首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Vegetative and reproductive phenology of the subtropical mangrove Bruguiera gymnorrhiza was investigated at Manko Wetland, Okinawa Island, Japan. Phenology was assessed using litterfall data over 4 years. Leaf and stipule litterfall occurred throughout the year, with distinct seasonal patterns. Kendall’s coefficient of concordance, W, revealed that the monthly changes in leaf and stipule litterfall were strongly and significantly concordant among years. Leaf litterfall was linked to monthly day length and maximum wind speed, and stipule litterfall was linked to monthly mean air temperature, monthly rainfall, and maximum wind speed. Branch litterfall showed no clear monthly pattern, but tended to vary with monthly maximum wind speed. Mean leaf longevity was 19 months. Mean total litterfall was 10.1 Mg ha?1 year?1, with the largest component being vegetative organs (58 %). Flower and propagule litterfall were highest in autumn and summer, respectively, and lowest in winter. The W values revealed that, of the reproductive organs, only flower litterfall had a significant monthly trend. Flower litterfall was correlated with monthly mean air temperature and relative humidity. The average development periods from flower buds to flowers and from flowers to mature propagules were approximately 1 and 8 months, respectively. It took 9 months to produce mature propagules from flower buds. Except for branches, all vegetative and reproductive components of litterfall had clear annual cycles.  相似文献   

2.
Mangroves in the subtropical area of Japan are growing to their northern limits, yet little is known of their phenology. The aim of the present study was to understand both vegetative and reproductive phenology patterns, such as leaf emergence, leaf fall, bud setting, flowering, fruiting and propagule setting, in the mangrove Kandelia obovata. The phenology of this species was assessed using litter‐fall data for 5 years. Leaf and stipule litter‐falls continued with a clear monthly pattern throughout the years. New leaf production and leaf fall peaked in summer, immediately after the propagules fell. Leaf and stipule litter‐falls were linked to monthly sunshine hour, and monthly mean air temperature and monthly mean air relative humidity, respectively. Kandelia obovata had a distinct flowering period, with the flowering phenophase starting in spring and continuing into summer. Fruit initiation started at the end of summer and continued into autumn, whereas propagule production occurred during winter and spring. Flowering of K. obovata was influenced by monthly sunshine hour and monthly mean air temperature, whereas fruit and propagule litter‐falls were not linked to any climatic factors. The present results showed that a small portion (4.4%) of flowers developed into propagules. The average development period from flower buds to mature propagules was approximately 11 months. Kendall's consistency coefficient suggested that the monthly trends in vegetative and reproductive litter‐fall components, except for branches, did not change significantly among years.  相似文献   

3.
Mangrove phenology is important in understanding the past, present and future response of mangrove species to impacts of climate change. Our study is the first long term direct observation of the phenology of Rhizophora mucronata and Sonneratia alba in Kenya. Objective of the study was to determine, interpret and document the timing of the various phenoevents and phenophases, and to establish relationships between phenology and the climatic variables. Phenological traits were investigated in six monospecific mangrove stands in Gazi Bay, south of Mombasa, for 2 years. Leaf emergence, leaf fall, flower bud, flower and fruit initiation data were recorded every fortnight in 54 shoots of 9 trees at each site. Continuous leaf emergence and loss characterized by multimodal peaks was observed for the two species. Leaf emergence and leaf fall peaked in the wet months and was reduced in the dry months. There was a relationship between the leaf emergence and drop with the reproductive phenology in the two species. Mean leaf longevity for R. mucronata and S. alba was 12.8 ± 1.2 and 4.9 ± 0.5 months respectively. The reproductive cycle took approximately 16–20 months in R. mucronata and 4–5 months in S. alba. Bud initiation in R. mucronata was seasonal and occurred in October and September. Buds were observed for 8–11 months developing slowly on the shoots. Shifts were observed in the timing of flower initiation, and the flowering period lasted in total for 4–5 months. The time period from flower appearance to the developmental start of immature propagules lasted about 1 month at reforested sites and up to 5 months in stands of natural vegetation. In R. mucronata initiation of immature propagules was not seasonal and varied among the sites. Fruiting in S. alba was short and seasonal without overlap, and shifts were observed in the timing of flowering, flowering and fruiting peaks. Abscission of reproductive parts started in July and in June, respectively, in the years 2005 and 2006. Fruiting was observed starting in August in both years, and fruiting peak was reached in October in 2005 and one month earlier in 2006. In R. mucronata vegetative and reproductive phenophases significantly correlated with climatic variables, whereas in S. alba only leaf emergence and leaf fall correlated with temperature. The flowering plasticity in the reproductive phenology of the two species indicates possible sensitivity to certain climatic and environmental triggers. Our results also indicate that R. mucronata trees have a distinctly higher investment in the reproductive cycle than S. alba.  相似文献   

4.
Rhizophora mangle is the most common species of mangrove within its range and a major component of coastal ecosystems in the tropics and subtropics. Its phenology is affected by seasonal variations in temperature, salinity, and precipitation, all of which may be altered by impending climate change. In this work, the monthly leaf, flower, and fruit phenology of R. mangle was assessed at three sites, along a natural salinity gradient for 12 months. We assessed phenological states using litter traps installed in mangrove stands, and by direct observation of leaf production at two sites, and flower, and fruit production at a single site. Phenological events were compared with seasonal climatic variations (in wind, rain, and temperature) to explore potential abiotic controls on the phenology of this species. Leaf shedding was lowest at the low salinity site. Leaf and stipule production showed a seasonal trend, decreasing during the cool and dry winter months. Flowering was highly seasonal and synchronous and peaked during the rainy season. Flowering was correlated with average temperature (= 0.82; < 0.05) at all three study sites, but was not correlated with precipitation. At the high‐salinity site, flowering was restricted to the rainy season. Fruit abortion was associated with wind speed (= 0.79; < 0.05). Flowering of R. mangle is induced by increasing temperatures and the onset of rains. Rising temperatures, drier summers, and more frequent and intense storms, due to climate change, may influence mangrove productivity, population dynamics, and floral synchrony.  相似文献   

5.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

6.
Canopy productivity of five seasonally flooded forests in the central area of the Gulf of Mexico was estimated by measuring the litterfall. Productivity was estimated on a monthly basis from November 2005 to October 2006, and values ranged between 9 and 15 t ha−1 yr−1. A total of 57 plant species were recorded based on the litter collected. The dominant species (Pachira aquatica, Annona glabra, Hippocratea celastroides and Dalbergia brownei) were the principal litterfall producers. The contribution of two life forms was assessed: trees (including trees, shrubs and palms) and lianas (climbers, lianas and creepers). Lianas were found to be extremely productive and represented between 8 and 62% of the total litterfall at the sampled locations. Leaves contributed most to the litter, followed by branches and reproductive structures. Fruit and seed fall coincided with the rainy season, and accounted for 50–90% of the production and shedding during the flooded season. Species that released seeds during this time had their seeds dispersed by water. Flower production occurred during the dry season (March–June). Species richness did not explain litterfall productivity. The litterfall productivity of these forests is similar to that of mangrove ecosystems.  相似文献   

7.
Some tropical N2-fixing trees exhibit specific characteristics for phosphorus (P) acquisition and utilisation that contrast with the large nitrogen (N) fluxes in their litterfall. To investigate differences in N and P cycling in N2-fixing plantations, litterfall and fresh leaf quality of a N2-fixing Acacia mangium plantation were compared with that of a non-N2-fixing Swietenia macrophylla plantation and a coniferous Araucaria cunninghamii plantation. The N concentration in the A. mangium litterfall was higher than that in the litterfall of the two other species, whereas the P concentration in the A. mangium leaf litterfall was 0.16 mg g–1, which was only 12–22% of that of the other species. The P concentration in the reproductive parts of A. mangium was markedly higher (16.1 mg g–1) than those in the other fractions. The N:P ratio was higher in the leaf fall (81) compared to the fresh leaves (29) of A. mangium, in contrast to the N:P ratios in the leaf samples of the other two species. An analysis of a global litterfall dataset of tropical plantations indicated that N:P ratios in litterfall were significantly higher in N2-fixers than in non-N2-fixers, and those of A. mangium were high among species in the N2-fixer group. These results indicated that A. mangium efficiently retranslocated P in contrast to very large N cycling, under field conditions. These differences may be related to other physiological characteristics of A. mangium.  相似文献   

8.
The phenology of the herbaceous fern Didymochlaena truncatula in a Brazilian submontane tropical rainforest is described. A total of 23 individuals were observed over 18 months (May 2012 to October 2013). The number of live leaves, leaf production, leaf mortality, leaf growth, and fertility were recorded monthly and correlated with local rainfall and temperature. The D. truncatula plants remained evergreen with a monthly mean of 6.49 ± 0.75 leaves that were produced almost continuously at a rate of 6.13 ± 1.46 leaves plant?1 year?1. This rate was higher than the leaf mortality rate, which was 4.61 ± 1.27 leaves plant?1 year?1. Monthly leaf growth of the population was correlated with rainfall. Leaf expansion was fastest in the first month after emergence (1.31 ± 1.03 cm day?1). Fertility and leaf production intensity were not correlated with climate factors or seasonal variations. However, leaf mortality was negatively correlated with rainfall, causing variations in the number of leaves throughout the year. These results show that the phenological rhythms of D. truncatula were not equally influenced by climate variations. The phenology of D. truncatula corresponds to the phenology of a small number of aseasonal tropical ferns.  相似文献   

9.
Clonal structure in clonal plants can affect sexual reproduction. Individual ramets can decrease reproduction if their neighbors are ramets of the same genet due to inbreeding depression or self-incompatibility. We assessed ramet reproductive success in the partial self-incompatible Ferocactus robustus (Cactaceae) as a function of floral display size in focal ramets and floral display size and clonal structure of their reproductive neighborhoods. Ramets were labeled, sized in number of stems, mapped and genetically identified through RAPD markers in one population. A pollen dispersal area of 15-m radius was established for each ramet to determine the clonal diversity in the neighborhoods. Flower production and fruit set were counted on a monthly basis during one reproductive season as a surrogate of ramet fitness. We expected a decrease in individual ramet reproductive success as a function of the number of reproductive ramets of the same genet in the neighborhood. A total of 272 sampled ramets revealed 116 multilocus genotypes, showing high clonal diversity in the population (G/N = 0.43, D = 0.98). Clonal diversity of neighborhoods ranged from 0.06 to 1 and fruit set varied from 0 to 76.9%. Individual ramet reproductive success was influenced by (1) mate availability, (2) floral display size of a genet within the reproductive neighborhood, and (3) the proportion of distinguishable genotypes. Floral display size of genets and ramets coupled with the genetic diversity within the reproductive neighborhood determines the low sexual reproduction in F. robustus.  相似文献   

10.
Jatropha curcas was treated by soil drench paclobutrazol (PBZ) (0, 2, and 3 g m?1 of canopy diameter) and foliar spray PBZ (0, 500, 800, and 1,200 ppm). The results showed that PBZ treatments greatly retarded vegetative growth and improved reproductive growth. The lengths of new branches were greatly decreased, whereas the number of fruits per inflorescence, fruit-bearing branches per tree, and total fruit load per tree were increased. Only the 2-g soil drench and the 1,200-ppm foliar PBZ spray significantly increased fruit load. The 2-g soil drench PBZ treatment resulted in a decrease in seed S and Cu contents of J. curcas, whereas Mn and B were greatly or moderately increased. A higher dose (3-g soil drench PBZ) reversed the improvement in reproductive growth and alleviated the negative effects on element contents in seeds compared with the 2-g soil drench PBZ. Finally, soil drench PBZ treatments significantly improved seed oil content and oil quality by reducing the oil acid value, increasing stearic acid and oleic acid contents, and reducing palmitic acid and linoleic acid content. The optimum drench dose was below 2 g m?1 of canopy diameter. The optimum foliar spray concentration of PBZ was not determined in this study but our results suggest that it is higher than 1,200 ppm.  相似文献   

11.
Background and AimsUnderstanding how plant allometry, plant architecture and phenology contribute to fruit production can identify those plant traits that maximize fruit yield. In this study, we compared these variables and fruit yield for two shrub species, Vaccinium angustifolium and Vaccinium myrtilloides, to test the hypothesis that phenology is linked to the plants’ allometric traits, which are predictors of fruit production.MethodsWe measured leaf and flower phenology and the above-ground biomass of both Vaccinium species in a commercial wild lowbush blueberry field (Quebec, Canada) over a 2-year crop cycle; 1 year of pruning followed by 1 year of harvest. Leaf and flower phenology were measured, and the allometric traits of shoots and buds were monitored over the crop cycle. We hand-collected the fruits of each plant to determine fruit attributes and biomass.Key ResultsDuring the harvesting year, the leafing and flowering of V. angustifolium occurred earlier than that of V. myrtilloides. This difference was related to the allometric characteristics of the buds due to differences in carbon partitioning by the plants during the pruning year. Through structural equation modelling, we identified that the earlier leafing in V. angustifolium was related to a lower leaf bud number, while earlier flowering was linked to a lower number of flowers per bud. Despite differences in reproductive allometric traits, vegetative biomass still determined reproductive biomass in a log–log scale model.ConclusionsGrowing buds are competing sinks for non-structural carbohydrates. Their differences in both number and characteristics (e.g. number of flowers per bud) influence levels of fruit production and explain some of the phenological differences observed between the two Vaccinium species. For similar above-ground biomass, both Vaccinium species had similar reproductive outputs in terms of fruit biomass, despite differences in reproductive traits such as fruit size and number.  相似文献   

12.
Year-round flowering is widely reported in fig trees and is necessary for the survival of their short-living, specialized Agaonid pollinators. However, seasonality in both fig and leaf production has been noted in almost all published phenological studies. We have addressed the following questions in the present study: (1) Are reproductive and vegetative phenologies seasonal and, consequently, related to climate? (2) Does Ficus citrifolia produce ripe figs year round? (3) Is the fig development related to climate? And, (4) Are reproductive and vegetative phenologies independent? By investigating these questions with a F. citrifolia population over a two-year period, at the southern edge of the tropical region in Brazil, we detected phenological seasonality that was significantly correlated with climate. Our findings can be summarized as follows: (1) Trees became deciduous during the cold and dry months; (2) The flowering onset was asynchronous among individuals, but with moderate concentration during the hot and rainy months; (3) There was a correlation between the onset of flowering and vegetative phenology, with significantly higher crop initiations in individuals with full-leaf canopy; (4) Fig developmental time was longer in cold months; and (5) Ripe fig production occurred year-round and was not correlated with climate. Our results suggest that there are strong selection pressures that maintain the year-round flowering phenology in figs, for we have observed little seasonality in the phenology of such species despite the strong seasonality in the environment.  相似文献   

13.
According to recent climate change scenarios, temperate forests will be increasingly exposed to droughts in the 21st century which are thought to affect productivity. Although decreasing timber yield with reduced precipitation has frequently been reported from temperate forests, the dependence of forest net primary production (NPP) on precipitation is little understood. In a 3-year transect study (2009–2011) carried out in 12 mature beech forests (Fagus sylvatica) along a precipitation gradient (820–540 mm y?1) in Northern Germany, we measured all aboveground NPP components (NPPa; stem wood, leaf mass, flower and fruit production) and analyzed relationships with monthly weather data. Because we measured NPPa under a broad range of precipitation levels, drought lengths and mast fruiting intensities, the climatic controls of aboveground productivity and carbon allocation could be analyzed in detail. Despite a significant decrease in annual (and growing season) precipitation sums along the transect, NPPa remained largely invariant in each of the years, but varied remarkably between the years (means of 981, 702, 955 g DM m?2 y?1, respectively). Variation in NPPa was most closely related to current year’s early summer weather conditions (June–July), whereas the patterns of biomass allocation to wood, leaf, and fruit production responded to the previous summer’s weather. Wood production cannot predict NPPa in beech due to alternative allocation priorities of vegetative and reproductive growth. Our results show that apparent drought-induced reductions in beech timber yield often are the result of allocation shifts toward fruit production triggered by warm and dry weather in the previous summer.  相似文献   

14.
磨盘山天然次生林凋落物数量及动态   总被引:2,自引:0,他引:2  
以磨盘山5.76hm2天然次生林群落固定监测样地为平台,均匀布设144个凋落物收集器,于2006年每月末(4—11月)连续收集其凋落物,用以分析群落尺度上的凋落物产量、组成及时空变化。结果表明,天然次生林年凋落量为3039.6 kg/hm2,以凋落叶(2499.2 kg/hm2)所占的比例最大,占年凋落量的82.22%,而凋落枝仅占年凋落量的9.92%,花果皮等所占比例更小,占总量的5%以下。1a内,凋落物收集器内共收集到42种树木的凋落叶,占样地内树种总数(46种)的91.30%,其中花曲柳(Fraxinus rhynchophylla)、核桃楸(Juglans mandshurica)和蒙古栎(Quercus mongolica)3个树种的凋落叶占落叶总量的82.97%,为叶凋落量的主要来源。不同收集器之间凋落量存在较大差异,99个收集器的年凋落量在200—400 g,2个收集器超过600 g;单个收集器全年最多可收集到19种树种的凋落叶,收集到凋落叶种数12种的收集器最多(29个)。凋落量月动态呈单峰型,69.78%的凋落量产生于9—10月份,叶凋落量月动态与凋落总量变化相同。落叶以秋季为主,但树种间叶凋落节律存在差异,其中核桃楸叶的凋落高峰集中在8—9月,花曲柳和春榆(Ulmus japonica)集中在9—10月,色木槭(Acer mono)为10月,蒙古栎叶为10—11月。  相似文献   

15.
Present studies on the community characteristics of earthworms revealed the occurrence of 11 species of earthworms in the pineapple (Ananus comosus) and 14 species in the mixed fruit plantations of west Tripura (India). While 9 species of earthworms namely Drawida assamensis, Drawida papillifer papillifer, Drawida nepalensis, Kanchuria sp., Metaphire houlleti, Eutyphoeus gigas, Eutyphoeus scutarius, Eutyphoeus comillahnus and Pontoscolex corethrurus are of common occurrence to both the pineapple and the mixed fruit plantations, two and five earthworm species namely Kanchuria sumerianus, Eutyphoeus sp. and Metaphire posthuma, Perionyx excavatus, Lampito mauritii, Amynthus alexandri, Eutyphoeus gammiei are restricted to the pineapple and the mixed fruit plantations respectively. Earthworms were found mostly within 15 cm depth of soils having temperature 25–25.8 °C, moisture 18.8–22.4 %, water holding capacity 26–31.7 % and organic matter content 2.4–4.0 %. Mean earthworm densities (158 ind. m?2) was significantly higher (p < 0.01, t = 9.67) and biomass (36.67 g m?2) significantly lower (p < 0.01, t = ?5.98) in the pineapple plantation than the mixed fruit plantation (density 93 ind. m?2, biomass 56 g m?2). High density value of earthworms in pineapple plantation is linked with dominance of D. assamensis and high biomass value in mixed fruit plantation was due to the higher relative abundance of larger species like E. gigas, E. scutarius, E. comillahnus and E. gammiei. Compared to the mixed fruit plantation, significantly (p < 0.05) higher index of dominance, lower index of diversity, species richness index and species evenness were recorded in the pineapple plantation.  相似文献   

16.
The effects of nitrogen (N) deposition and management practices on leaf litterfall and N and P return in Moso bamboo forest are not yet known. In this study, we investigated the effects of four levels of simulated N deposition, including low-N (N30, 30 kg ha?1 year?1), medium-N (N60, 60 kg ha?1 year?1), and high-N (N90, 90 kg ha?1 year?1), and a control with no N (N-free addition). The experiment was performed in a Moso bamboo forest under conventional management (CM) and intensive management (IM). The results showed that leaf litterfall and N and P return occurred mainly from March to June and accounted for 78.2–82.2, 78.5–82.1, and 85.6–94.6% of annual leaf litterfall, N return, and P return, respectively. Unlike CM, IM significantly increased leaf litterfall and N and P return. The positive effects were further amplified by low- and medium-N deposition, but not high-N deposition. The combination of low- and medium-N deposition and IM significantly increased N and P return, but not litterfall. Our results indicated that the interaction of anthropogenic management practices and N deposition need to be considered when estimating the effects of N deposition on the biogeochemical cycle of a forest ecosystem.  相似文献   

17.
Litterfall production, decomposition and nutrient use efficiency in three different tropical forest ecosystems in SW China were studied for 10 years. Annual mean litterfall production in tropical seasonal forest (TSF) (9.47?±?1.65 Mg ha?1) was similar to that in man-made tropical forest (MTF) (9.23?±?1.29 Mg ha?1) (P?>?0.05) but both were significantly lower than that in secondary tropical forest (STF) (12.96?±?1.71 Mg ha?1) (P?<?0.05). The annual variation of litterfall was greater in TSF (17.4%, P?<?0.05) than in MTF (14.0%) or STF (13.2%). The annual mean decomposition rate of litterfall increased followed the order of MTF (2.72)?<?TSF (3.15)?<?STF (3.50) (P?<?0.05), which was not correlated with annual precipitation or annual mean temperature, but was rather related to litter quality. The nutrient use efficiency was found to be element-dependent and to vary significantly among the three forest types (P?<?0.05). These results indicate that litterfall production and decomposition rates in different tropical forest systems are related to plant species composition and are influenced strongly by coexisting species and their life stage (age) but less so by the species richness. Constructing multi-species and multistory man-made tropical forest is an effective way to enhance biological productivity and maintain soil nutrients on degraded tropical land.  相似文献   

18.
The study described patterns of leaf dry mass change, leaf mass per area (LMA), relative growth rate and leaf life span (LL) for 14 evergreen and 7 deciduous species of a tropical forest of Southern Assam, India. Leaf expansion in both the groups was, in general, completed before June (i.e. well before the onset of monsoon rains). Although leaf dry mass during leaf initiation phase was significantly higher (P < 0.01) in evergreen species than in deciduous species, at the time of full leaf expansion, average leaf dry mass relative to the peak leaf dry mass, realised by the evergreen species was lower (66 %) than for deciduous species (76 %). Leaf dry mass increase in both groups continued after leaf full expansion. Evergreen species had a longer leaf dry mass steady phase than deciduous species (2–6 vs 2–3 months). Average LMA of mature leaves for evergreen species (77.43 g m?2) was significantly greater than that of deciduous species (48.43 g m?2). LL ranged from 165 days in Gmelina arborea (deciduous) to 509 days in Dipterocarpus turbinatus (evergreen). LMA was correlated positively with LL, indicating that evergreen species with higher leaf construction cost retain leaves for longer period to pay back. The average leaf dry mass loss before leaf shedding was greater (P < 0.01) for deciduous species (30.29 %) than for evergreen species (18.31 %). Although the cost of leaf construction in deciduous species was lower than for evergreen species, they replace leaves at a faster rate. Deciduous species perhaps compensate the cost involved in faster leaf replacement through higher reabsorption of dry mass during senescence, which they remobilise to initiate growth in the following spring when soil resources remain limiting.  相似文献   

19.
This study evaluated the effects of tree species and sites on soil carbohydrates, litterfall, and litter chemistry in 2-, 4- and 10-year-old improved fallows at three sites in eastern Zambia. Between April 2002 and August 2003, litter was collected in 2-year-old tree fallows at Kalichero, Kalunga and Msekera for chemical analyses. Soil samples collected at 0–30 cm from all experiments were analysed for total soil organic carbon (SOC), but only those from 4- and 10-year-old fallows were analysed for carbohydrates. Soil arabinose- and mannose-C stocks, and carbohydrate-C percentages of SOC (7.7–20.6 %) significantly (P < 0.05) differed across tree species in 10-year-old coppicing fallows at Msekera. Converting M + F to improved fallows resulted in a decline in monosaccharide-C, carbohydrate-C stocks and carbohydrate-C percentage of SOC. There were significant (P < 0.05) variations in litterfall (0.7–2.3 t ha?1 year?1) and litter C contents (0.3–1.1 t ha?1 year?1) across 2-year-old coppicing tree fallows at Msekera. Litter production and C contents were significantly greater on sandy soils at Kalunga than on fine-textured soils at Msekera. Litter chemical contents (C, N, AUR and polyphenols) and ratios (C:N, P:N, AUR:N, and (AUR + P):N) for litter in fallows differed significantly (P < 0.05) across species and sites. In this study, the role of litter in carbon cycling in improved fallows depended on tree species and site conditions.  相似文献   

20.
In this study, chlorophyll fluorescence parameters (?F/F m′, F v/F m) and oxygen evolution of female vegetative tissues of Porphyra katadai var. hemiphylla in unisexual culture (FV) and in mixed culture with male vegetative tissues (FV-M) were followed at 5–20 °C, 10 and 80 μmol photons m?2 s?1. The formation of reproductive tissues was closely correlated with decreasing photosynthetic activities. At the same temperature the tissues cultured under 80 μmol photons m?2 s?1 showed a greater extent of maturation than those under 10 μmol photons m?2 s?1, and their decrease in photosynthesis was also larger. Under the same light intensity the extent of maturation increased with increasing temperature, and both cultures showed higher values of ?F/F m′ and F v/F m at 10 and 15 °C, while their oxygen evolution became negative at 15–20 °C during the later period. Under the same culture condition the maturation of FV-M culture was relatively faster than that of FV culture, while their photosynthetic activity, especially ?F/F m′, was lower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号