首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Matrix metalloprotease 11 (MMP-11), a protease associated with invasion and aggressiveness of cancerous tissue, was postulated as a prognostic marker for pancreatic, breast, and colon cancer patients. Expression analysis, however, did not reveal localization and regulation of this protease. Thus, cellular tools for the visualization of MMP-11 are highly desirable to monitor presence and activity and to elucidate the functional role of MMP-11. Therefore, fluorescein-Dabcyl-labeled Foerster resonance energy transfer (FRET) substrates were developed. The design focused on enhanced peptide binding to human MMP-11, employing an unusual amino acid for the specificity pocket P1′. The addition of several arginines resulted in a cell-permeable FRET substrate SM-P124 (Ac-GRRRK(Dabcyl)-GGAANC(MeOBn)RMGG-fluorescein). In vitro evaluation of SM-P124 with human MMP-11 showed a 25-fold increase of affinity (kcat/Km = 9.16 × 103 m−1 s−1, Km = 8 μm) compared with previously published substrates. Incubation of pancreatic adenocarcinoma cell line MIA PaCa-2 and mamma adenocarcinoma cell line MCF-7 with the substrate SM-P124 (5 μm) indicated intra- and extracellular MMP-11 activity. A negative control cell line (Jurkat) showed no fluorescent signal either intra- or extracellularly. Negative control FRET substrate SM-P123 produced only insignificant extracellular fluorescence without any intracellular fluorescence. SM-P124 therefore enabled intra- and extracellular tracking of MMP-11-overexpressing cancers such as pancreatic and breast adenocarcinoma and might contribute to the understanding of the activation pathways leading to MMP-11-mediated invasive processes.  相似文献   

2.
The kinetic investigation of hyaluronidases using physiologically relevant hyaluronic acid (HA or hyaluronan) substrate will provide useful and important clues to their catalytic behavior and function in vivo. We present here a simple and sensitive method for kinetic measurement of recombinant human hyaluronidase PH20 (rHuPH20) on HA substrates with sizes ranging from 90 to 752 kDa. The method is based on 2-aminobenzamide labeling of hydrolyzed HA products combined with separation by size exclusion–ultra performance liquid chromatography coupled with fluorescence detection. rHuPH20 was found to follow Michaelis–Menten kinetics during the initial reaction time. Optimal reaction rates were observed in the pH range of 4.5–5.5. The HA substrate size did not have significant effects on the initial rate of the reaction. By studying HA substrates of 215, 357, and 752 kDa, the kinetic parameters Km, Vmax, and kcat were determined to be 0.87–0.91 mg/ml, 1.66–1.74 nM s−1, and 40.5–42.4 s−1, respectively. This method allows for direct measurement of kinetics using physiologically relevant HA substrates and can be applied to other hyaluronidase kinetic measurements.  相似文献   

3.
A sensitive and simple fluorometric assay has been developed for detection of pyridoxamine (pyridoxine) 5′-phosphate oxidase. This technique utilizes fluorescent N-(5′-phospho-4′-pyridoxyl)amines as substrates that, upon incubation with the oxidase, release the free fluorescent amine. The substrates were prepared by condensation of pyridoxal 5′-phosphate with fluorescent amines and subsequent hydrogenation of the Schiff bases. Since N-(1-naphthyl)ethylenediamine is 15 times less fluorescent in the intramolecularly quenched substrate than the product amine, the direct increase of fluorescence, as well as selective extraction of more fluorescent product, can be utilized for assay. The apparent Km value for this substrate is 8 μm, which is slightly less than that of pyridoxamine 5′-phosphate; V is larger than the natural substrate value. The greater sensitivity gained by this fluorimetric method allows detection of the oxidase in smaller quantities than can be determined by the conventional colorimetric assay.  相似文献   

4.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.  相似文献   

5.
Bovine descarboxyprothrombin and descarboxyfragment-1 can be used as substrates for rat and bovine vitamin K-dependent carboxylase. In both enzyme systems, however, these substrates have a high Km (0.3–0.4 mM). A better substrate (Km = 0.001–0.003 mM) was prepared from bovine descarboxyprothrombin by limited proteolysis with subtilisin Carlsberg. This substrate is called Fragment-Su and is composed of the amino acids 13–29 of descarboxyprothrombin.  相似文献   

6.
A new fluorogenic substrate capable of measuring the amidolytic activity of chymotrypsin and based upon the enzyme-catalyzed release of a highly fluorescent aromatic amine, 6-aminoquinoline, was prepared. The substrate, 6-(N-glutaryl-l-phenylalanylamido)quinoline, was found to have at pH 8.0 and 25°C Km = 1.77 mm and kcat = 1.4 × 10?1 s?1. The aminoquinoline is a unique leaving group in that its appearance can be measured fluorometrically at its excitation and emission maxima, while, under these conditions, fluorescence associated with unhydrolyzed substrate is negligible.  相似文献   

7.
Reversible posttranslational modifications of proteins with ubiquitin or ubiquitin-like proteins (Ubls) are widely used to dynamically regulate protein activity and have diverse roles in many biological processes. For example, SUMO covalently modifies a large number or proteins with important roles in many cellular processes, including cell-cycle regulation, cell survival and death, DNA damage response, and stress response 1-5. SENP, as SUMO-specific protease, functions as an endopeptidase in the maturation of SUMO precursors or as an isopeptidase to remove SUMO from its target proteins and refresh the SUMOylation cycle 1,3,6,7.The catalytic efficiency or specificity of an enzyme is best characterized by the ratio of the kinetic constants, kcat/KM. In several studies, the kinetic parameters of SUMO-SENP pairs have been determined by various methods, including polyacrylamide gel-based western-blot, radioactive-labeled substrate, fluorescent compound or protein labeled substrate 8-13. However, the polyacrylamide-gel-based techniques, which used the "native" proteins but are laborious and technically demanding, that do not readily lend themselves to detailed quantitative analysis. The obtained kcat/KM from studies using tetrapeptides or proteins with an ACC (7-amino-4-carbamoylmetylcoumarin) or AMC (7-amino-4-methylcoumarin) fluorophore were either up to two orders of magnitude lower than the natural substrates or cannot clearly differentiate the iso- and endopeptidase activities of SENPs.Recently, FRET-based protease assays were used to study the deubiquitinating enzymes (DUBs) or SENPs with the FRET pair of cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP) 9,10,14,15. The ratio of acceptor emission to donor emission was used as the quantitative parameter for FRET signal monitor for protease activity determination. However, this method ignored signal cross-contaminations at the acceptor and donor emission wavelengths by acceptor and donor self-fluorescence and thus was not accurate.We developed a novel highly sensitive and quantitative FRET-based protease assay for determining the kinetic parameters of pre-SUMO1 maturation by SENP1. An engineered FRET pair CyPet and YPet with significantly improved FRET efficiency and fluorescence quantum yield, were used to generate the CyPet-(pre-SUMO1)-YPet substrate 16. We differentiated and quantified absolute fluorescence signals contributed by the donor and acceptor and FRET at the acceptor and emission wavelengths, respectively. The value of kcat/KM was obtained as (3.2 ± 0.55) x107 M-1s-1 of SENP1 toward pre-SUMO1, which is in agreement with general enzymatic kinetic parameters. Therefore, this methodology is valid and can be used as a general approach to characterize other proteases as well.  相似文献   

8.
Matrix metalloproteases (MMPs) in particular MMP-2, have been associated with several pathological conditions such as ovarian, urothelial, cutaneous, gastric, breast, and cervical cancers, etc. Successful treatment of these pathological conditions requires sensitive, reliable, quick and effective diagnostic tools such as fluorescence resonance energy transfer (FRET) based assays in early stage of the disease. A peptidyl-FRET substrate having seven amino acid residues (PLGLKAR) with methoxycoumarin (Mca)/dinitrophenyl (Dnp) as fluorophore/quencher group has been synthesized using solid-phase fluorenylmethoxycarbonyl (Fmoc) peptide chemistry. The newly designed substrate is stable and shows a K m value of 15???M for hMMP-2. This K m value is the lowest compared with all other known hMMP-2 substrates having Mca/Dnp. Validation of the new FRET substrate in presence/absence of scorpion venom chlorotoxin, a known hMMP-2 inhibitor, shows an increase in detection efficiency of 6,250 times as compared to commonly used gelatin zymography. The new FRET substrate is much more cost effective and can be used for high throughput screening of hMMP-2 inhibitors in the laboratory for research and diagnostic purposes.  相似文献   

9.
Hyaluronidases are a family of enzymes that degrade hyaluronic acid (hyaluronan, HA) and widely used in many fields. A hyaluronidase producing bacteria strain was screened from the air. 16S ribosomal DNA (16S rDNA) analysis indicated that the strain belonged to the genus Bacillus, and the strain was named as Bacillus sp. A50. This is the first report of a hyaluronidase from Bacillus, which yields unsaturated oligosaccharides as product like other microbial hyaluronate lyases. Under optimized conditions, the yield of hyaluronidase from Bacillus sp. A50 could reach up to 1.5×104 U/mL, suggesting that strain A50 is a good producer of hyaluronidase. The hyaluronidase (HAase-B) was isolated and purified from the bacterial culture, with a specific activity of 1.02×106 U/mg protein and a yield of 25.38%. The optimal temperature and pH of HAase-B were 44°C and pH 6.5, respectively. It was stable at pH 5–6 and at a temperature lower than 45°C. The enzymatic activity could be enhanced by Ca2+, Mg2+, or Ni2+, and inhibited by Zn2+, Cu2+, EDTA, ethylene glycol tetraacetic acid (EGTA), deferoxamine mesylate salt (DFO), triton X-100, Tween 80, or SDS at different levels. Kinetic measurements of HAase-B towards HA gave a Michaelis constant (K m) of 0.02 mg/mL, and a maximum velocity (V max) of 0.27 A 232/min. HAase-B also showed activity towards chondroitin sulfate A (CSA) with the kinetic parameters, K m and V max, 12.30 mg/mL and 0.20 A 232/min respectively. Meanwhile, according to the sequences of genomic DNA and HAase-B’s part peptides, a 3,324-bp gene encoding HAase-B was obtained.  相似文献   

10.
A new thiol-reactive electrophilic, disubstituted rhodamine-based fluorogenic probe (bis-2,4-dinitrobenzenesulfonyl rhodamine [BDR]) with very high quantum yield was synthesized and described recently [A. Shibata et al., Bioorg. Med. Chem. Lett. 18 (2008) 2246-2249]. Because hydrophobic electrophiles are often conjugated by glutathione transferases, the BDR or monosubstituted rhodamine derivatives (2,4-dinitrobenzenesulfonyl rhodamine [DR]) were tested with microsomal glutathione transferase 1 (MGST1) and shown to function as substrates. The kinetic parameters for purified enzyme and DR were kcat = 0.075 ± 0.005 s−1 and Km = 21 ± 3 μM (kcat/Km = 3.6 × 103 ± 5.6 × 102 M−1 s−1), giving a rate enhancement of 106 compared with the nonenzymatic reaction. In cells overexpressing MGST1, the addition of BDR caused a time-dependent increase of fluorescence compared with control cells. Preincubating the cells with a thiol reagent (N-ethylmaleimide) abolished the fluorescent signal. By using DR, we could determine the MGST1 activity in whole cell extracts with high sensitivity. In addition, the activity could be increased by thiol reagents (a hallmark of MGST1). Thus, we have identified a new fluorogenic substrate for MGST1 that will be a useful tool in the study of this enzyme and related enzymes.  相似文献   

11.
One of the regulatory mechanisms of epigenetic gene expression is the post-translational methylation of arginine residues, which is catalyzed by protein arginine methyltransferases (PRMTs). Abnormal expression of PRMT4/CARM1, one of the PRMTs, is associated with various diseases, including cancers. Here, we designed and synthesized a Förster resonance energy transfer (FRET)-based probe, FRC, which contains coumarin and fluorescein fluorophores at the N-terminus and C-terminus of a peptide containing an arginine residue within an appropriate amino acid sequence to serve as a substrate of CARM1; the two fluorophores act as a FRET donor and a FRET acceptor, respectively. Since trypsin specifically hydrolyzes the arginine residue, but not a monomethylarginine or dimethylarginine residue, CARM1 activity can be evaluated from the change of the coumarin/fluorescein fluorescence ratio of FRC in the presence of trypsin.  相似文献   

12.
A new fluorescent analogue of anandamide bearing a BODIPY®-FL-fluorophore and linked to arachidonic acid via a 2,2′-(ethylenedioxy)-bis(ethylenediamine) residue was prepared. The fluorescent analogue was demonstrated to be a substrate of the cell anandamide uptake system (K m 4.5 ± 0.9 μM, V max 20 ± 1 amol/(min cell)) in rat glioma C6 cells.  相似文献   

13.
The kinetic properties of membrane-bound and Triton X-100-solubilized human brain mitochondrial type A and B monoamine oxidase were examined. These studies reveal that the Km values for phenylethylamine and benzylamine, type B monoamine oxidase substrates, were only slightly increased by the solubilization procedure. The Km value for 5-hydroxytryptamine, a type A monoamine oxidase substrate, was similarly increased by treatment with Triton X-100. The Km values for oxygen with all three amine substrates were unaffected by solubilization of the oxidase. Similarly, the optimum pH for deamination of substrates for the B isoenzyme was essentially unaltered in the solubilized preparation as compared to the membrane-bound enzyme whereas that for 5-hydroxytryptamine metabolism was decreased from pH 8.5 to approximately 7.75 on solubilization. The energy of activation with all three substrates was altered on solubilization of the oxidases with Triton X-100. The energy of activation for the B monoamine oxidase substrates increased whereas that for 5-hydroxytryptamine decreased. These data support the contention that the lipid environment surrounding the two forms of monoamine oxidase controls, in part, the activity and kinetic properties of the enzymes.  相似文献   

14.
Fluorescence resonance energy transfer (FRET) is a distance-dependent interaction between the electronic excited states of two dye molecules. Here we introduce a novel FRET system for the detection of phosphopeptides using a phosphate-binding tag molecule, Zn2+-Phos-tag (1,3-bis[bis(pyridin-2-ylmethyl)amino]propan-2-olato dizinc(II) complex) attached with a 7-amino-4-methylcoumarin-3-acetic acid (AMCA). Carboxyfluorescein (FAM)-labeled phospho- and nonphosphopeptides were prepared as the target molecules for the FRET system. A set of FAM (a fluorescent acceptor, λem 520 nm) and AMCA (a fluorescent donor, λex 345 nm) is frequently used for a FRET system. The AMCA-labeled Zn2+-Phos-tag specifically captured the FAM-labeled phosphopeptide to form a stable 1:1 complex, resulting in efficient FRET. After the FAM-labeled phosphopeptide was dephosphorylated with alkaline phosphatase, the FRET disappeared. Using this FRET system, we demonstrated the detection of the time-dependent dephosphorylation of the FAM-labeled protein-tyrosine phosphatase 1B substrate.  相似文献   

15.
Doehlert DC 《Plant physiology》1989,89(4):1042-1048
Four forms of hexose kinase activity from developing maize (Zea mays L.) kernels have been separated by ammonium sulfate precipitation, gel filtration chromatography, blue-agarose chromatography, and ion exchange chromatography. Two of these hexose kinases utilized d-glucose most effectively and are classified as glucokinases (EC 2.7.1.2). The other two hexose kinases utilized only d-fructose and are classified as fructokinases (EC 2.7.1.4). All hexose kinases analyzed had broad pH optima between 7.5 and 9.5 with optimal activity at pH 8.5. The two glucokinases differed in substrate affinities. One form had low Km values [Km(glucose) = 117 micromolar, Km(ATP) = 66 micromolar] whereas the other form had much higher Km values [Km(glucose) = 750 micromolar, Km(ATP) = 182 micromolar]. Both fructokinases had similar substrate saturation responses. The Km(fructose) was about 130 micromolar and the Km(ATP) was about 700 micromolar. Both exhibited uncompetitive substrate inhibition by fructose [Ki(fructose) = 1.40 to 2.00 millimolar]. ADP inhibited all four hexose kinase activities, whereas sugar phosphates had little effect on their activities. The data suggest that substrate concentrations are an important factor controlling hexose kinase activity in situ.  相似文献   

16.
A real-time fluorogenic kinase assay using myelin basic protein (MBP) as a substrate is reported. MBP is part of a noncovalent complex with a negatively charged, dye-labeled lipopeptide, (N-heptadecanoyl)-K(dye2)-linker-EEIYGEF-amide. The complex is approximately 20 times less fluorescent than the free lipopeptide. The MBP-lipopeptide complex serves as a protein substrate for several Ser/Thr kinases. We infer that the observed fluorescence increase on the addition of kinase and ATP is due to the phosphorylation of MBP, which decreases the affinity of MBP with the negatively charged, dye-labeled lipopeptide. Several protein kinases (protein kinase C βII, mitogen-activated protein kinase [MAPK] Erk1, and MAPK Erk2) were tested with the assay. The assay exhibited a fivefold fluorescence increase over background, provided kinetic values comparable to literature values (apparent KmATP), and produced inhibitor constants comparable to literature values for a typical inhibitor, namely staurosporine.  相似文献   

17.
High-affinity cyclic AMP phosphodiesterase purified to homogeneity from dog kidney was studied with respect to its stability, its catalytic and kinetic properties, and its sensitivity to pharmacological agents. The enzyme was shown to rapidly lose activity upon dilution to low protein concentrations in aqueous media, but this activity loss was largely prevented by the presence of bovine serum albumin or ethylene glycol. Similarly, maximum activity required bovine serum albumin to be present during incubation for activity analysis. Enzyme activity required a divalent cation; Mg2+, Mn2+, and Co2+ each supported activity, but highest activity was obtained with Mg2. The temperature optimum ranged from 30 to 45 °C and depended on substrate concentration; the Ea = 10,600 cal/mol. The pH optimum of the enzyme was broad, with a maximum from pH 8.0 to 9.5. The enzyme exhibits linear Michaelis-Menton kinetics for hydrolysis of cyclic AMP at all substrate concentrations tested and for hydrolysis of cyclic GMP at > 20 μm. The Km for cyclic AMP hydrolysis was 2 μm, and that for cyclic GMP hydrolysis was 312 μm. The Ki values for the competitive inhibition of hydrolysis of each substrate by the other were similar to their Km values suggesting a single active site. Cyclic AMP hydrolysis was weakly inhibited by cyclic GMP, cyclic IMP, adenine, and adenosine, but was not inhibited by the mono-, di, or trinucleotides of adenosine, guanosine, or inosine. Activity was competitively inhibited with Ki values in the micromolar range by drugs representative of methylxanthines, isoquinolines, pyrazolopyridines, imidazolidinones, triazolopyrimidines, pyridylethylenediamines, phenothiazines, and calcium antagonists. The results are discussed with reference to the similarities and differences between high- and low-affinity phosphodiesterase forms.  相似文献   

18.
Abstract

In this study, a new affinity gel for the purification of bovine testicular hyaluronidase (BTH) was synthesized. l-Tyrosine was added as the extension arm to the Sepharose-4B activated with cyanogen bromide. m-Anisidine is a specific inhibitor of BTH enzyme. m-Anisidine was clamped to the newly formed Sepharose-4B-l-tyrosine as a ligand. As a result, an affinity gel having the chemical structure of Sepharose-4B-l-tyrosine-m-anisidine was obtained. BTH purified by ammonium sulfate precipitation and affinity chromatography was obtained with a 16.95% yield and 881.78 degree of purity. The kinetic constants KM and VMax for BTH were determined by using hyaluronic acid as a substrate. KM and VMax values obtained from the Lineweaver–Burk graph were found to be 2.23?mM and 19.85?U/mL, respectively. In vitro effects of some chemicals were determined on purified BTH enzyme. Some chemically active ingredients were 1,1-dimethyl piperidinium chloride, β-naphthoxyacetic acid and gibberellic acid. Gibberellic acid showed the best inhibition effect on BTH.  相似文献   

19.
20.
Farnesyl pyrophosphate (FPP) is a common substrate for a variety of prenyltransferases for synthesizing isoprenoid compounds. In this study, (2E,6E)-8-O-(N-methyl-2-aminobenzoyl)-3,7-dimethyl-2,6-octandien-1-pyrophosphate (MANT-O-GPP), a fluorescent analog of FPP, was synthesized and demonstrated as a satisfactory substrate for Escherichia coli undecaprenyl pyrophosphate synthase (UPPS) with a Km of 1.5 μM and a kcat of 1.2 s−1 based on [14C]IPP consumption. Interesting, we found that its emission fluorescence intensity at 420 nm increased remarkably during chain elongation, thereby useful for real-time monitoring kinetics of UPPS to yield a Km of 1.1 μM and a kcat of 1.0 s−1, consistent with those measured using radiolabeled substrate. Using this assay, the IC50 of a known UPPS inhibitor farnesyl thiopyrophosphate (FsPP) was confirmed. Our studies provide a convenient and environmentally friendly alternative for kinetics and inhibition studies on UPPS drug target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号