in Tris–HCl buffer (20 mM, pH 7.4) resulted in a marked increase in both T-cell proliferation (superantigenicity) and immunoreactivity. In opposite, pressurization at 20 °C did not change significantly SEA superantigenicity and immunoreactivity, indicating some toxin baro-resistance. Exposure of SEA to 8 M urea at atmospheric pressure or at 600 MPa and 20 °C, also led to a marked increase of superantigenicity (but not of immunoreactivity). In contrast, exposure of SEA to sodium-dodecylsulfate (30 mM) led to an increase of immunoreactivity with some effect on superantigenicity after pressurization at 45 °C only. High pressure up to 600 MPa induced spectral changes which at 20 °C were fully reversible upon decompression. At 45 °C, however, a sharp break of the centre of spectral mass mainly due to tryptophan residues was observed at 300 MPa, and irreversible spectral changes mainly related to tyrosine residues subsisted after pressure release, indicating a marked protein conformational transition. Urea 8 M further increased SEA structural changes at 600 MPa and 20 °C. These results indicate that SEA, under a combination of high pressure and mild temperature, as well as in the presence of urea, partly unfolds to a structure of strongly increased T-cell proliferative ability.  相似文献   

4.
人重组IL6/IL2融合蛋白的变性、复性及纯化   总被引:1,自引:0,他引:1  
经超声破碎,分离已表达CH925包涵体,较系统地研究变性剂浓度、融合蛋白浓度对蛋白折叠的影响.在还原型及氧化型谷胱甘肽复性条件下,成功地将融合蛋白CH925折叠成具有IL6及IL2双活性蛋白,IL6的比活为2.3×108U/mg, IL2比活为2.2×106U/mg.经阴离子交换、凝胶过滤层析,获得一定纯度的CH925,配合反相HPLC.洗脱收集蛋白峰,CH925纯度为98%.  相似文献   

5.
The effects of hydrostatic pressure on creatine kinase activity and conformation were investigated using either the high-pressure stopped-flow method in the pressure range 0.1-200 MPa for the activity determination, or the conventional activity measurement and fluorescence spectroscopy up to 650 MPa. The changes in creatine kinase activity and intrinsic fluorescence show a total or partial reversibility after releasing pressure, depending on both the initial value of the high pressure applied and on the presence or absence of guanidine hydrochloride. The study on 8-anilinonaphthalene-1-sulfonate binding to creatine kinase under high pressure indicates that the hydrophobic core of creatine kinase was progressively exposed to the solvent at pressures above 300 MPa. This data shows that creatine kinase is inactivated at low pressure, preceding both the enzyme dissociation and the unfolding of the hydrophobic core occurring at higher pressure. Moreover, in agreement with the recently published structure of the dimer, it can be postulated that the multistate transitions of creatine kinase induced both by pressure and guanidine denaturation are in direct relationship with the existence of hydrogen bonds which maintain the dimeric structure of the enzyme.  相似文献   

6.
High hydrostatic pressure (HHP)-mediated solubilization and refolding of five inclusion bodies (IBs) produced from bacteria, three gram-negative binding proteins (GNBP1, GNBP2, and GNBP3) from Drosophila, and two phosphatases from human were investigated in combination of a redox-shuffling agent (2 mM DTT and 6 mM GSSG) and various additives. HHP (200 MPa) combined with the redox-shuffling agent resulted in solubilization yields of approximately 42%-58% from 1 mg/mL of IBs. Addition of urea (1 and 2 M), 2.5 M glycerol, L-arginine (0.5 M), Tween 20 (0.1 mM), or Triton X-100 (0.5 mM) significantly enhanced the solubilization yield for all proteins. However, urea, glycerol, and nonionic surfactants populated more soluble oligomeric species than monomeric species, whereas arginine dominantly induced functional monomeric species (approximately 70%-100%) to achieve refolding yields of approximately 55%-78% from IBs (1 mg/mL). Our results suggest that the combination of HHP with arginine is most effective in enhancing the refolding yield by preventing aggregation of partially folded intermediates populated during the refolding. Using the refolded proteins, the binding specificity of GNBP2 and GNBP3 was newly identified the same as with that of GNBP1, and the enzymatic activities of the two phosphatases facilitates their further characterization.  相似文献   

7.
Temperature and hydrostatic pressure are essential in determining the assemblage of species in their specific biotopes. To evaluate the effect of high pressure on the range of viability of thermophiles, the pressure and temperature dependence of the growth of the methanogenic archaebacterium Methanococcus thermolithotrophicus was investigated. High pressure up to 50 MPa enhanced the growth rate without extending the temperature range of viability. The optimum temperature remained unaltered (65°C). Beyond 50 MPa, cell lysis predominated over cell proliferation. Destabilization was also observed at temperatures below and above the optimum growth temperature (<60°C, ≥70°C) and at low substrate concentrations.  相似文献   

8.
Benzoylformate decarboxylase (BFD, EC 4.1.1.7) is a homotetrameric thiamine diphosphate (ThDP)-dependent enzyme which catalyzes the synthesis of chiral 2-hydroxyketones accepting a broad range of aldehydes as substrates. In this study the synthesis of 2-hydroxypropiophenone (2-HPP) from benzaldehyde and acetaldehyde was catalyzed by three BFD variants namely BFD F464I, BFD A460I and BFD A460I-F464I. This paper reports the effect of hydrostatic pressure up to 290 MPa when the reactions were carried out at different benzaldehyde concentrations (5-40 mM) as well as at different pH values (7.0-8.5). Acetaldehyde concentration was fixed at 400 mM in all biotransformations. Reactions performed at high benzaldehyde concentrations and at high hydrostatic pressures showed an increase in (R)-2-HPP formation catalyzed by all BFD variants. For BFD A460I-F464I we observed an increase in the ee of (R)-2-HPP up to 80%, whereas at atmospheric conditions this variant synthesizes (R)-2-HPP with an ee of only 50%. Alkaline conditions (up to pH 8.5) and high hydrostatic pressures resulted in an increase of (R)-2-HPP synthesis, especially in the case of BFD A460I and BFD F464I.  相似文献   

9.
The synergistic effects of high hydrostatic pressure (HHP), mild heating, and amino acids on the germination of Clostridium sporogenes spores were examined by determining the number of surviving spores that returned to vegetative growth after pasteurization following these treatments. Pressurization at 200 MPa at a temperature higher than 40°C and treatment with some of the 19 l-amino acids at 10 mM or higher synergistically facilitated germination. When one of these factors was omitted, the level of germination was insignificant. Pressures of 100 and 400 MPa were less effective than 200 MPa. The spores were effectively inactivated by between 1.8 and 4.8 logs by pasteurization at 80°C after pressurization at 200 MPa at 45°C for 120 min with one of the amino acids with moderate hydrophobicity, such as Leu, Phe, Cys Met, Ala, Gly, or Ser. However, other amino acids showed poor inactivation effects of less than 0.9 logs. Spores in solutions containing 80 mM of either Leu, Phe, Cys, Met, Ala, Gly, or Ser were successfully inactivated by pasteurization by more than 5.4 logs after pressurization at 200 MPa at 70°C for 15 to 120 min. Ala and Met reduced the spore viability by 2.8 and 1.8 logs, respectively, by pasteurization at a concentration of 1 mM under 200 MPa at 70°C. These results indicate that germination of the spores is facilitated by a combination of high hydrostatic pressure, mild heating, and amino acids.  相似文献   

10.
Response of Pathogenic Vibrio Species to High Hydrostatic Pressure   总被引:3,自引:0,他引:3       下载免费PDF全文
Vibrio parahaemolyticus ATCC 17802, Vibrio vulnificus ATCC 27562, Vibrio cholerae O:1 ATCC 14035, Vibrio cholerae non-O:1 ATCC 14547, Vibrio hollisae ATCC 33564, and Vibrio mimicus ATCC 33653 were treated with 200 to 300 MPa for 5 to 15 min at 25°C. High hydrostatic pressure inactivated all strains of pathogenic Vibrio without triggering a viable but nonculturable (VBNC) state; however, cells already existing in a VBNC state appeared to possess greater pressure resistance.  相似文献   

11.
The effect of temperature (20-70 °C) on the gelatinization and retrogradation of potato starch-water mixtures (10-70%, w/w) treated with high hydrostatic pressure (HHP) (400-1000 MPa) was investigated. Gelatinization enthalpy change (ΔHgel) and re-gelatinization enthalpy change of retrograded crystalline part (ΔHretro) of the HHP-treated starch were evaluated using differential scanning calorimetry. The value of ΔHgel of 10-20% (w/w) mixtures decreased with increased pressure and temperature, while ΔHgel of 30-50% (w/w) mixtures decreased to certain values with increased pressure and the values depended on treatment temperature. With higher temperature and pressure conditions, ΔHgel of 10-40% (w/w) mixtures reached zero, but ΔHgel of 50-70% (w/w) mixtures did not. Retrogradation was observed with HHP-treated 20-60% (w/w) mixtures and the value of ΔHretro depended on the starch content, pressure, and temperature. The value of ΔHretro trended to increase with increase in starch content. In addition, retrogradation was promoted by HHP treatment at low temperature. Gelatinizaiton and retrogradation behaviors of HHP-treated (400-1000 MPa) potato starch-water mixtures (10-70%, w/w) at 20-70 °C were summerized in a series of state diagrams.  相似文献   

12.
Chloroplast ATP-synthase is an H(+)/ATP-driven rotary motor in which a hydrophobic multi-subunit assemblage rotates within a hydrophilic stator, and subunit interactions dictate alternate-site catalysis. To explore the relevance of these interactions for catalysis we use hydrostatic pressure to induce conformational changes and/or subunit dissociation, and the resulting changes in the ATPase activity and oligomer structure are evaluated. Under moderate hydrostatic pressure (up to 60-80 MPa), ATPase activity is increased by 1.5-fold. This is not related to an increase in the affinity for ATP, but seems to correlate with an enhanced turnover induced by pressure, and an activation volume for the ATPase reaction of -23.7 ml/mol. Higher pressure (up to 200 MPa) leads to dissociation of the enzyme, as shown by enzyme inactivation, increased binding of 8-anilinonaphthalene-1-sulfonate (ANS) to hydrophobic regions, and labeling of specific Cys residues on the beta and alpha subunits by N-iodoacetyl-N'-(5-sulfo-1-naphthyl)ethylene-4-diamine (IAEDANS). Compression-decompression cycles (between 0.1 and 200 MPa) inactivate CF(0)F(1) in a concentration-dependent manner, although after decompression no enzyme subunit is retained on a Sephadex-G-50 centrifuge column or is further labeled by IAEDANS. It is proposed that moderate hydrostatic pressures induce elastic compression of CF(0)F(1), leading to enhanced turnover. High pressure dissociation impairs the contacts needed for rotational catalysis.  相似文献   

13.
Previous exploratory work revealed that high pressure (200 MPa), in combination with oxido-shuffling agents such as glutathione, effectively refolds covalently cross-linked aggregates of lysozyme into catalytically active native molecules, at concentrations up to 2 mg/mL (1). To understand further and optimize this process, in the current study we varied the redox conditions and levels of guanidine hydrochloride (GdnHCl) in the refolding buffer. Maximum refolding yields of 80% were seen at 1 M GdnHCl; higher concentrations did not increase refolding yields further. A maximum in refolding yield was observed at redox conditions with a 1:1 ratio of oxidized to reduced glutathione (GSSG:GSH). Yields decreased dramatically at more oxidizing conditions ([GSSG] > [GSH]). Kinetics of dissolution and refolding of covalently cross-linked aggregates of lysozyme depended strongly on redox conditions. At GSSG:GSH ratios of 4:1, 1:1, and 1:16, lysozyme dissolved and refolded with time constants of 62, 20, and 8 h, respectively. Estimates of the free energy of unfolding of lysozyme in GdnHCl solutions at 200 MPa suggested that the native state of lysozyme is strongly favored (ca.18.6 kJ/mol) under the conditions used for dissolution and refolding.  相似文献   

14.
A potent serine proteinase inhibitor was isolated and characterized from the seeds of the tropical legume liana, Derris trifoliata (DtTCI) by ammonium sulfate precipitation, ion exchange chromatography and gel filtration chromatography. SDS-PAGE as well as MALDI-TOF analysis showed that DtTCI is a single polypeptide chain with a molecular mass of ∼20 kDa. DtTCI has three isoinhibitors (pI: 4.55, 5.34 and 5.72) and, inhibited both trypsin and chymotrypsin in a 1:1 molar ratio. Both Dixon plots and Lineweaver-Burk double reciprocal plots revealed a competitive inhibition of trypsin and chymotrypsin activity, with inhibition constants (Ki) of 1.7 × 10−10 and 1.25 × 10−10 M, respectively. N-terminal sequence of DtTCI showed over 50% similarity with numerous Kunitz-type inhibitors of the Papilionoideae subfamily. High pH amplitude and broad temperature optima were noted for DtTCI, and time course experiments indicated a gradual loss in inhibitory potency on treatment with dithiothreitol (DTT). Circular Dichroism (CD) spectrum of native DtTCI revealed an unordered structure whereas exposure to thermal-pH extremes, DTT and guanidine hydrochloride (Gdn HCl) suggested that an abundance of β-sheets along with intramolecular disulfide bonds provide conformational stability to the active site of DtTCI, and that severity of denaturants cause structural modifications promoting inhibitory inactivity. Antimalarial studies of DtTCI indicate it to be a potent antiparasitic agent.  相似文献   

15.
Four strains of euryhaline bacteria belonging to the genus Halomonas were tested for their response to a range of temperatures (2, 13, and 30°C), hydrostatic pressures (0.1, 7.5, 15, 25, 35, 45, and 55 MPa), and salinities (4, 11, and 17% total salts). The isolates were psychrotolerant, halophilic to moderately halophilic, and piezotolerant, growing fastest at 30°C, 0.1 MPa, and 4% total salts. Little or no growth occurred at the highest hydrostatic pressures tested, an effect that was more pronounced with decreasing temperatures. Growth curves suggested that the Halomonas strains tested would grow well in cool to warm hydrothermal-vent and associated subseafloor habitats, but poorly or not at all under cold deep-sea conditions. The intermediate salinity tested enhanced growth under certain high-hydrostatic-pressure and low-temperature conditions, highlighting a synergistic effect on growth for these combined stresses. Phospholipid profiles obtained at 30°C indicated that hydrostatic pressure exerted the dominant control on the degree of lipid saturation, although elevated salinity slightly mitigated the increased degree of lipid unsaturation caused by increased hydrostatic pressure. Profiles of cytosolic and membrane proteins of Halomonas axialensis and H. hydrothermalis performed at 30°C under various salinities and hydrostatic pressure conditions indicated several hydrostatic pressure and salinity effects, including proteins whose expression was induced by either an elevated salinity or hydrostatic pressure, but not by a combination of the two. The interplay between salinity and hydrostatic pressure on microbial growth and physiology suggests that adaptations to hydrostatic pressure and possibly other stresses may partially explain the euryhaline phenotype of members of the genus Halomonas living in deep-sea environments.  相似文献   

16.
The structural damage to and leakage of internal substances from Saccharomyces cerevisiae 0–39 cells induced by hydrostatic pressure were investigated. By scanning electron microscopy, yeast cells treated at room temperature with pressuresbellw 400 MPa for 10 min showed a slight alteration in outer shape. Transmission electron microscopy, however, showed that the inner structure of the cell began to be affected, especially the nuclear membrane, when treated with hydrostatic pressure around 100 MPa at room temperature for 10 min; at more than 400–600 MPa, further alterations appeared in the mitochondria and cytoplasm. Furthermore, when high pressure treatment was carried out at — 20° C, the inner structure of the cells was severely damaged even at 200 MPa, and almost all of the nuclear membrane disappeared, although the fluorescent nucleus in the cytoplasm was visible by 4,6-diamidino-2-phenylindole (DAPI) staining. The structural damage of pressure-treated cells was accompanied by the leakage of internal substances. The efflux of UV-absorbing substances including amino acid pools, peptides, and metal ions increased with increase in pressure up to 600 MPa. In particular, amounts of individual metal ion release varied with the magnitude of hydrostatic pressures over 300 MPa, which suggests that the ions can be removed from the yeast cells separately by hydrostatic pressure treatment. Correspondence to: S. Shimada  相似文献   

17.
Abstract The influence of elevated hydrostatic pressure on the growth rates of two hyperthermophilic Archaea isolated from hydrothermal vent environments (strains ES1 and ES4) was investigated over their entire temperature range for growth. Thermococcus celer , a shallow marine hyperthermophile was included in the study for comparative purposes. For one strain (ES4), the pressure at the site of collection (22 MPa) caused an upward shift in the optimal growth temperature of about 6°C compared to growth at 1 MPa. Although the optimal temperature for ES1 was unaffected by 22 MPa, elevated pressure stimulated the growth rate at supra-optimal temperatures. The temperature range for growth for both organisms was extended upward 2°C at 22 MPa pressure. For both strains 22 MPa had little effect on growth rates at sub-optimal temperatures. Growth was observed at pressures as high as 89 MPa for ES1 and 67 MPa for ES4, but with these higher pressures the temperature range for growth was narrowed, and the optimal temperature was shifted downward. Growth of Thermococcus celer was slightly stimulated by 22 MPa at its reported optimal temperature of 88°C, but was inhibited by higher pressure.  相似文献   

18.
A serine protease was purified 6.7-fold and with 35% recovery from the seeds Solanum dubium Fresen by a simple purification procedure that combined ammonium sulfate fractionation, cation exchange and gel filtration chromatographies. The enzyme, named dubiumin, has a molecular mass of 66 kDa as estimated by gel filtration and SDS-PAGE. Carbohydrate staining established the existence of a carbohydrate moiety attached to the enzyme. Inhibition of enzyme activity by serine protease inhibitors such as PMSF and chymostatin indicated that the enzyme belongs to the chymotrypsin-like serine protease class. Dubiumin is a basic protein with pI value of 9.3, acts optimally at pH 11.0, and is stable over a wide range of pH (3.0-12.0). The enzyme is also thermostable retaining complete activity at 60 °C after 1 h and acts optimally at 70 °C for 30 min. Furthermore, it is highly stable in the presence of various denaturants (2.0% SDS, 7.0 M urea and 3.0 M guanidine hydrochloride) and organic solvents [CH3CN-H2O (1:1, v/v) and MeOH-H2O (1:1, v/v)] when incubated for 1 h. The enzyme showed a high resistance to autodigestion even at low concentrations.  相似文献   

19.
An optimization of the refolding of endostatin (ES), by a study of the conditions that can affect (i) dissociation of inclusion bodies (IBs) and (ii) renaturation under high hydrostatic pressure (HHP), is described. IBs produced by bacteria cultivated at 25 °C were shown to be more soluble than those produced at 37 °C and their dissociation by application of 2.4 kbar at 20 °C was shown to be further enhanced at ?9 °C. A red shift in intrinsic fluorescence spectra and an increase in binding of the hydrophobic fluorescent probe bis-ANS show subtle changes in conformation of ES in the presence of 1.5 M GdnHCl at 2.4 kbar, while at 0.4 kbar the native conformational state is favored. The 25% refolding yield obtained via compression of IBs produced at 37 °C by application of 2.4 kbar, was increased to 78% when conditions based on the insights acquired were utilized: dissociation at 2.4 kbar and ?9 °C of the IBs produced at 25 °C, followed by refolding at 0.4 kbar and 20 °C. Besides providing insights into the conformational transitions of ES structure under HHP, this work proposes innovative conditions that are likely to have wide applicability to the HHP-induced refolding of proteins in general.  相似文献   

20.
Mutants Saccharomyces cerevisiae deleted on the trehalose-6-phosphate synthase gene (tps1) and their parental wild-type cells were submitted to hydrostatic pressure in the range of 0–200 MPa. Experimental evidence showed that viability for both strains decreased with increasing pressure and that tps1 mutants, unable to accumulate trehalose, were more sensitive to hydrostatic pressure than the wild-type cells. Additionally, both tps1 and wild-type cells in the stationary phase, when there is an accumulation of endogenous trehalose, were more resistant to pressure than proliferating cells. Under these conditions, mutant cells were also more sensitive to pressure treatment than the wild type. The present work also showed that mild pressure pretreatment did not induce hydrostatic pressure resistance (barotolerance) in yeast cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号