首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Although large human populations have been safely immunized against tuberculosis with two live vaccines, Mycobacterium bovis BCG or Mycobacterium microti, the vole bacillus, the molecular basis for the avirulence of these vaccine strains remains unknown. Comparative genomics has identified a series of chromosomal deletions common to both virulent and avirulent species but only a single locus, RD1, that has been deleted from M. bovis BCG and M. microti. Restoration of RD1, by gene knock-in, resulted in a marked change in colonial morphology towards that of virulent tubercle bacilli. Three RD1-encoded proteins were localized in the cell wall, and two of them, the immunodominant T-cell antigens ESAT-6 and CFP-10, were also found in culture supernatants. The BCG::RD1 and M. microti::RD1 knock-ins grew more vigorously than controls in immunodeficient mice, inducing extensive splenomegaly and granuloma formation. Increased persistence and partial reversal of attenuation were observed when immunocompetent mice were infected with the BCG::RD1 knock-in, whereas BCG controls were cleared. Knocking-in five other RD loci did not affect the virulence of BCG. This study describes a genetic lesion that contributes to safety and opens new avenues for vaccine development.  相似文献   

2.
Mycobacterium tuberculosis and Mycobacterium bovis cause tuberculosis, which is responsible for the deaths of more people each year than any other bacterial infectious disease. Disseminated disease with Mycobacterium bovis BCG, the only currently available vaccine against tuberculosis, occurs in immunocompetent and immunodeficient individuals. Although mycobacteria are obligate aerobes, they are thought to face an anaerobic environment during infection, notably inside abscesses and granulomas. The purpose of this study was to define a metabolic pathway that could allow mycobacteria to exist under these conditions. Recently, the complete genome of M. tuberculosis has been sequenced, and genes homologous to an anaerobic nitrate reductase (narGHJI), an enzyme allowing nitrate respiration when oxygen is absent, were found. Here, we show that the narGHJI cluster of M. tuberculosis is functional as it conferred anaerobic nitrate reductase activity to Mycobacterium smegmatis. A narG mutant of M. bovis BCG was generated by targeted gene deletion. The mutant lacked the ability to reduce nitrate under anaerobic conditions. Both mutant and M. bovis BCG wild type grew equally well under aerobic conditions in vitro. Histology of immunodeficient mice (SCID) infected with M. bovis BCG wild type revealed large granulomas teeming with acid-fast bacilli; all mice showed signs of clinical disease after 50 days and succumbed after 80 days. In contrast, mice infected with the mutant had smaller granulomas containing fewer bacteria; these mice showed no signs of clinical disease after more than 200 days. Thus, it seems that nitrate respiration contributes significantly to virulence of M. bovis BCG in immunodeficient SCID mice.  相似文献   

3.
The live attenuated bacillus Calmette-Guérin (BCG) vaccine for the prevention of disease associated with Mycobacterium tuberculosis was derived from the closely related virulent tubercle bacillus, Mycobacterium bovis. Although the BCG vaccine has been one of the most widely used vaccines in the world for over 40 years, the genetic basis of BCG's attenuation has never been elucidated. We employed subtractive genomic hybridization to identify genetic differences between virulent M. bovis and M. tuberculosis and avirulent BCG. Three distinct genomic regions of difference (designated RD1 to RD3) were found to be deleted from BCG, and the precise junctions and DNA sequence of each deletion were determined. RD3, a 9.3-kb genomic segment present in virulent laboratory strains of M. bovis and M. tuberculosis, was absent from BCG and 84% of virulent clinical isolates. RD2, a 10.7-kb DNA segment containing a novel repetitive element and the previously identified mpt-64 gene, was conserved in all virulent laboratory and clinical tubercle bacilli tested and was deleted only from substrains derived from the original BCG Pasteur strain after 1925. Thus, the RD2 deletion occurred after the original derivation of BCG. RD1, a 9.5-kb DNA segment found to be deleted from all BCG substrains, was conserved in all virulent laboratory and clinical isolates of M. bovis and M. tuberculosis tested. The reintroduction of RD1 into BCG repressed the expression of at least 10 proteins and resulted in a protein expression profile almost identical to that of virulent M. bovis and M. tuberculosis, as determined by two-dimensional gel electrophoresis. These data indicate a role for RD1 in the regulation of multiple genetic loci, suggesting that the loss of virulence by BCG is due to a regulatory mutation. These findings may be applicable to the rational design of a new attenuated tuberculosis vaccine and the development of new diagnostic tests to distinguish BCG vaccination from tuberculosis infection.  相似文献   

4.
Tuberculosis (TB) caused by Mycobacterium bovis and closely related members of the Mycobacterium tuberculosis complex continues to affect humans and animals worldwide and its control requires vaccination of wildlife reservoir species such as Eurasian wild boar (Sus scrofa). Vaccination efforts for TB control in wildlife have been based primarily on oral live BCG formulations. However, this is the first report of the use of oral inactivated vaccines for controlling TB in wildlife. In this study, four groups of 5 wild boar each were vaccinated with inactivated M. bovis by the oral and intramuscular routes, vaccinated with oral BCG or left unvaccinated as controls. All groups were later challenged with a field strain of M. bovis. The results of the IFN-gamma response, serum antibody levels, M. bovis culture, TB lesion scores, and the expression of C3 and MUT genes were compared between these four groups. The results suggested that vaccination with heat-inactivated M. bovis or BCG protect wild boar from TB. These results also encouraged testing combinations of BCG and inactivated M. bovis to vaccinate wild boar against TB. Vaccine formulations using heat-inactivated M. bovis for TB control in wildlife would have the advantage of being environmentally safe and more stable under field conditions when compared to live BCG vaccines. The antibody response and MUT expression levels can help differentiating between vaccinated and infected wild boar and as correlates of protective response in vaccinated animals. These results suggest that vaccine studies in free-living wild boar are now possible to reveal the full potential of protecting against TB using oral M. bovis inactivated and BCG vaccines.  相似文献   

5.
A series of mycobacterial antigens were quantified by immunoelectrophoresis, enzyme-linked immunosorbent assays, or SDS-PAGE with immunoblotting using antisera against purified mycobacterial antigens. The antigens showed a characteristic distribution profile. Some had a marked quantitative dominance in the culture fluid while others had a marked dominance in sonicates of whole washed bacilli. The majority of the antigens tested could thus be located and grouped as either secreted or cytoplasmic in terms of a localization index (LI) which is described. A 5-week-old Mycobacterium tuberculosis culture fluid preparation with a low degree of lysis was valuable in the delineation of localization indexes. The various secreted antigens showed a great span in LI values, from 5 to 1000. This variation may express different degrees of secretion efficiency or differences in tendency to adhere to the bacterial surface. The identification of proteins as extracellular or cytosolic according to their LI values was in agreement for cultures of M. tuberculosis with a low degree of lysis and cultures of M. bovis BCG and M. bovis AN-5 with significant lysis of the bacterial cells.  相似文献   

6.
Whole-genome comparisons of the tubercle bacilli were undertaken using ordered bacterial artificial chromosome (BAC) libraries of Mycobacterium tuberculosis and the vaccine strain, Mycobacterium bovis BCG-Pasteur, together with the complete genome sequence of M. tuberculosis H37Rv. Restriction-digested BAC arrays of M. tuberculosis H37Rv were used in hybridization experiments with radiolabelled M. bovis BCG genomic DNA to reveal the presence of 10 deletions (RD1-RD10) relative to M. tuberculosis. Seven of these regions, RD4-RD10, were also found to be deleted from M. bovis, with the three M. bovis BCG-specific deletions being identical to the RD1-RD3 loci described previously. The distribution of RD4-RD10 in Mycobacterium africanum resembles that of M. tuberculosis more closely than that of M. bovis, whereas an intermediate arrangement was found in Mycobacterium microti, suggesting that the corresponding genes may affect host range and virulence of the various tubercle bacilli. Among the known products encoded by these loci are a copy of the proposed mycobacterial invasin Mce, three phospholipases, several PE, PPE and ESAT-6 proteins, epoxide hydrolase and an insertion sequence. In a complementary approach, direct comparison of BACs uncovered a third class of deletions consisting of two M. tuberculosis H37Rv loci, RvD1 and RvD2, deleted from the genome relative to M. bovis BCG and M. bovis. These deletions affect a further seven genes, including a fourth phospholipase, plcD. In summary, the insertions and deletions described here have important implications for our understanding of the evolution of the tubercle complex.  相似文献   

7.
The course and outcome of infection with mycobacteria are determined by a complex interplay between the immune system of the host and the survival mechanisms developed by the bacilli. Histamine plays an important role in various processes, including cell division, metabolism, and apoptosis, and it modulates innate and adaptive immune responses. In the present study we investigated the intracellular survival of Mycobacterium bovis BCG in murine bone-marrow macrophages isolated from wild-type (WT) and histidine-decarboxylase knock-out [HDC (-/-)] mice. Mycobacterial titers were significantly higher in the HDC (-/-) macrophages as compared with the WT cells. M. bovis BCG growth in WT macrophages could be enhanced by pyrilamine and cimetidine. Exogenously added histamine decreased the intracellular counts of M. bovis BCG in HDC (-/-) macrophages. Infection of activated macrophages with M. bovis BCG elicited apoptosis, but there was no significant difference between the WT and the HDC (-/-) cells. These bacilli induced comparable levels of tumor necrosis factor-alpha production in the WT and the HDC (-/-) macrophages. M. bovis BCG stimulated interleukin-18 (IL-18) production in the macrophages from WT mice, but not in the HDC (-/-) cells. Exogenously added IL-18 decreased the titers of intracellular mycobacteria in HDC (-/-) cells. In conclusion, these data implicate histamine in the intracellular survival of M. bovis BCG. The cellular control mechanisms restricting the growth of M. bovis BCG are complex and involve H1 and H2 receptor-mediated events. Histamine might be an important mediator of M. bovis BCG-induced IL-18 production, which in turn contributes to immune protection.  相似文献   

8.
Many cases of tuberculosis result from reactivation of previously acquired latent infections. Models to study such persister forms often involve gradual depletion of oxygen during culture as poor aeration is a characteristic of non-progressive TB granulomas. Anaerobically cultured bacilli develop a thickened outer-most cell wall layer. Here, we analyzed this layer from anaerobically cultured Mycobacterium tuberculosis and Mycobacterium bovis BCG. By six weeks of anaerobiosis a pigment was detected at levels > 60-fold higher in anaerobic than aerobic bacilli. This pigment was responsible for the electron-dense appearance of the thickened cell wall layer and gave an electrospray mass spectrometry peak at 409 Da (M+Na)+ or (M+H)+. We termed this pigment APP1, anaerobically produced pigment 1, the first pigment identified in M. tuberculosis.  相似文献   

9.
Cai H  Yu DH  Hu XD  Li SX  Zhu YX 《DNA and cell biology》2006,25(8):438-447
In this study, we demonstrated that calves vaccinated with a combined DNA vaccine encoding Ag85B, MPT- 64, and MPT-83 antigens from the Mycobacterium tuberculosis for the priming and subsequently boosting with BCG prior to experimental challenge with virulent Mycobacterium bovis (M. bovis) resulted in improved immune responses over immunizing. Vaccination with the combined DNA/BCG induced higher levels of antigen- specific gamma interferon (IFN-gamma) in whole-blood cultures 4 weeks after final vaccination and the level of antigen-specific IFN-gamma in response to Ag85, MPT-64, and MPT-83 were still higher 4 weeks after challenge when compared to the combined DNA group. There was a significant bias toward induction of CD4+ T cells rather than CD8+ T cells responses, and the mean percentage of CD4+ T cells was increased about 2.6-fold in peripheral blood mononuclear cells (PBMC) cultures in DNA prime-BCG boost vaccination when compared to the nonvaccinated group. In addition, DNA prime-BCG boost vaccination resulted in stronger humoral immune responses, and the levels of the specific antibodies to three antigens were increased two- to 32- fold when compared to the combined DNA group. Vaccination with the combined DNA/BCG induced a high level of protection against an intratracheal challenge with virulent M. bovis, based on a significant enhancement of six pathological and microbiological parameters of protection compared to the nonvaccinated group. Finally, the combined DNA/BCG increased the protective efficacy by more than 10-100-fold as measured by reduced CFU counts in the lungs from calves challenged with M. bovis compared to the combined DNA and BCG groups. These results suggest that use of the prime-boost strategy offers better protection against bovine tuberculosis than does the combined DNA vaccines and BCG.  相似文献   

10.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is a live vaccine that has been used in routine vaccination against tuberculosis for nearly 80 years. However, its efficacy is controversial. The failure of BCG vaccination may be at least partially explained by the induction of poor or inappropriate host responses. Dendritic cells (DCs) are likely to play a key role in the induction of immune response to mycobacteria by polarizing the reactivity of T lymphocytes toward a Th1 profile, contributing to the generation of protective cellular immunity against mycobacteria. In this study we aimed to investigate the production of Th1 and Th2 cytokines by naive CD4+ T cells to mycobacterial antigen-pulsed DCs in the group of young, healthy BCG vaccinated volunteers. The response of naive helper T cells was compared with the response of total blood lymphocytes. Our present results clearly showed that circulating naive CD45RA+CD4+ lymphocytes from BCG-vaccinated subjects can become effector helper cells producing IFN-gamma and IL-5 under the stimulation by autologous dendritic cells presenting mycobacterial protein antigen-PPD or infected with live M. bovis BCG bacilli.  相似文献   

11.
Cytolytic T-cell responses from 63 normal blood donors were monitored in a Mycobacterium bovis BCG infection system in vitro. We wanted to know whether cultured dendritic cells were capable of potentiating the cytolytic T-cell responses to M. bovis BCG. Infected cultured dendritic cells were up to ten times more effective antigen-presenting cells than macrophages in proliferative assays, while cytolytic T-cell induction did not differ significantly between dendritic cells and macrophages. Separated CD4+ and CD8+ T-cell subsets contributed equally to lysis of infected targets. Experiments comparing wild-type M. bovis BCG strain with two new recombinant M. bovis BCG strains secreting listeriolysin revealed statistically significant higher maximal lysis values for recombinant M. bovis BCG. We conclude from our in vitro infection system with mycobacteria that dendritic cells are superior to macrophages in proliferative assays but equal to macrophages in their ability to induce cytolytic T-cell responses. Moreover, our data suggest that recombinant M. bovis BCG vaccine strains secreting listeriolysin improve cytolytic T-cell responses.  相似文献   

12.
13.
New strategies to control infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, are urgently required, particularly in areas where acquired immunodeficiencies are prevalent. In this report we have determined if modification of the current tuberculosis vaccine, Mycobacterium bovis BCG, to constitutively express the mycobacterial HspX latency antigen altered its protective effect against challenge with virulent M. tuberculosis. Overexpression of M. tuberculosis HspX in BCG caused reduced growth in aerated cultures compared to control BCG, but growth under limited oxygen availability was not markedly altered. Upon infection of mice, BCG:HspX displayed tissue-specific attenuation compared to control BCG, with reduced growth within the lung and liver but not the spleen. Both BCG:HspX and control BCG protected mice against aerosol M. tuberculosis challenge to a similar extent, however, immunodeficient mice infected with BCG:HspX survived significantly longer than mice infected with the control BCG strain. Therefore, altering the in vivo persistence of BCG by overexpression of HspX may be one important step towards developing a new tuberculosis vaccine with an improved safety profile and suitable protective efficacy against M. tuberculosis infection.  相似文献   

14.
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is the only vaccine available against tuberculosis, and the strains used worldwide represent a family of daughter strains with distinct genotypic characteristics. Here we report the complete genome sequence of M. bovis BCG Moreau, the strain in continuous use in Brazil for vaccine production since the 1920s.  相似文献   

15.
The level of antituberculous immunity seems to be related to the number of memory T cells induced. This may vary as a function of the multiplication and persistence of BCG in host tissues. The most important requirements for a BCG vaccine are, therefore, the immunogenicity of the strain, the high proportion of live to dead bacilli, and adequate dispersion and low levels of soluble antigens. The surface-grown Pasteur BCG vaccine contains a very high proportion of bacilli killed by ball-milling and freeze-drying. It also contains clumps and soluble antigens, all factors influencing cell-mediated immune processes and viability control. Therefore, several batches of vaccine were prepared on an industrial scale using one of the most immunogenic strains (French 1173 P2) and grown as dispersed bacilli by a modified cell type culture method. This method provided fully viable, well-dispersed vaccines which have a viability and heat stability superior to that of the classical surface-grown BCG. The immunogenicity was checked by multiplication and persistence in mouse organs and the skin reactivity and tuberculin hypersensitivity in guinea-pigs showed results comparable to those obtained with classical vaccine. Small-scale tests in children showed superior immunogenicity of the dispersed as opposed to the classical vaccine and there was no suppurative adenitis.  相似文献   

16.
The permissiveness of alveolar macrophages from brushtail possums for the replication of Mycobacterium bovis was examined. Mycobacterium bovis replication was indirectly measured by assessing bacterial metabolism via the incorporation of [3-H]-uracil by bacilli released from lysed macrophages previously infected with mycobacteria. Alveolar macrophages allowed substantial replication of virulent M. bovis, in contrast to Bacille Calmette-Guerin (BCG) Pasteur, which replicated poorly. The addition of crude lymphokines enhanced the metabolic activity of phagocytosed M. bovis in possum macrophages. Possum lymphokines enhanced the ability of possum macrophages to generate reactive oxygen intermediates, measured by the reduction of nitroblue tetrazolium, which is indicative of an activation process. Similarly, the addition of recombinant possum TNF-alpha enhanced the permissiveness of alveolar macrophages for M. bovis. In contrast to mouse peritoneal macrophages, possum alveolar macrophages did not release significant levels of nitric oxide (NO) after stimulation with M. bovis and/or lymphokines. However, the uptake of virulent M. bovis by possum macrophages was associated with an enhanced ability of cells to release TNF-alpha, whereas very low levels of TNF-alpha were released after infection with BCG. The addition of a selective inhibitor of inducible NO synthase had no impact on the replication of M. bovis or BCG in possum macrophages in the presence or absence of lymphokines. Co-culturing infected possum alveolar macrophages with autologous blood mononuclear cells from BCG-vaccinated possums led to a significant decrease in the metabolic activity of intracellular M. bovis. This effect was contact dependent and NO independent and was mediated by a population of CD3+ cells. In addition, adding scavengers of reactive oxygen intermediates did not abrogate this phenomenon.  相似文献   

17.
18.
Subtractive DNA hybridization of pathogenic M. bovis and BCG, and comparative genome-wide DNA microarray analysis of M. tuberculosis H37Rv and BCG identified several RD, designated as RD1 to RD16, between M. tuberculosis and M. bovis on the one hand and BCG on the other. These regions cover 108 ORF of M. tuberculosis H37Rv, and are deleted from all 13 BCG sub-strains currently used as anti-tuberculosis vaccines in different parts of the world. In this study, we evaluated cellular and humoral immune response in C57BL/6 mice immunized with the PPE protein Rv3425, encoded by an ORF found in RD11 of M. tuberculosis. Rv3425 protein induced an increased Th1/Th2 type immune response in mice, characterized by an elevated concentration of IFN-gamma in antigen stimulated splenocyte culture and a strong IgG(1) antibody response. These results provide evidence on the immunogenicity of the PPE protein Rv3425 which, together with its reported immunodominant characteristics, imply that it may be a candidate for development of a vaccine for the control of TB.  相似文献   

19.
Mycobacterium bovis BCG has been proposed as an effective live vector for multivalent vaccines. The development of mycobacterial genetic systems to express foreign antigens and the adjuvanticity of BCG are the basis for the potential use of this attenuated mycobacterium as a recombinant vaccine vector. Stable plasmid vectors without antibiotic resistance markers are needed for heterologous antigen expression in BCG. Our group recently described the construction of a BCG expression system using auxotrophic complementation as a selectable marker. In this work, LipL32 and LigAni antigens of Leptospira interrogans were cloned and expressed in M. bovis BCG Pasteur and in the auxotrophic M. bovis BCG ΔleuD strains under the control of the M. leprae 18 kDa promoter. Stability of the plasmids during in vitro growth and after inoculation of the recombinant BCG strains in hamsters was compared. The auxotrophic complementation system was highly stable, even during in vivo growth, as the selective pressure was maintained, whereas the conventional vector was unstable in the absence of selective pressure. These results confirm the usefulness of the new expression system, which represents a huge improvement over previously described expression systems for the development of BCG into an effective vaccine vector.  相似文献   

20.
In this study, we compared the level of TNF-alpha secretion induced in monocytic THP-1 cells after phagocytosis of Mycobacterium leprae, the causative agent of leprosy, and M. bovis BCG, an attenuated strain used as a vaccine against leprosy and tuberculosis. The presence of M. leprae and BCG was observed in more than 80% of the cells after 24 h of exposure. However, BCG but not M. leprae was able to induce TNF-alpha secretion in these cells. Moreover, THP-1 cells treated simultaneously with BCG and M. leprae secreted lower levels of TNF-alpha compared to cells incubated with BCG alone. M. leprae was able, however, to induce TNF-alpha secretion both in blood-derived monocytes as well as in THP-1 cells pretreated with phorbol myristate acetate. The inclusion of streptomycin in our cultures, together with the fact that the use of both gamma-irradiated M. leprae and heat-killed BCG gave similar results, indicate that the differences observed were not due to differences in viability but in intrinsic properties between M. leprae and BCG. These data suggest that the capacity of M. leprae to induce TNF-alpha is dependent on the stage of cell maturation and emphasize the potential of this model to explore differences in the effects triggered by vaccine strain versus pathogenic species of mycobacteria on the host cell physiology and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号