首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We measured egg production rates of the estuarine calanoid copepodAcartia tonsa in Mobile Bay, an estuary in the northern Gulfof Mexico. Two stations were sampled approximately monthly,one at the mouth of the bay and the other just beyond the mouthin the salinity front between bay and coastal waters. Over thewhole year, temperature was the most important environmentalvariable controlling egg production. Rates increased with temperatureup to 30°C and 140 eggs female–1 day–1. We foundno evidence of food limitation. There was no correlation betweenegg production and phytoplankton abundance, nor increased eggproduction in response to supplements of phytoplankton addedto natural food, suggesting that non-phytoplankton food wasimportant in the diet. At the highest egg production rates,the amount of the storage lipid triacylglycerol (TAG) in adultfemales was greatly diminished, to <50 ng female–1.This suggests that lipids in the diet can be very tightly coupledto egg production. Both egg production and TAG content of femalesshowed significant variability on spatial scales of 3–15km, especially in relation to the salinity front separat ingwater outwelling from the bay from open coastal water. For organismsthat are using copepods and their eggs as food, this variabilitywould result in a heterogeneous food environment, both in termsof the abundance of food and its nutritional content.  相似文献   

2.
The Bay of Biscay is a coastal area intensively exploited forfishing and is submitted to important human actions (proximityof important industrial and agricultural areas). Thus, the understandingof the materials and energy transfers in such ecosystems isof great interest. However, investigations on zooplankton (animportant component of the marine food web) are very scarcein this area. Our study concerns the grazing impact of the zooplanktonin shelf waters in the plume of dilution of the Gironde estuaryprior to the spring bloom. Samples were taken through the photiclayer in April 1993. Our results have shown that Temora longicornisand Paracalanus parvus dominated the ‘herbivorous’planktonic community. The grazing impact of the zooplanktoncommunity on the total phytoplankton stock and on the totalprimary production was low (9–14 and 17–21% day–1,respectively) during this period, which is in accordance withmost results in coastal areas. However, due to the small sizeof the algae (  相似文献   

3.
The temporal and spatial variability in the quality and quantityof settling phytoplankton material in relation to concurrentprimary production was studied using sediment traps at threecoastal stations from a semi-enclosed bay (Pojo Bay) throughthe outer archipelago to the open Gulf of Finland. The fluxof settling phytoplankton was high (9.3 g C m–2period–1)in Pojo Bay, especially in spring, and lower in the archipelago(8.1 g C m–2 period–1) and open-sea area (5.2 gC m"2 period"1), although the primary production followed theopposite pattern. A large influx of allochthonous material intoPojo Bay in spring brought allochthonous phytoplankton cellsinto the traps, but limited primary production. Diatoms werethe most abundant settled phytoplankton at all stations, butthe species composition varied between Pojo Bay (Aulacoseiraspp., Rhizosolenia minima) and the outer stations (Skeletonemacostatum, Chaetoceros spp.)At the outer stations, migratingdinoflagellates (Peridiniella catenate) comprised part of thesettling material in spring. The high settling flux of the cyanophyteAphanizomenon flos-aquae is discussed. The species compositionof the phytoplankton assemblage influenced the proportion ofthe total organic carbon sedimentation that consisted of phytoplanktoncarbon.  相似文献   

4.
Grazing by microzooplankton on autotrophic and heterotrophicpicoplankton as well as >0.7 µm phytoplankton (as measuredby chlorophyll a) was quantified during July, August, October,January and April in the surface layer of Logy Bay, Newfoundland(47°38'14'N, 52°39'36'W). Rates of growth and grazingmortality of bacteria, Synechococcus and >0.7 µm phytoplanktonwere measured using the sea water dilution technique. Microzooplanktoningested 83–184, 96–366 and 64–118% of bacterial,Synechococcus and >0.7 µm phytoplankton daily potentialproduction, respectively and 34–111, 25–30 and 16–131%of bacterial, Synechococcus and >0.7 µm phytoplanktonstanding stocks, respectively. The trends in prey net growthrates followed the seasonal cycles of prey biomass, suggestingthat microzooplankton are important grazers in Newfoundlandcoastal waters. Ingestion was lowest during January and October(~2 µg C l–1 day–1) and highest in August(~20 µg C l–1 day–1). Aside from April when>0.7 µm phytoplankton represented the majority (~80%)of carbon ingested, bacterioplankton and <1 µm phytoplanktonrepresented most of the carbon ingested (~40–100%). Althoughmicrozooplankton have here-to-fore been unrecognized as an importantgrazer population in Newfoundland coastal waters, these resultssuggest that they play an important role in carbon flow withinthe pelagic food web, even at low temperatures in Logy Bay.  相似文献   

5.
A paralytic shellfish poisoning (PSP) incident caused by consumptionof the mussel Mytilus edulis occurred for the first time inKorea in April 1986. Weekly water samplings were carried Outduring the period from 7 March to 21 April 1989 in Chinhae Bay,Korea, in order to identify the causative organism. The temperaturecharacteristics of the water column indicated three differenthydrological regimes: well mixed (up to 7 March), weakly stratified(17–31 March) and stratified (7–21 April). Toxicityof the phytoplankton was detected during the weakly stratifiedperiod, but only in the 10–50 p.m phytoplankton size fraction.This study presents the occurrence of the toxigenic dinoflagellateAlexandrium tamarense, which is a causative organism of PSP,in Korean coastal waters. Its biomass varied at different depthsin the water column, ranging from 200 to 8000 cells 1–1in the water column. The weekly fluctuation of A.tamarense toxicitywas similar to that of mussel toxicity. 1 Present address: Department of Biology, College of NaturalSciences, Hanyang University, Seoul 133-791, Korea  相似文献   

6.
The surface distribution of autotrophic and heterotrophic picoplanktonwas assessed in 24 transects perpendicular to the coast alongthe N and NW Iberian peninsula shelf in late winter and earlyspring 2002. Community structure was analyzed by flow cytometry(FC) and found to be strongly influenced by hydrography. Typicallate winter conditions were found during the survey, characterizedby the presence of the poleward Portugal coastal counter current(PCCC) in the west and an increasing stratification eastwards.Cyanobacteria (mostly Synechococcus) dominated at low chlorophylla (Chl a) concentration whereas both the total and relativeabundance of picoeukaryotes generally increased with total phytoplanktonbiomass. Differences in the cell size of most FC-defined picoplanktonicgroups were also observed along the longitudinal and coastal–offshoregradients. The presence of Prochlorococcus (<103 cells mL–1)coincided with the core of the PCCC and its significant correlationwith salinity suggests its possible use as a tracer of thiscurrent. Two groups of heterotrophic bacteria were distinguishedaccording to their relative DNA content. High DNA bacteria dominatedthe community (60 ± 1% SE of total numbers), reachingmaximum values in areas under riverine influence with presumedhigher inputs of organic matter. Picoplankton biomass was dominatedby heterotrophic bacteria in the western region (58 ±3%) while autotrophic groups contributed on average 66 ±2% in the southern Bay of Biscay. The heterotrophic bacteriato phytoplankton biomass ratio decreased significantly alongthe measured range. Yet showing regional differences, the estimatedcontribution of picophytoplankton to total algal biomass washigh (mean 59 ± 4%), indicating the important role ofsmall cells at the onset of the spring bloom in these temperateshelf waters.  相似文献   

7.
Chlorophyll standing crop and phytoplankton production werestudied in the western Irish Sea over a 21 month period during1992 and 1993. For both years, the start of the production seasonwas first observed in Dundalk Bay and occurred progressivelylater in more northerly coastal and offshore waters. Standingcrop and production exhibited marked spatial heterogeneity with12.5- to 19-fold differences in crop observed over distancesof 20–30 km. Distinct regional differences in the lengthof the production season were apparent. The longest season,6–7 months with a production of 194 g C m–2, occurredin Dundalk Bay. The season lasted 3–4 months in the summerstratified region with a production of 140 g C m–2. Northerly,offshore mixed waters and coastal waters of Northern Irelandsupported a short (2–3 months) season and production of194 and 140 g C m–2, respectively. The similarity in seasonalproduction between Dundalk Bay and coastal waters of NorthernIreland, and between the summer stratified and northern mixedregions, is attributed to the intensity of production duringthe summer. Between 59 and 79% of seasonal production in thenorthern mixed region and coastal waters of Northern Irelandtook place during June and July, compared to 29–40% inDundalk Bay and the summer stratified region. Lower summer productionin the latter two may be due to nutrient limitation and thishas implications for the sensitivity of these two regions toanthropogenic nutrient enrichment.  相似文献   

8.
The phytoplankton and ice algal assemblages in the SiberianLaptev Sea during the autumnal freeze-up period of 1995 aredescribed. The spatial distribution of algal taxa (diatoms,dinoflagellates, chrysophytes, chlorophytes) in the newly formedice and waters at the surface and at 5 m depth differed considerablybetween regions. This was also true for algal biomass measuredby in situ fluorescence, chlorophyll (Chl) a and taxon-specificcarbon content. Highest in situ fluorescence and Chl a concentrations(ranging from 0.1 to 3.2 µg l–1) occurred in surfacewaters with maxima in Buor Khaya Bay east of Lena Delta. Thealgal standing stock on the shelf consisted mainly of diatoms,dinoflagellates, chrysophytes and chlorophytes with a totalabundance (excluding unidentified flagellates <10 µm)in surface waters of 351–33 660 cells l–1. Highestalgal abundance occurred close to the Lena Delta. Phytoplanktonbiomass (phytoplankton carbon; PPC) ranged from 0.1 to 5.3 µgC l–1 in surface waters and from 0.3 to 2.1 µg Cl–1 at 5 m depth, and followed the distribution patternof abundances. However, the distribution of Chl a differed considerablyfrom the distribution pattern shown by PPC. The algal assemblagein the sea ice, which could not be quantified due to high sedimentload, was dominated by diatom species, accompanied by dinoflagellates.Thus, already during the early stage of autumnal freeze-up,incorporation processes, selective enrichment and subsequentgrowth lead to differences between surface water and sea icealgal assemblages.  相似文献   

9.
Results are presented of size-fractionated primary productionstudies conducted in the vicinity of the Subtropical Front (STF),an adjacent warm-core eddy, and in Sub-antarctic waters duringthe third South African Antarctic Marine Ecosystem Study (SAAMESIII) in austral winter (June/July) 1993. Throughout the investigation,total chlorophyll (Chl a) biomass and production were dominatedby small nano- and picophytoplankton. No distinct patterns intotal Chl a were evident. At stations (n = 7) occupied in thevicinity of the STF, total integrated biomass values rangedfrom 31 to 53 mg Chl a m–2. In the vicinity of the eddy,integrated biomass at the eddy edge (n = 3) ranged from 24 to54 mg Chl a m–2 and from 32 to 43 mg Chl a m–2 inthe eddy (n = 2). At the station occupied in the Sub-antarcticwaters, total integrated biomass was 43 mg Chl a m–2.Total daily integrated production was highest at stations occupiedin the vicinity of the STF and at the eddy edge. Here, totalintegrated production ranged from 150 to 423 mg C m–2day–1 and from 244 to 326mg C m–2 day–1, respectively.In the eddy centre, total integrated production varied between134 and 156 mg C m–2 day–1. At the station occupiedin the Sub-antarctic waters, the lowest integrated production(141 mg C m–2 day–1) during the entire survey wasrecorded. Availability of macronutrients did not appear to limittotal production. However, the low silicate concentrations duringthe survey may account for the predominance of small nano- andpicophytoplankton. Differences in production rates between theeddy edge and eddy core were related to water column stability.In contrast, at stations occupied in the vicinity of the STF,the control of phytoplankton production appears to be relatedto several processes, including water column stability and,possibly, iron availability.  相似文献   

10.
Clupeoid larvae were collected on eight cruises between February1984 and February 1985 in the coastal waters of Israel. Fromanalysis of daily growth increments of otoliths, growth ratesof the abundant clupeoids, Engraulis encrasicolus, Sardina pilchardusand Sardinella aurita were found to be 0.55 mm day–1,0.67 mm day–1 and 0.60 mm day–1, respectively, duringthe first month after hatching. Ingestion rates were estimatedusing an equation from the literature relating ingestion andgrowth of larval fish. Ingestion calculated for populationsof fish larvae in pelagic waters ranged from 0 to >23 mgC m–2 day–1 with maximum rates observed in April.Annual ingestion by larval fish at a pelagic station near Haifawas calculated to be 2.2 g C m–2 year–1, 10–20%of annual primary production estimated from 14C uptake.  相似文献   

11.
Feeding by larval and post-larval ctenophores on microzooplankton   总被引:2,自引:0,他引:2  
Feeding by the coastal ctenophorc, Mnemiopsis leidyi, on microplanktonwas investigated. Larval ctenophores (tentaculate stage) grewbest and had the highest survival rates when offered a mixtureof ciliates and copepod nauplii. Larvae did not survive whenoffered phytoplankton alone. Clearing of planktonjc ciliatesby post-larval ctenophores was a function of the ciliate speciesand the size of the predator. Removal of small ciliates (<20µm in size) and phytoplankton was negligible. Small post-larvalctenophores (volume <4 cm3) had higher biovolume-specificclearing rates (0.5–1.5 1 cm–3 day–1) thandid larger ctenophores fed the same ciliate species. Duringin situ incubations, adult M. leidyi removed ciliates, rotifersand copepod nauplii from natural microplankton assemblages.The data indicate that non-crustacean microzooplanlctoo arean important component of the diet of larval and post-larvallocate cteoophores, particularly when copepod standing stocksare low.  相似文献   

12.
Surveys were conducted along the northeast coast of the USA.between Portsmouth, NH, and the Chesapeake Bay in 1988 and 1990,to determine the population distribution of Aureococcus anophagefferens,the chrysophyte responsible for massive and destructive ‘browntides’ in Long Island and Narragansett Bay beginning in1985. A species-specific immunofluorescent technique was usedto screen water samples, with positive identification possibleat cell concentrations as low as 10–20 cells ml–1.Both years.A.anophagefferens was detected at numerous stationsin and around Long Island and Barnegat Bay, NJ, typically athigh cell concentrations. To the north and south of thus ‘center’,nearly half of the remaining stations were positive for A.anophagefferens,but the cells were always at very low cell concentrations. Manyof the positive identifications in areas distant from Long Islandwere in waters with no known history of harmful brown tides.The species was present in both open coastal and estuanne locations,in salinities between 18 and 32 practical salinity units (PSU).The observed population distributions apparently still reflectthe massive 1985 outbreak when this species first bloomed, giventhe number of positive locations and high abundance of A.anophagefferensin the immediate vicinity of Long Island. However, the frequentoccurrence of this species in waters far from this population‘center’ is disturbing. Aureococcus anophagefferensis more widely distributed than was previously thought. Numerousareas thus have the potential for destructive brown tides suchas those associated with the sudden appearance of the speciesin 1985.  相似文献   

13.
The gut fluorescence technique was used to estimate ingestionand filtration rates of the adult female copepods Paracalanusparvus, Cenlropages brachiatus and Calanus austrails, and copepoditestages 3, 4 and 5 of C.australis in the southern Benguela upwellingregion. During the study period chlorophyll concentrations withinthe upper 20 m of the water column were high, 5 µg I–1in mid-shelf waters and 15–30 µg I–1 in innershelf waters. Copepod gut pigment content was low and constantduring the day then increased sharply during the first 2 h aftersunset. Gut pigment content was 2–6 times higher duringthe night compared with daytime values. Small non-migratingcopepods (Paracalanus parvus) showed the smallest diel differencein gut pigment content and large migrating copepods (Centropagesbrachiatus and Calanus australis) the largest difference. Eggproduction rates were 20 and 50% of maximum at the mid-shelfand inner shelf stations respectively, suggesting food-limitation.Comparison of ingestion rates calculated from egg productiondata with ingestion rates calculated from gut pigment data suggestedthat the copepods were feeding omnivorously at the inner shelfstations but herbivorously at the mid-shelf stations. Assumingthat all of the phytoplankton was available as food, the nearshorecopepod assemblage grazed {small tilde}1% of the standing cropeach day, and the mid-shelf assemblage grazed 5% day–1.Because of errors and uncertainties associated with the gutfluorescence technique, the feeding impact could be underestimatedby 2–4-fold. We discuss several approaches which couldlead to more precise estimates of feeding rates. 3Present address: Marine Sciences, SUNY, Stony Brook, NY, 11794-5000,USA  相似文献   

14.
A study of the phytoplankton in Concarneau Bay (Bretagne, France)was carried out on 6–8 June, 1978. Autotrophy was measuredby the 14C method and heterotrophic activity was estimated by14C labelled glucose and protein hydrolysate uptake. The measurementswere made on the whole of the sample as well as on the bacterialfraction, isolated by size-fractionation on Nuclepore 3 µmfilters. Moreover, a study of the relationships between naturalphytoplanktonic and bacterial populations was possible becauseof cell counts. The phytoplankton shows coastal characteristicsand diatoms are dominant. The distribution of the genus Chaetoceros,Nitzschia and Leptocylindrus seems to have an influence on therelationship between algae and bacteria so that environmentalconditions not only interfere directly at the bacterial levelon heterotrophic activity, but also through the specific compositionand abundance of the phytoplankton.  相似文献   

15.
The structure of the zooplankton biotic community and of copepodpopulation in the coastal area of Terra Nova Bay (Ross Sea,Antarctica) was investigated during the 10th Italian AntarcticExpedition (1994/1995). Zooplankton biotic community consistedmainly of pteropods (Limacina helicina and Clione antarctica),Cyclopoid (Oithona similis), Poecilostomatoid (Oncaea curvata)and Calanoid (Ctenocalanus vanus, Paraeuchaeta antarctica, Metridiagerlachei and Stephos longipes) copepods, ostracods, larvalpolychaetes and larval euphausiids. Zooplankton abundance rangedfrom 48.1 ind m–3 to 5968.9 ind m–3, and copepodabundance ranged from 45.2 ind m–3 to 3965.3 ind m–3.The highest peak of zooplankton abundance was observed between25 m and the surface and was mainly due to the contributionof O. similis, O. curvata and C. vanus. Zooplankton biomassranged from 5.28 mg m–3 to 13.04 mg m–3 dry weight;the maximum value was observed between 25 m and the surface.Total lipid content varied from 216.44 to 460.73 mg g–1dry weight.  相似文献   

16.
The population abundances and rates of biomass production ofheterotrophic nanoplankton (HNAN) in Georgia coastal waterswere evaluated by epifluorescence microscopy. HNAN populations(mostly non-pigmented microflagellates <10 µm in diameter)ranged from 0.3 x 103 cells ml–1 in shelf waters 15 kmoffshore to 6.3 x 103 cells ml–1 in waters 0.25 km fromthe coast. There was a strong correlation (r = 0.83) betweenHNAN and free bacterioplankton population abundances, but noapparent relation (r = 0.38) between HNAN and phototrophic nanopLankton(PNAN) abundances. HNAN biomass production in estuarine andnearshore shelf waters, as estimated from increases in HNANpopulations during laboratory incubations of natural water samples,ranged from 0.10 to 0.79 mg C m–3 h–3, with populationgeneration times of 9.7 to 26.5 h. There was a significant linearrelation (r = 0.95) between HNAN biomass and HNAN productivity.We calculated that HNAN may graze at least 30% to 50% of dailybacterioplankton production in Georgia coastal waters.  相似文献   

17.
Microzooplankton, vertical mixing and advection in a larval fish patch   总被引:1,自引:0,他引:1  
A large ({small tilde}30 ? 75 km) patch of larval walleye pollock,Theragra chalcogramma, was located south of the Alaska Peninsuladuring May 1986. A drifter deployed in this patch followed ananticyclonic path consistent with dynamic topography. Changesin community composition and vertical distribution of microzooplankton>40 µm were sampled for 4 days alongside this drifterto examine feeding conditions for larvae. Biological and physicalchanges during the first 2 calm days revealed substantial small-scalevariability within the larger circulation pattern. Changes duringthe last 2 days were dominated by vertical mixing due to strongwinds. Despite mixing, prey concentrations remained adequatefor feeding by larval pollock as determined by laboratory studies.A satellite-tracked drifter replaced the first drifter and wasstill located within the patch 6 days later. Overall distributionsof larvae and movements of the drifters show a net translationof 7.8 km day–1 south-westward, but details of the studyreveal complex interactions between coastal waters and a coastalcurrent. During the 10-day period there was an increase in standardlength of the larval fish population of 0.13 mm day–1and a decline in abundance of {small tilde}7.6% day–1.Both calculated rates must be underestimates due to continuingrecruitment of small larvae from hatching eggs.  相似文献   

18.
The role of meteorological events and hydrography in determiningchanges to the phytoplankton community was investigated in anembayment exposed to a narrow band of coastal upwelling. Dailysampling demonstrated the importance of advective processesdriven by meteorological forcing in controlling rapid shiftsin the biomass and species composition of the phytoplanktoncommunity. Samples of similar phytoplankton composition wereassociated with different stages of the upwelling cycle, asdefined by an index of biological ageing of upwelled waters.Relationships between the physical, chemical and biologicalfields were defined from time-senes measurements. The time elapsedfollowing upwelling, required for the determination of biologicalrates, was estimated from the rate of heating. A primary productionestimate of 2.14 g C m–2 day–1 was derived fromdetermination of the rate of nutrient depletion, whereas a phytoplanktonbiomass-nutrient consumption equation provided an estimate of3 92 g C m –2 day–1. Both rates were within therange of estimates obtained from in vitro tracer methods.  相似文献   

19.
The seasonal variability of phytoplankton assemblages in themiddle Adriatic sub-basin is described. The investigated areacrossed the middle Adriatic from the Italian to the Croatiancoasts. Hydrographic data, chlorophyll (Chl) a and phytoplanktonwere collected on a seasonal basis from May 1995 to February1996. Highest phytoplankton densities (up to 6 x 106 cells dm–3)were observed in spring and autumn in the western side, withinthe diluted waters. The vertical distribution of Chl a exhibiteda pronounced subsurface maximum associated, in coastal waters,with micro-planktonic diatoms. Phytoplankton assemblages weredominated by phytoflagellates in all the periods investigated.Diatom maxima were observed in spring and autumn: their verticaldistribution generally reflected the Chl a pattern and in thewestern coastal area peaks are due to large diatom species (Pseudo-nitzschiaspp.). In offshore waters, dinoflagellates strongly prevailover diatoms and provide a relevant contribution to the totalbiomass, especially in highly stratified conditions. Coccolithophoridswere mostly encountered in surface layers and their highestcontribution to the total biomass was observed in the LevantineIntermediate Water.  相似文献   

20.
The seasonal development of bacteria was studied in the hypertrophiccoastal lagoon Ciénaga Grande de Santa Marta (Caribbeancoast of Colombia). This large but only 1.5 m deep lagoon issubject to strong seasonal variations of salinity from almostfully marine (April/May) to brackish conditions in October/November.Chlorophyll ranged from 6 to 182 µg L–1, and grossprimary production amounted to 1690 g C m–2 per year.Total bacterial number (TBN) ranged from 6.5 to 90.5 x 109 cellsL–1 and bacterial biomass (BBM) from 77 to 1542 µgC L–1, which are among the highest ever reported for naturalcoastal waters. Neither TBN nor BBM varied significantly withsalinity, phytoplankton or seston concentrations. Only the bacterialmean cell volume showed a significant relation to salinity,being highest (0.066 µm3) during the period of increasingand lowest (0.032 µm3) during decreasing salinity. Bacterialprotein accounted for 24% (19–26%) and phytoplankton proteinfor 57% (53–71%) of total seston protein. The ratio (annualmean) of bacterial carbon to phytoplankton carbon was 0.44 (range0.04–1.43). At low phytoplankton abundance [chlorophylla (Chl a) < 25 µg L–1], bacterial carbon wasalmost equal to phytoplankton biomass (i.e. the mean ratio was1.04). In contrast, at Chl a > 100 µg L–1, BBMwas low compared to phytoplankton biomass (the mean ratio was0.16). In general, BBM varied less than phytoplankton biomass.Most probably, the missing correlation between bacterial andphytoplankton variables was due to (i) organic material partlyderived from allochthonous sources serving as food resourcefor bacteria and (ii) a strong resuspension of bacteria fromthe sediment caused by frequent wind-induced mixing of the veryshallow lagoon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号