首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 622 毫秒
1.
We have studied the role of APC protein transport in presentation of class II MHC-restricted T cell determinants of influenza virus glycoproteins that have distinct Ag processing requirements. Two I-Ed-restricted epitopes were analyzed: hemagglutinin (HA) 111-119, which is processed by the exogenous/endocytic pathway, and neuraminidase (NA) 79-93, which has a requirement for cytosolic processing. NA 79-93 is presented from infectious but not non-replicative virus under ordinary conditions. This requirement for viral biosynthesis could be bypassed by using a soluble inhibitor of NA,2,3-dehydro-2-deoxy-N-acetyl neuraminic acid (DDAN), to facilitate cytosolic introduction of virus. APC exposed to UV virus/DDAN present HA and NA determinants derived directly from proteins of the input virus particles. This allows presentation of both endocytically and cytosolically processed epitopes in the same experiment using noninfectious virus. The inhibitor brefeldin A (BFA) was used to interrupt host protein transport at various times relative to virus/DDAN addition. We observed that BFA added simultaneously with virus blocked recognition of NA 79-93 but not HA 111-119. This distinction was found to be based upon different expression kinetics of the HA and NA determinants. Expression of NA 79-93 required 6 to 9 h, whereas HA 111-119 was presented by 1 h after Ag addition. When APC were incubated with BFA at intervals before virus addition, presentation of HA 111-119 was also blocked as a function of time. Data indicate that about 5 h of BFA treatment is needed to deplete host protein pools required for presentation of I-Ed-restricted T cell determinants processed from either endosomes or the cytosol.  相似文献   

2.
The kinetics of presentation of class II-restricted T cell determinants of influenza virus hemagglutinin (HA) was investigated over a 48-h time course after pulsing of A20 B lymphoma APC with non-replicative virus or isolated HA. At intervals after Ag pulse, APC were fixed with paraformaldehyde to arrest Ag processing and to preserve the expression levels of the presented determinants. Expression of T cell sites at each time point was probed by a panel of BALC/c T hybridomas specific for the HA of influenza A/Puerto Rico/8/34 virus, recognizing either site 1 (residues 111 to 119), site 2 (126 to 138), or site 3 (302 to 313). Characteristic patterns of presentation were observed for each site: sites 2 and 3 achieved maximal expression by 8 h post pulse, but declined thereafter, whereas site 1 presentation continued to increase over time. The quantitative expression of each T cell site was affected by the proteolysis inhibitor leupeptin, resulting in partial inhibition of site 1, complete blocking of site 2, but enhancement of site 3. However, the expression kinetics of sites 1 and 3, which could be observed in the presence of the inhibitor, remained qualitatively unchanged. These observations indicate that some T cell determinants (e.g., HA site 1) may exhibit a greater longevity of expression on APC than other antigenic sites of the same protein. Differences in the persistence of surface expression of distinct T cell sites may be a factor in their relative immunodominance.  相似文献   

3.
Marked differences were observed between the H2 and H3 strains of influenza virus in their sensitivity to pretreatment at low pH. Whereas viral fusion and hemolysis mediated by influenza virus X:31 (H3 subtype) were inactivated by pretreatment of the virus at low pH, influenza virus A/Japan/305/57 (H2 subtype) retained those activities even after a 15-min incubation at pH 5.0 and 37 degrees C. Fusion with erythrocytes was measured by using the octadecylrhodamine-dequenching assay with both intact virions and CV-1 monkey kidney cells expressing hemagglutinin (HA) on the plasma membrane. To study the nature of the differences between the two strains, we examined the effects of low-pH treatment on the conformational change of HA by its susceptibility to protease digestion, exposure of the fusion peptide, and electron microscopy of unstained, frozen, hydrated virus. We found that the respective HA molecules from the two strains assumed different conformational states after exposure to low pH. The relationship between the conformation of HA and its fusogenic activity is discussed in the context of these experiments.  相似文献   

4.
Monoclonal antibodies specific for the influenza virus A/PR/8/34 hemagglutinin (HA) were used to examine the structure of the HA glycoprotein by immunofluorescence techniques during infection of MDCK cells. One antibody (Y8-10C2), shown previously to detect conformational alterations in the HA coinciding with the acid induction of viral fusion activity, bound to internalized virus but not to virus adsorbed to the cell surface. The binding of Y8-10C2 was completely inhibited by ammonium chloride treatment of the cells. These findings are consistent with the idea that Y8-10C2 detects conformational changes in the HA which accompany the acid-induced fusion of viral and endosomal membranes. The same antibody also bound to newly synthesized HA but not to later forms of cytoplasmic HA or to HA incorporated into the cell membrane during virus maturation. A possible common denominator of the antigenic changes detected by antibody Y8-10C2 during virus entry and replication may be alterations in the structural relationship among the three HA monomers which form the mature HA molecule.  相似文献   

5.
The recognition of influenza virus hemagglutinin (HA) by T lymphocytes was examined by assaying the T cell proliferative response of influenza virus-primed T cells to purified HA of different influenza A subtypes or to isolated heavy (HA1) or light (HA2) polypeptide chains of the HA molecule. The proliferative response to HA was dependent on the activation of an Ly-1+2- subset of T cells and required the presence of nylon wool-adherent, radiation-resistant accessory cells. T cells from mice primed by infection with one strain of type A influenza virus cross-reacted with other purified HA not only of the same subtype as the priming virus but also of serologically distinct subtypes of influenza A (but not B) virus. The response of virus-primed T cells to the homologous HA or to HA of the same subtype was shown to involve recognition of determinants on both the HA1 and the HA2 chains. The recognition of HA of different subtype by cross-reactive T cells appeared to be directed predominantly to determinants on HA2. Because the antibody response to influenza virus HA is not cross-reactive between subtypes and is directed predominantly to determinants on HA1, the present results indicate that at least some of the determinants on HA recognized by T cells are different from those recognized by B cells and that the HA2 chain may be involved primarily in stimulation of T cell rather than B cell immunity.  相似文献   

6.
Influenza A virus strains adopt different host specificities mainly depending on their hemagglutinin (HA) protein. Via HA, the virus binds sialic acid receptors of the host cell and, upon endocytic uptake, HA triggers fusion between the viral envelope bilayer and the endosomal membrane by a low pH-induced conformational change leading to the release of the viral genome into the host cell cytoplasm. Both functions are crucial for viral infection enabling the genesis of new progeny virus.  相似文献   

7.
The hemagglutinin (HA) spike glycoprotein of influenza virus catalyzes a low pH-induced membrane fusion event which releases the viral genome into the host cell cytoplasm. To study the fusion mechanism in more detail, we have prepared the ectodomain of HA in water-soluble form by treating virus particles with bromelain. Under mildly acidic conditions (pH less than or equal to 5.8), the ectodomain undergoes a conformational change which we found to be biochemically and immunologically equivalent to that in native viral HA. It became sensitive to proteinase K, it exposed new antigenic epitopes in its HA1 chain, and it acquired amphiphilic properties, notably the ability to bind to liposomes. The attachment to liposomes exhibited the same pH dependence and rapid kinetics as the conformational change and was mediated by HA2. The nature of the attachment resembled that of an integral membrane protein except that the bound HA was partially removed by base. As observed for virus fusion, attachment is independent of divalent cations and lipid composition. Temperature was found to be a critical parameter only with dimyristoylphosphatidycholine vesicles where attachment was partially blocked below the major phase transition. These and other results obtained indicated that the low pH-induced conformational change in the isolated ectodomain is equivalent to that occurring in intact viral HA, and that its attachment to liposomes can serve as a model for the initial stages in the HA-induced membrane fusion reaction.  相似文献   

8.
Enveloped viruses contain surface proteins that mediate fusion between the viral and target cell membranes following an activating stimulus. Acidic pH induces the influenza virus fusion protein hemagglutinin (HA) via irreversible refolding of a trimeric conformational state leading to exposure of hydrophobic fusion peptides on each trimer subunit. Herein, we show that cells expressing fowl plague virus HA demonstrate discrete switching behavior with respect to the HA conformational change. Partially activated states do not exist at the scale of the cell, activation of HA leads to aggregation of cell surface trimers, and newly synthesized HA refold spontaneously in the presence of previously activated HA. These observations imply a feedback mechanism involving self-catalyzed refolding of HA and thus suggest a mechanism similar to the autocatalytic refolding and aggregation of prions.  相似文献   

9.
The influenza A/fowl plague virus/Rostock/34 hemagglutinin (HA), which is cleaved intracellularly and has a high pH threshold (pH 5.9) for undergoing its conformational change to the low-pH form, was expressed from cDNA in CV-1 and HeLa T4 cells in the absence of other influenza virus proteins. It was found, by biochemical assays, that the majority of the HA molecules were in a form indistinguishable from the low-pH form of HA. The acidotropic agent, ammonium chloride, stabilized the accumulation of HA in its native form. Coexpression of HA and the homotypic influenza virus M2 protein, which has ion channel activity, stabilized the accumulation of HA in its pH neutral (native) form, and the M2 protein ion channel blocker, amantadine, prevented the rescue of HA in its native form. These data provide direct evidence that the influenza virus M2 protein ion channel activity can affect the status of the conformational form of cleaved HA during intracellular transport.  相似文献   

10.
Vaccinia virus (VV), currently used in humans as a live vaccine for smallpox, can interfere with host immunity via several discrete mechanisms. In this study, the effect of VV on MHC class II-mediated Ag presentation was investigated. Following VV infection, the ability of professional and nonprofessional APC to present Ag and peptides to CD4+ T cells was impaired. Viral inhibition of class II Ag presentation could be detected within 1 h, with diminished T cell responses dependent upon the duration of APC infection and virus titer. Exposure of APC to replication-deficient virus also diminished class II Ag presentation. Virus infection of APC perturbed Ag presentation by newly synthesized and recycling class II molecules, with disruptions in both exogenous and cytoplasmic Ag presentation. Virus-driven expression of an endogenous Ag, failed to restore T cell responsiveness specific for this Ag in the context of MHC class II molecules. Yet, both class II protein steady-state and cell surface expression were not altered by VV. Biochemical and functional analysis revealed that VV infection directly interfered with ligand binding to class II molecules. Together, these observations suggest that disruption of MHC class II-mediated Ag presentation may be one of multiple strategies VV has evolved to escape host immune surveillance.  相似文献   

11.
The concentration of antigen required to stimulate influenza virus-specific helper T cells was observed to be dependent upon the antigenic form bearing the relevant determinant: intact, nonreplicative virus was needed only in picomolar amounts, while denatured proteins, protein fragments, or synthetic peptides were required in micromolar concentrations for a threshold level of stimulation. Antigenic efficiency of intact virus was found to result from the attachment of virus to sialic acid residues on the surface of the antigen-presenting cell since spikeless viral particles lacking the hemagglutinin molecule were much less efficient antigens for helper T cells and continuous presence of hemagglutination-inhibiting antihemagglutinin antibodies reduced efficiency of stimulation by intact virus approximately 100-fold for both hemagglutinin and internal virion proteins. Influenza virus associated rapidly with antigen-presenting cells; less than 10 min at 20 degrees C was sufficient to introduce virus for a maximal level of T-cell stimulation. This rapid attachment was blocked by antibodies to the hemagglutinin or by pretreatment of the antigen-presenting cells with neuraminidase to remove the cellular virus receptor. Following viral adsorption by antigen-presenting cells, a lag period of 30 min at 37 degrees C was required for the expression of helper T-cell determinants. One early event identified was the movement of the virus to a neuraminidase-insensitive compartment, which can occur at 10 degrees C, but which was not equivalent to expression of helper T-cell determinants. Preincubation of cells with virus at 10 degrees C for 4 h reduced the lag period of helper T-cell determinant expression to 15 min when these cells were shifted to 37 degrees C, suggesting that transition of the virus to a neuraminidase-resistant state is a required step in presentation of T-cell antigenic determinants.  相似文献   

12.
Murine T cell hybridomas were used to examine the requirements for processing and presentation of human fibrinogen. In contrast to most protein Ag, fibrinogen (Mr 340,000) did not need to be processed by an APC, inasmuch as intact fibrinogen was presented by both pre-fixed and chloroquine-treated macrophages. Through the use of a variety of protease inhibitors, no involvement of proteases either on the macrophage surface or in the culture medium in the presentation of fibrinogen was observed. The epitope recognized by two T cell hybridomas was localized to the peptide, A alpha (551-578), which was located on the carboxy portion of the A alpha-chain. This portion of the A alpha-chain has no defined secondary structure and must possess the conformational flexibility which allows it to directly associate with an I-Ek molecule. Thus conformational flexibility may be a major factor in determining the processing requirements of a protein Ag.  相似文献   

13.
Kinetics of pH-dependent fusion between influenza virus and liposomes   总被引:10,自引:0,他引:10  
The pH-dependent fusion between influenza virus and liposomes (large unilamellar vesicles) has been investigated as a model for the fusion step in the infectious entry of the virus into cells. Fusion was monitored continuously, with a fluorescence assay based on resonance energy transfer (RET) [Struck, D. K., Hoekstra, D., & Pagano, R. E. (1981) Biochemistry 20, 4093-4099], which allows an accurate quantitation of the fusion process. Evidence is presented indicating that the dilution of the RET probes from the liposomal bilayer into the viral membrane is not due to transfer of individual lipid molecules. The initial rate and final extent of the fusion reaction increase dramatically with decreasing pH, fusion being virtually complete within 1 min at pH 4.5-5.0. From experiments in which the ratio of virus to liposomes was varied, it is concluded that virus-liposome fusion products continue to fuse with liposomes, but not with virus. Fusion is most efficient with liposomes consisting of negatively charged phospholipids, while phosphatidylcholine and sphingomyelin are inhibitory. The reaction is completely blocked by an antiserum against the virus and inhibited by pretreatment of the virus with trypsin. The effect of proteolytic pretreatment at pH 7.4 is enhanced after preincubation of the virus at pH 5.0, consistent with the occurrence of a low pH induced, irreversible, conformational change in the viral fusion protein, the hemagglutinin (HA), exposing trypsin cleavage sites. When, after initiation of the fusion reaction at pH 5.0, the pH is readjusted to neutral, the process is arrested instantaneously, indicating that the low pH induced conformational change in the HA protein, in itself, is not sufficient to trigger fusion activity.  相似文献   

14.
Eight nonoverlapping regions of the hemagglutinin (HA) molecule of influenza virus A/PR/8/34 (PR8), which serve as recognition sites for class II-restricted T cells (TH) from BALB/c mice, have been identified in the form of 10- to 15-amino-acid-long synthetic peptides. These TH determinants are located between residues 110 to 313 of the HA1 polypeptide. From a total of 36 HA-specific TH clones and limiting-dilution cultures of independent clonal origins, 33 (90%) responded to stimulation with one of these peptides. The residual three TH clones appeared to recognize a single additional determinant on the HA1 polypeptide which could not be isolated, however, in the form of a stimulatory peptide. None of the motifs that have been proposed to typify TH determinants were displayed by more than half of these recognition sites. Most unexpected was the finding that none of the TH determinants was located in the ectodomain of the HA2 polypeptide that makes up roughly one-third of the HA molecule. Possible reasons for the preferential recognition of HA1 as opposed to HA2 by TH are discussed.  相似文献   

15.
Hemagglutinin (HA), a trimeric spike glycoprotein of influenza virus, mediates fusion between the viral envelope and the membrane of an endosome during virus entry. Fusion is triggered by low pH, which induces an irreversible conformational change in the protein. Several studies have indicated that intersubunit contacts along the trimer interfaces may be broken during this alteration. To determine whether HA dissociates into individual subunits as a consequence of the conformational change, we used velocity gradient sedimentation in the presence of Triton X-100. We also determined the resistance of acid-treated HA to dissociation by sodium dodecyl sulfate, a property of the HA trimer. At pH 7.0, isolated HA sedimented as a 9S trimer and gave the characteristic trimer pattern after sodium dodecyl sulfate-polyacrylamide gel electrophoresis. After acidification the HA remained trimeric irrespective of whether it was exposed to acid in intact virus particles or in solubilized form. Only when very low concentrations of HA were acidified did a fraction dissociate to dimers and monomers. In contrast, the water-soluble ectodomain fragment of HA (BHA) readily dissociated under a variety of conditions. Negative-stain electron microscopy supported the notion that HA molecules in virus particles do not dissociate upon acidification and may form larger oligomeric structures in the plane of the viral membrane. Taken together, the results suggested that it is the trimeric HA, or higher-order structures thereof, that are active in the acid-induced fusion reaction. Further, the results emphasized the role of the transmembrane anchors of HA in preventing dissociation of the trimer.  相似文献   

16.
Fusion of influenza virus with target membranes is mediated by an acid-induced conformational change of the viral fusion protein hemagglutinin (HA) involving an extensive reorganization of the alpha-helices. A 'spring-loaded' displacement over at least 100 A provides a mechanism for the insertion of the fusion peptide into the target membrane, but does not explain how the two membranes are brought into fusion contact. Here we examine, by attenuated total reflection Fourier transform infrared spectroscopy, the secondary structure and orientation of HA reconstituted in planar membranes. At neutral pH, the orientation of the HA trimers in planar membranes is approximately perpendicular to the membrane. However, at the pH of fusion, the HA trimers are tilted 55-70 degrees from the membrane normal in the presence or absence of bound target membranes. In the absence of target membranes, the overall secondary structure of HA at the fusion pH is similar to that at neutral pH, but approximately 50-60 additional residues become alpha-helical upon the conformational change in the presence of bound target membranes. These results are discussed in terms of a structural model for the fusion intermediate of influenza HA.  相似文献   

17.
The hemagglutinin (HA) glycoprotein of influenza virus performs two critical roles during infection: it binds virus to cell surface sialic acids, and under mildly acidic conditions it induces fusion of the virion with intracellular membranes, liberating the genome into the cytoplasm. The pH dependence of fusion varies for different influenza virus strains. Here we report the isolation and characterization of a naturally occurring variant of the X31 strain that fuses at a pH 0.2 units higher than the parent strain does and that is less sensitive to the effects of ammonium chloride, a compound known to elevate endosomal pH. The bromelain-solubilized ectodomain of the variant HA displayed a corresponding shift in the pH at which it changed conformation and bound to liposomes. Cloning and sequencing of the variant HA gene revealed amino acid substitutions at three positions in the polypeptide. Two substitutions were in antigenic determinants in the globular region of HA1, and the third occurred in HA2 near the base of the molecule. By using chimeric HA molecules expressed in CV-1 cells from simian virus 40-based vectors, we demonstrated that the change in HA2 was solely responsible for the altered fusion phenotype. This substitution, asparagine for aspartic acid at position 132, disrupted a highly conserved interchain salt bridge between adjacent HA2 subunits. The apparent role of this residue in stabilizing the HA trimer is consistent with the idea that the trimer dissociates at low pH. Furthermore, the results demonstrate that influenza virus populations contain fusion variants, raising the possibility that such variants may play a role in the evolution of the virus.  相似文献   

18.
Influenza virus hemagglutinin (HA) has served as a paradigm for both pH-dependent and -independent viral membrane fusion. Although large conformational changes were observed by X-ray crystallography when soluble fragments of HA were subjected to fusion-pH conditions, it is not clear whether the same changes occur in membrane-bound HA, what the spatial relationship is between the conformationally changed HA and the target and viral membranes, and in what way HA perturbs the target membrane at low pH. We have taken a spectroscopic approach using an array of recently developed FTIR techniques to address these questions. Difference attenuated total reflection FTIR spectroscopy was employed to reveal reversible and irreversible components of the pH-induced conformational change of the membrane-bound bromelain fragment of HA, BHA. Additional proteolytic fragments of BHA were produced which permitted a tentative assignment of the observed changes to the HA1 and HA2 subunits, respectively. The membrane-bound HA1 subunit undergoes a reversible conformational change, which most likely involves the loss of a small proportion of beta-sheet at low pH. BHA was found to undergo a partially reversible tilting motion relative to the target membrane upon exposure to pH 5, indicating a previously undescribed hinge near the anchoring point to the target membrane. Time-resolved amide H/D exchange experiments revealed a more dynamic (tertiary) structure of membrane-bound BHA and its HA2, but not its HA1, subunit. Finally BHA and, to a lesser degree, HA1 perturbed the lipid bilayer of the target membrane at the interface, as assessed by spectral changes of the lipid ester carbonyl groups. These results are discussed in the context of a complementary study of HA that was bound to viral membranes through its transmembrane peptide (Gray C, Tamm LK, 1997, Protein Sci 6:1993-2006). A distinctive role for the HA1 subunit in the conformational change of HA becomes apparent from these combined studies.  相似文献   

19.
The hemagglutinin of influenza virus undergoes a conformational change at low pH, which results in exposure of a hydrophobic segment of the molecule, crucial to expression of viral fusion activity. We have studied the effects of incubation of the virus at low pH either at 37 or 0 degrees C. Treatment of the virus alone at pH 5.0 induces the virus particles to become hydrophobic, as assessed by measuring the binding of zwitterionic liposomes to the virus. At 37 degrees C this hydrophobicity is transient, electron microscopic examination of the virus reveals a highly disorganized spike layer, and fusion activity toward ganglioside-containing zwitterionic liposomes, measured at 37 degrees C with a kinetic fluorescence assay, is irreversibly lost. By contrast, after preincubation of the virus alone at pH 5.0 and 0 degrees C fusion activity remains unaffected. Yet, the preincubation at 0 degrees C does result in exposure of the hydrophobic segment of hemagglutinin, but now hydrophobicity is sustained and viral spike morphology unaltered. Hydrophobicity also remains to a significant extent upon pH neutralization, but fusion activity is negligible under these conditions. It is concluded that for optimal expression of fusion activity the virus must be bound to the target membrane before exposure to low pH. Furthermore, even after exposure of the hydrophobic segment of hemagglutinin, fusion occurs only at low pH. Finally, fusion occurs only at elevated temperature, possibly reflecting the unfolding of hemagglutinin trimers or the cooperative action of several hemagglutinin trimers in the reaction.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号