首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Selfish DNA: A Sexually-Transmitted Nuclear Parasite   总被引:28,自引:7,他引:21       下载免费PDF全文
Donal A. Hickey 《Genetics》1982,101(3-4):519-531
A quantitative population genetics model for the evolution of transposable genetic elements is developed. This model shows that "selfish" DNA sequences do not have to be selectively neutral at the organismic level; indeed, such DNA can produce major deleterious effects in the host organism and still spread through the population. The model can be used to explain the evolution of introns within eukaryotic genes; this explanation does not invoke a long-term evolutionary advantage for introns, nor does it depend on the hypothesis that eukaryotic gene structure may be an evolutionary relic. Transposable genes that carried information specifying sexual reproduction in the host organism would favor their own spread. Consequently, it is tempting to speculate that some of the genes controlling sex were originally selected as transposable elements.  相似文献   

2.
Mammalian retrotransposons, transposable elements that are processed through an RNA intermediate, are categorized as short interspersed elements (SINEs), long interspersed elements (LINEs), and long terminal repeat (LTR) retroelements, which include endogenous retroviruses. The ability of transposable elements to autonomously amplify led to their initial characterization as selfish or junk DNA; however, it is now known that they may acquire specific cellular functions in a genome and are implicated in host defense mechanisms as well as in genome evolution. Interactions between classes of transposable elements may exert a markedly different and potentially more significant effect on a genome than interactions between members of a single class of transposable elements. We examined the genomic structure and evolution of the kangaroo endogenous retrovirus (KERV) in the marsupial genus Macropus. The complete proviral structure of the kangaroo endogenous retrovirus, phylogenetic relationship among relative retroviruses, and expression of this virus in both Macropus rufogriseus and M. eugenii are presented for the first time. In addition, we show the relative copy number and distribution of the kangaroo endogenous retrovirus in the Macropus genus. Our data indicate that amplification of the kangaroo endogenous retrovirus occurred in a lineage-specific fashion, is restricted to the centromeres, and is not correlated with LINE depletion. Finally, analysis of KERV long terminal repeat sequences using massively parallel sequencing indicates that the recent amplification in M. rufogriseus is likely due to duplications and concerted evolution rather than a high number of independent insertion events.  相似文献   

3.
4.
DNA transposons are primitive genetic elements which have colonized living organisms from plants to bacteria and mammals. Through evolution such parasitic elements have shaped their host genomes by replicating and relocating between chromosomal loci in processes catalyzed by the transposase proteins encoded by the elements themselves. DNA transposable elements are constantly adapting to life in the genome, and self-suppressive regulation as well as defensive host mechanisms may assist in buffering ‘cut-and-paste’ DNA mobilization until accumulating mutations will eventually restrict events of transposition. With the reconstructed Sleeping Beauty DNA transposon as a powerful engine, a growing list of transposable elements with activity in human cells have moved into biomedical experimentation and preclinical therapy as versatile vehicles for delivery and genomic insertion of transgenes. In this review, we aim to link the mechanisms that drive transposon evolution with the realities and potential challenges we are facing when adapting DNA transposons for gene transfer. We argue that DNA transposon-derived vectors may carry inherent, and potentially limiting, traits of their mother elements. By understanding in detail the evolutionary journey of transposons, from host colonization to element multiplication and inactivation, we may better exploit the potential of distinct transposable elements. Hence, parallel efforts to investigate and develop distinct, but potent, transposon-based vector systems will benefit the broad applications of gene transfer. Insight and clever optimization have shaped new DNA transposon vectors, which recently debuted in the first DNA transposon-based clinical trial. Learning from an evolutionary drive may help us create gene vehicles that are safer, more efficient, and less prone for suppression and inactivation.  相似文献   

5.
Invertrons are genetic elements composed of DNA with inverted terminal repeats at both ends, covalently bonded to terminal proteins involved in the initiation of DNA replication at both their 5' termini when they exist in the cytoplasm of their host in free form. They function as viruses, linear DNA plasmids, transposable elements, and sometimes combinations of two of these properties. They differ from retroviruses and related retro-type transposons which have direct repeats on both their genomic ends and exploit RNA intermediates for replication of their DNA. A model for replication and integration of invertrons is presented, as well as a model for transposition of transposable elements.  相似文献   

6.
转座因子和宿主基因组的进化   总被引:1,自引:0,他引:1  
金振华 《生命科学》2002,14(4):220-222
转座因子主要是一些“自在”或“无功能”的DNA,其对宿主进化无关紧要的观点受到了质疑。新近的报道指出,它们有增强宿主基因组自身进化,对环境变化作出反应的潜在能力,很可能是遗传多样性的主要源泉。  相似文献   

7.
Yu Z  Wright SI  Bureau TE 《Genetics》2000,156(4):2019-2031
While genome-wide surveys of abundance and diversity of mobile elements have been conducted for some class I transposable element families, little is known about the nature of class II transposable elements on this scale. In this report, we present the results from analysis of the sequence and structural diversity of Mutator-like elements (MULEs) in the genome of Arabidopsis thaliana (Columbia). Sequence similarity searches and subsequent characterization suggest that MULEs exhibit extreme structure, sequence, and size heterogeneity. Multiple alignments at the nucleotide and amino acid levels reveal conserved, potentially transposition-related sequence motifs. While many MULEs share common structural features to Mu elements in maize, some groups lack characteristic long terminal inverted repeats. High sequence similarity and phylogenetic analyses based on nucleotide sequence alignments indicate that many of these elements with diverse structural features may remain transpositionally competent and that multiple MULE lineages may have been evolving independently over long time scales. Finally, there is evidence that MULEs are capable of the acquisition of host DNA segments, which may have implications for adaptive evolution, both at the element and host levels.  相似文献   

8.
9.
Eukaryotic transposable elements are ubiquitous and widespread mobile genetic entities. These elements often make up a substantial fraction of the host genomes in which they reside. For example, approximately 1/2 of the human genome was recently shown to consist of transposable element sequences. There is a growing body of evidence that demonstrates that transposable elements have been major players in genome evolution. A sample of this evidence is reviewed here with an emphasis on the role that transposable elements may have played in driving the evolution of eukaryotic complexity. A number of specific scenarios are presented that implicate transposable elements in the evolution of the complex molecular and cellular machinery that are characteristic of the eukaryotic domain of life.  相似文献   

10.
Several recent reports have challenged the idea that transposable elements (TEs) are mainly 'selfish' or 'junk' DNA with little importance for host evolution. It has been proposed that TEs have the potential to provide host genomes with the ability to enhance their own evolution. They might also be a major source of genetic diversity, allowing response to environmental changes. Because the relationships between TEs and host genomes are highly variable, and because the selfish, junk and beneficial DNA hypotheses are by no means mutually exclusive, a single label for these relationships appears to be inappropriate and potentially misleading.  相似文献   

11.
12.
Repetitive DNA and chromosome evolution in plants   总被引:32,自引:0,他引:32  
Most higher plant genomes contain a high proportion of repeated sequences. Thus repetitive DNA is a major contributor to plant chromosome structure. The variation in total DNA content between species is due mostly to variation in repeated DNA content. Some repeats of the same family are arranged in tandem arrays, at the sites of heterochromatin. Examples from the Secale genus are described. Arrays of the same sequence are often present at many chromosomal sites. Heterochromatin often contains arrays of several unrelated sequences. The evolution of such arrays in populations is discussed. Other repeats are dispersed at many locations in the chromosomes. Many are likely to be or have evolved from transposable elements. The structures of some plant transposable elements, in particular the sequences of the terminal inverted repeats, are described. Some elements in soybean, antirrhinum and maize have the same inverted terminal repeat sequences. Other elements of maize and wheat share terminal homology with elements from yeast, Drosophila, man and mouse. The evolution of transposable elements in plant populations is discussed. The amplification, deletion and transposition of different repeated DNA sequences and the spread of the mutations in populations produces a turnover of repetitive DNA during evolution. This turnover process and the molecular mechanisms involved are discussed and shown to be responsible for divergence of chromosome structure between species. Turnover of repeated genes also occurs. The molecular processes affecting repeats imply that the older a repetitive DNA family the more likely it is to exist in different forms and in many locations within a species. Examples to support this hypothesis are provided from the Secale genus.  相似文献   

13.
D. A. Hickey 《Genetica》1992,86(1-3):269-274
This paper summarizes some recent theories about the evolution of transposable genetic elements in outbreeding, sexual eukaryotic organisms. The evolutionary possibilities available to self-replicating transposable elements are shown to vary depending on the reproductive biology of the host genome. This effect can be used to explain, in part, the differences in abundance of transposable elements between prokaryotes and eukaryotes. It is argued that the pattern of sexual outbreeding seen in mammals and plants is especially favorable to the spread of transposons. Moreover, because transposon spread is facilitated by zygote formation, the evolutionary origin of sexual conjugation may have been due to selection on transposon-encoded genes. Finally, evidence is also presented that introns could have originated as transposable genetic elements.  相似文献   

14.
Biémont C 《Genetics》2010,186(4):1085-1093
The idea that some genetic factors are able to move around chromosomes emerged more than 60 years ago when Barbara McClintock first suggested that such elements existed and had a major role in controlling gene expression and that they also have had a major influence in reshaping genomes in evolution. It was many years, however, before the accumulation of data and theories showed that this latter revolutionary idea was correct although, understandably, it fell far short of our present view of the significant influence of what are now known as "transposable elements" in evolution. In this article, I summarize the main events that influenced my thinking about transposable elements as a young scientist and the influence and role of these specific genomic elements in evolution over subsequent years. Today, we recognize that the findings about genomic changes affected by transposable elements have considerably altered our view of the ways in which genomes evolve and work.  相似文献   

15.
Pack-TYPE transposable elements (TEs) are a group of non-autonomous DNA transposons found in plants. These elements can efficiently capture and shuffle coding DNA across the host genome, accelerating the evolution of genes. Despite their relevance for plant genome plasticity, the detection and study of Pack-TYPE TEs are challenging due to the high similarity these elements have with genes. Here, we produced an automated annotation pipeline designed to study Pack-TYPE elements and used it to successfully annotate and analyse more than 10,000 new Pack-TYPE TEs in the rice and maize genomes. Our analysis indicates that Pack-TYPE TEs are an abundant and heterogeneous group of elements. We found that these elements are associated with all main superfamilies of Class II DNA transposons in plants and likely share a similar mechanism to capture new chromosomal DNA sequences. Furthermore, we report examples of the direct contribution of these TEs to coding genes, suggesting a generalised and extensive role of Pack-TYPE TEs in plant genome evolution.  相似文献   

16.
Mutation is the ultimate source of all genetic variation in natural populations and is generally considered a prerequisite for evolution. Although transposable elements are acknowledged as a major source of spontaneous mutations, the evolutionary significance of these mobile pieces of DNA remains the subjects of some debate. In this perspective, I discuss the biology of transposable elements with particular emphasis on their potential to produce mutations that have dramatic effecs on organismic evolution.  相似文献   

17.

Background

Transposable elements are mobile DNA repeat sequences, known to have high impact on genes, genome structure and evolution. This has stimulated broad interest in the detailed biological studies of transposable elements. Hence, we have developed an easy-to-use tool for the comparative analysis of the structural organization and functional relationships of transposable elements, to help understand their functional role in genomes.

Results

We named our new software VisualTE and describe it here. VisualTE is a JAVA stand-alone graphical interface that allows users to visualize and analyze all occurrences of transposable element families in annotated genomes. VisualTE reads and extracts transposable elements and genomic information from annotation and repeat data. Result analyses are displayed in several graphical panels that include location and distribution on the chromosome, the occurrence of transposable elements in the genome, their size distribution, and neighboring genes’ features and ontologies. With these hallmarks, VisualTE provides a convenient tool for studying transposable element copies and their functional relationships with genes, at the whole-genome scale, and in diverse organisms.

Conclusions

VisualTE graphical interface makes possible comparative analyses of transposable elements in any annotated sequence as well as structural organization and functional relationships between transposable elements and other genetic object. This tool is freely available at: http://lcb.cnrs-mrs.fr/spip.php?article867.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1351-5) contains supplementary material, which is available to authorized users.  相似文献   

18.
Genome size displays an important variability between species without any direct link to complexity. This paradox, so-called "C value paradox", now becomes understood as resulting from a differential abundance of numerous repeated sequences, among which transposable elements. Genomes indeed contain a important proportion of such sequences (95 % of DNA in man, about 45 % of which are transposable elements, up to 99 % of DNA in some plants). While most investigations until now are focalized on genes or coding sequences, which thus represent a small part of the genome, more attention now is dedicated on so-called non-coding sequences. Transposable elements, which are capable of moving around in genomes, inducing mutations, chromosomal rearrangements, gene expression regulations, thus appear as major actors in diversity and evolution. We present here a brief review of the most prominent acquisition in this expanding domain.  相似文献   

19.
DNA-based transposable elements appear to have been nearly or completely inactivated in vertebrates. Therefore the elements of the medaka fish Oryzias latipes that still have transposition activity provide precious materials for studying transposition mechanisms, as well as the evolution, of transposable elements in vertebrates. Fortunately, the medaka fish has a strong background for genetic and evolutionary studies. The advantages of this host species and their elements, together with results so far obtained, are here described.  相似文献   

20.

Abstract  

Transposable elements (TEs) were first discovered more than 50 years ago, but were totally ignored for a long time. Over the last few decades they have gradually attracted increasing interest from research scientists. Initially they were viewed as totally marginal and anecdotic, but TEs have been revealed as potentially harmful parasitic entities, ubiquitous in genomes, and finally as unavoidable actors in the diversity, structure, and evolution of the genome. Since Darwin's theory of evolution, and the progress of molecular biology, transposable elements may be the discovery that has most influenced our vision of (genome) evolution. In this review, we provide a synopsis of what is known about the complex interactions that exist between transposable elements and the host genome. Numerous examples of these interactions are provided, first from the standpoint of the genome, and then from that of the transposable elements. We also explore the evolutionary aspects of TEs in the light of post-Darwinian theories of evolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号