首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The vegetative and reproductive phenology of the subtropical mangrove species Rhizophora stylosa was investigated at Manko Wetland, Okinawa Island, Japan. We assessed phenology using litterfall data over four years. Leaf and stipule litterfall occurred throughout the year, with distinct seasonal patterns. Kendall’s coefficient of concordance, W, revealed that the monthly changes in leaf and stipule litterfall were strongly and significantly concordant among years. Leaf litterfall was significantly correlated with monthly maximum wind speed and monthly day length, and stipule litterfall was significantly correlated with monthly mean air temperature and relative humidity. Branch litterfall showed no clear monthly pattern and correlated well with monthly maximum wind speed. Mean total litterfall was 11.2 Mg ha?1 year?1, with the largest component being vegetative organs (78.7 %). Flower, fruit, and propagule litterfall were all highest in summer and lowest in winter. The W values revealed that most reproductive organs in litterfall had significant monthly trends. Flower and fruit litterfall were significantly correlated with monthly day length and monthly mean air temperature, respectively. The average development periods from flower buds to flowers, fruits, and mature propagules were approximately 2–3 months, 4–5 months, and 11–12 months, respectively. Except for branches, all vegetative and reproductive components of litterfall had approximately one year cycles.  相似文献   

2.
Vegetative and reproductive phenology of the subtropical mangrove Bruguiera gymnorrhiza was investigated at Manko Wetland, Okinawa Island, Japan. Phenology was assessed using litterfall data over 4 years. Leaf and stipule litterfall occurred throughout the year, with distinct seasonal patterns. Kendall’s coefficient of concordance, W, revealed that the monthly changes in leaf and stipule litterfall were strongly and significantly concordant among years. Leaf litterfall was linked to monthly day length and maximum wind speed, and stipule litterfall was linked to monthly mean air temperature, monthly rainfall, and maximum wind speed. Branch litterfall showed no clear monthly pattern, but tended to vary with monthly maximum wind speed. Mean leaf longevity was 19 months. Mean total litterfall was 10.1 Mg ha?1 year?1, with the largest component being vegetative organs (58 %). Flower and propagule litterfall were highest in autumn and summer, respectively, and lowest in winter. The W values revealed that, of the reproductive organs, only flower litterfall had a significant monthly trend. Flower litterfall was correlated with monthly mean air temperature and relative humidity. The average development periods from flower buds to flowers and from flowers to mature propagules were approximately 1 and 8 months, respectively. It took 9 months to produce mature propagules from flower buds. Except for branches, all vegetative and reproductive components of litterfall had clear annual cycles.  相似文献   

3.
The phenology and morphology of Mediterranean plants are constrained by drought in summer and cold temperatures in winter. In this study we examine how climatic factors and phylogenetic constraints have shaped variation in the phenology and morphology of 17 species of the genus Cyclamen cultivated in uniform garden conditions. We quantify the extent to which traits differ among subgenera and thus represent conserved traits within evolutionary lineages. We also explore whether leaf, flowering and seed-release phenology are correlated among species, and thus whether variation in flowering phenology results from selection on dispersal phenology. Our results show a significant influence of subgenus membership on leaf and flowering phenology but not on morphological traits or the timing of seed release. Among-species variation in foliage height, leaf size and seed mass (but not in floral traits) is correlated with chromosome number. Leaf traits show that species with a shorter vegetative period have a higher capacity for resource acquisition. Major phenological shifts, i.e. spring vs. autumn flowering and a decoupling of leaf and flower phenology in autumnal flowering species, thus occurred prior to the diversification of species in each subgenus and not as a response to selection on dispersal timing. Leaf and flowering phenology illustrate a gradient of strategies from autumn flowering in the absence of leaves (hysteranthous species) to spring flowering with fully developed foliage (synanthous species). In the former, flowering is uncoupled from resource acquisition by simultaneous photosynthesis, indicative that hysteranthy is a response to temporal unpredictability in the onset of rain after the summer drought. Our results support the idea that whereas leaf development is controlled primarily by moisture availability and secondarily by temperature, flowering is temperature dependent, above a minimum moisture threshold. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145 , 469–484.  相似文献   

4.
Colleters are multicellular secretory structures found on various organs in flowering plants. Colleters on the adaxial sides of stipules have been hypothesized to play a role in protecting the developing shoot. Rhizophoraceae is a stipulate family with a broad distribution from mangrove to montane environments, which makes the family well suited for the examination of this hypothesis, but the colleters of Rhizophoraceae are not well known. We compared species from all three tribes of Rhizophoraceae, including five inland genera and all four mangrove genera. In all species, several to hundreds of colleters, sessile or stalked, arranged in rows aggregated in genus‐specific shapes, are found at the adaxial bases of open and closed stipules. Pellacalyx uniquely has additional colleters at the stipule margins. Colleters are all of the standard type, comprising a central axis of core parenchyma with large vacuoles and tannins, and an outer palisade‐like epidermis with organelles involved in secretory activity. An exception is Pellacalyx axillaris, in which colleters appear as extremely small epidermal protrusions. Kandelia obovata has a tracheary element in some colleters. Pellacalyx uniquely has an unusual fleshy outgrowth on the adaxial stipule base. We propose an evolutionary sequence in which Macarisia has plesiomorphic stipule and colleter traits and the mangrove Kandelia obovata with colleter vascular traces is most derived. Colleter and stipule structures are largely concordant with habitat and phylogeny, and show taxonomic value. The strong alignment of colleter and stipule patterns with habitat is suggestive that colleters have a protective function, although some components of these patterns may be phylogenetically determined. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 449–464.  相似文献   

5.
The herbivore assemblage, intensity of herbivory and factors determining herbivory levels on the mangrove Kandelia obovata (previously K. candel, Rhizophoraceae) were studied over a 13-month period at two forests with contrasting growing conditions in Hong Kong. Mai Po was part of an eutrophic embayment in the Pearl River estuary and generally offered more favourable conditions for mangrove growth, whereas Ting Kok had a rocky substratum and oceanic salinity. Twenty-four insect herbivore species were recorded on K. obovata, with lepidopteran larvae that consume leaf lamina being the dominant species. While leaf litter production was similar at the two forests, herbivory level at Mai Po (mean = 3.9% in terms of leaf area loss) was more severe than that at Ting Kok (mean = 2.3%). Peak herbivory levels were found in summer at both locations (6.5% for Mai Po and 3.8% for Ting Kok). Young leaves of K. obovata at both locations were generally preferred by the herbivores from the period of late spring to summer. Concentrations of most feeding deterrents (ash, crude fibre, and total soluble tannins) were significantly higher in both young and mature leaves at Ting Kok, whereas leaf nutrients (total nitrogen and water) were the same at the two sites. Young leaves at Ting Kok contained about 30% more tannins than their counterparts at Mai Po. Significant differences in leaf chemistry also existed between young and mature leaves at either site. The differences were concomitant with the observed patterns of leaf herbivory on K. obovata, and suggest a potential relationship between environmental quality and plant defence against herbivory.  相似文献   

6.
Rhizophora mangle is the most common species of mangrove within its range and a major component of coastal ecosystems in the tropics and subtropics. Its phenology is affected by seasonal variations in temperature, salinity, and precipitation, all of which may be altered by impending climate change. In this work, the monthly leaf, flower, and fruit phenology of R. mangle was assessed at three sites, along a natural salinity gradient for 12 months. We assessed phenological states using litter traps installed in mangrove stands, and by direct observation of leaf production at two sites, and flower, and fruit production at a single site. Phenological events were compared with seasonal climatic variations (in wind, rain, and temperature) to explore potential abiotic controls on the phenology of this species. Leaf shedding was lowest at the low salinity site. Leaf and stipule production showed a seasonal trend, decreasing during the cool and dry winter months. Flowering was highly seasonal and synchronous and peaked during the rainy season. Flowering was correlated with average temperature (= 0.82; < 0.05) at all three study sites, but was not correlated with precipitation. At the high‐salinity site, flowering was restricted to the rainy season. Fruit abortion was associated with wind speed (= 0.79; < 0.05). Flowering of R. mangle is induced by increasing temperatures and the onset of rains. Rising temperatures, drier summers, and more frequent and intense storms, due to climate change, may influence mangrove productivity, population dynamics, and floral synchrony.  相似文献   

7.
水淹对狗牙根营养繁殖植株的生理生态学效应   总被引:2,自引:0,他引:2  
通过控制实验,测定了经过水淹处理的狗牙根营养繁殖体在恢复阶段的光合作用及其相关的生理生化指标的变化。结果显示,水淹时间对恢复阶段营养繁殖体的蒸腾作用和叶片温度的影响达到显著水平,水淹深度对该时期营养繁殖体的光合作用、气孔导度、胞间二氧化碳浓度和叶片温度有显著影响。水淹还导致了恢复期间植株叶片光合色素含量的显著变化。经过水淹的植株的各类光合色素含量以及色素总含量都显著高于对照植株,其中全淹处理的植株显著高于半淹处理的植株,叶绿素a与叶绿素b的比例也是全淹处理的植株显著高于半淹处理的植株。结果表明狗牙根营养繁殖体具有较强的恢复生长和生理活动的能力,是一种适宜于水电工程库区消落带生态恢复的物种。  相似文献   

8.
Mangrove phenology is important in understanding the past, present and future response of mangrove species to impacts of climate change. Our study is the first long term direct observation of the phenology of Rhizophora mucronata and Sonneratia alba in Kenya. Objective of the study was to determine, interpret and document the timing of the various phenoevents and phenophases, and to establish relationships between phenology and the climatic variables. Phenological traits were investigated in six monospecific mangrove stands in Gazi Bay, south of Mombasa, for 2 years. Leaf emergence, leaf fall, flower bud, flower and fruit initiation data were recorded every fortnight in 54 shoots of 9 trees at each site. Continuous leaf emergence and loss characterized by multimodal peaks was observed for the two species. Leaf emergence and leaf fall peaked in the wet months and was reduced in the dry months. There was a relationship between the leaf emergence and drop with the reproductive phenology in the two species. Mean leaf longevity for R. mucronata and S. alba was 12.8 ± 1.2 and 4.9 ± 0.5 months respectively. The reproductive cycle took approximately 16–20 months in R. mucronata and 4–5 months in S. alba. Bud initiation in R. mucronata was seasonal and occurred in October and September. Buds were observed for 8–11 months developing slowly on the shoots. Shifts were observed in the timing of flower initiation, and the flowering period lasted in total for 4–5 months. The time period from flower appearance to the developmental start of immature propagules lasted about 1 month at reforested sites and up to 5 months in stands of natural vegetation. In R. mucronata initiation of immature propagules was not seasonal and varied among the sites. Fruiting in S. alba was short and seasonal without overlap, and shifts were observed in the timing of flowering, flowering and fruiting peaks. Abscission of reproductive parts started in July and in June, respectively, in the years 2005 and 2006. Fruiting was observed starting in August in both years, and fruiting peak was reached in October in 2005 and one month earlier in 2006. In R. mucronata vegetative and reproductive phenophases significantly correlated with climatic variables, whereas in S. alba only leaf emergence and leaf fall correlated with temperature. The flowering plasticity in the reproductive phenology of the two species indicates possible sensitivity to certain climatic and environmental triggers. Our results also indicate that R. mucronata trees have a distinctly higher investment in the reproductive cycle than S. alba.  相似文献   

9.
The keystone role of leaf-removing crabs in mangrove forests of North Brazil   总被引:11,自引:4,他引:7  
Principle factors which influence mangroveleaf litter turnover, in particular therole of leaf-removing crabs, were evaluatedin a riverine mangrove site nearBragança (Pará, North Brazil). Ourspecial interest was focussed on the roleof the leaf-removing crab Ucidescordatus. Leaf litter fluxes between themangrove forest and the adjacent estuarywere investigated by estimating the biomassand fate of leaf litter material and propagules. Vegetation is dominated by Rhizophora mangle, with Avicenniagerminans trees, both up to 25 m high,found intermittently. During 1997, Rhizophora trees produced around 1.40 gDW m-2 d-1 of leave fall and0.75 g DW m-2 d-1 of propagules.Leaf decomposition rates on the ground wereabout 0.06 g DW m-2 d-1,irrespective of species, habitat or siteexposure. This amount accounts for <3%of total leaf fall. Average leaf litterbiomass present on the ground was 0.01 gDW m-2 d-1. When the mangroveforest was flooded (on average 10 days permonth) the quantity of leaf litterand propagules washed out with the springtide was 10 and 17 times greater thanduring neap tide. Nevertheless, tidalexport and decomposition together made upless than 39 percent of annual leaf litterfall. The bulk of the remaining amount isapparently removed by Ucides. Eachcrab consumed about 1.30 g DW of leaflitter material and propagules per day.Since the average density of these crabswas 1.38 crabs m-2, it is proposedthat Ucides is a keystone species inBragantinian mangroves.  相似文献   

10.
Litter fall on two catchments, one with an almost continuous canopy of Eucalyptus spp., the other with a discontinuous eucalypt canopy was measured for 29 4-week periods. Annual litter accretion(2.5-3.7 t ha?1) was low by world standards, but similar to other Australian dry sclerophyll forests. Between 33 and 54% of the total litter fall occurred during summer, and only 6-13% in winter. Leaf was the major component of litter fall and usually contributed more than 50% of the total. Variability between the 4-weekly litter falls was high, but coefficients of variation for the total annual fall were low (<5%). Half-life of total litter fall in the continuous forest (2.14 y) was double that in the discontinuous forest (0.98 y), and may have been due to differences in air temperature and surface soil moisture. The pattern of litter fall on each catchment was related to hydro-meteorological variables including air temperature, solar radiation, rainfall and soil moisture content.  相似文献   

11.
广西英罗湾红海榄群落凋落物研究   总被引:6,自引:0,他引:6  
尹毅  林鹏   《广西植物》1992,12(4):359-363
本文主要研究广西合浦山口英罗湾红树林保护区红海榄群落的凋落物,结果表明:(1)红海榄群落1989年凋落物量为631.26 g/m~2,其中落叶561.50 g/m~2,说明落叶在红海榄群落物质归还中起着关键性作用。(2)年凋落物中各组分占总量的比例分别为叶88.95%、花3.68%、果(含胚轴)3.0%和枝4.26%。(3)月凋落物量(Y_1,g/m~2)与月平均气温(X_1,℃)呈线性正相关,其回归公式为Y_1=3.071 x_1-16.804(r=0.77,df=14),相关极显著;月凋落物量(Y_1)与月降水量(X_2,mm)的回归公式为Y_1=0.116 x_2+34.381(r=0.62,df=14),相关极显著。高温高湿季节的凋落物量明显高于低温干燥季节的凋落物量。  相似文献   

12.
The latitudinal distribution of mangrove species is limited mainly by low temperature. Leaf scorch and massive leaf fall are the predominant symptoms of frost damage. Nutrient resorption during leaf senescence is an important adaptation mechanism of mangroves. Abnormal defoliation disturbs nutrient resorption. We evaluated the effects of frost on nutrient loss of mangroves and the protective effects of warmer seawater inundation on reducing nutrient loss. On January 14, 2009, the most cold-tolerant mangrove Kandelia obovata at its naturally latitudinal limit (Fuding, China, 27°17??N) was exposed to freezing temperature (?2.4°C) for 4 h (minimum ?2.8°C). The freezing air temperature occurred during flood tide, resulting that the flooded shoots were protected by warmer seawater. Frost caused 31.3% and 13.0% defoliation on the exposed shoots and the flooded shoots, respectively. Frost restricted nutrient resorption during leaf senescence. K. obovata resorbed 61% N and 42% P during normal leaf senescence, respectively. However, frost-damaged leaves only resorbed 13% N and 10% P during the course, respectively. Foliar N:P molar ratios were <31, suggesting N limitation. Tidal inundation can partially protect mangroves from frost damage. Reduced nutrient resorption efficiency and massive leaf fall caused by frost add pressure to mangroves under nutrient limitation at their latitudinal limits.  相似文献   

13.
Ecogeographic variation in the widely dispersed but relatively neglected mangrove Kandelia candel is examined and described in the geographically isolated populations of this species from Brunei (North Borneo), Hong Kong and Thailand. Morphological attributes of leaf and propagules are compared together with some observations on differential chill tolerance in transplants from Brunei and Thailand growing alongside the wild populations of Hong Kong. Significant differences indicative of ecotypicity were obtained in terms of leaf length and size, propagule length, width and dry weight and chill tolerance of established four year old saplings.  相似文献   

14.
The current study presents phenology data for Rhizophora mangle from two equatorial mangrove stands with different salinity regimes in Brazil. Observations based on litter fall and individual shoot development were compared and related to environmental factors. Patterns observed in litter fall were consistent with results of direct monitoring. While both reproductive organs and leaves were produced throughout the year, rates of formation followed seasonal trends. Distinct differences in propagule production between low and high salinity sites and between years of observation were detected; main propagule release was, however, restricted to the wet season which offers enhanced conditions for propagule establishment. Emergence of flowers was linked to leaf production. While there was no obvious single peak in leaf production, it was reduced towards the end of the dry season at both high and low salinity sites. Time series analysis revealed an independent pattern of leaf development superimposed on this annual seasonal trend, indicating slower development of leaf primordia during periods of low light availability in the wet season. No significant difference in age structure was detected between sun and shade leaves; maximum leaf life-time was approximately 1 year.  相似文献   

15.
Mangrove swamps are key ecosystems along the Vietnam coast. Although mangrove litter is thought to represent an important input of organic matter and nutrients to the coastal aquatic systems, the factors determining the quality and size of this litter flux have not been studied so far. We monitored leaf, stipule, twig, and reproductive litter monthly in monocultures of Rhizophora apiculata mangrove forests of 7, 11, 17 and 24 years old in the Camau province, Mekong Delta, Vietnam. Litter traps were used to measure litter fall production from June 2001 till May 2002. Total litter fall was in the range of 8.86–14.16 t DW ha−1 year−1. Leaves were the main component, and represented 70% of litter fall production in all stands. Total litter fall was lower in the older stands but the amount of reproductive litter was significantly higher in these stands (17 and 24 years). Biomass of leaf litter was highest between the end of the wet season and the beginning of the dry season. Phosphorus and nitrogen levels in leaf litter were significantly higher in younger than in older stands. Overall, our study indicated that young stands produced the highest input of litter and particularly of nitrogen and phosphorus to the surrounding aquatic system. Consequently, these stands contribute significantly to the fisheries.  相似文献   

16.
Litter fall and litter layer decay in coastal scrub at Sydney,Australia   总被引:2,自引:0,他引:2  
Summary Seasonal litter fall and changes in dry weight and minerals within the litter layer were sampled throughout one year. The annual total litter fall was 4.9 t per hectare of which 70% was leaf fall. Litter fall was highest in spring and early summer, the falls of each component (leaf, wood, etc.) and species being markedly seasonal but not all in phase. The annual amounts of minerals cycling as litter fall ranged from 44 kg N to 2 kg P per hectare. Mineral concentrations of the litter fall underwent seasonal variation and in the case of potassium were related to rainfall. The litter layer, mean biomass 19 t ha-1, declined in weight at a rate of 2.4% per week between spring and summer. The mean turnover time for the dry weight of the litter layer was 3.8 years and for the mineral approx. 1 year (K, Cl) or in excess of 3 years (P, Ca, S, Mg and N).  相似文献   

17.
Aim Local communities are subject to spatiotemporal contingencies of landscape processes; community assembly is thus often considered to be unpredictable and idiosyncratic. However, evolved trade‐offs of species’ life histories may set distinct constraints on the assembly of species communities. In plants, the recruitment and invasion success of species into communities depend primarily on the number of propagules available and on their generative or vegetative character. Life‐history trade‐offs prevent individual plants from producing large numbers of both generative and vegetative propagules, but it is not clear whether this constrains their availability at the landscape scale. We thus tested whether: (1) the observed relationship between generative and vegetative propagules deviates from the null expectation stating that species contributing the bulk of generative propagules to the propagule rain should also contribute the bulk of vegetative propagules; and (2) whether vegetative and generative propagule pressures are negatively correlated once species abundance in the regional pool is accounted for. Location A large riparian landscape in the Netherlands. Methods Analyses were based on an extensive trapping of floating propagules (214,049 propagules of 47 species), and a rough proxy of species abundance across the entire pool. We used both species and phylogenetically independent contrasts as data points, and accounted for variation in size of generative propagules. Results Both hypotheses were confirmed. Numbers of generative and vegetative propagules trapped per species were significantly negatively correlated (r = ?0.33; t45 = ?2.61, P = 0.006) and thus strongly deviated from the null expectation. This was confirmed by analyses accounting for variation in species abundance across the species pool, and in the size of generative propagules. Main conclusions The results indicate that plant recruitment and community assembly across streams may be influenced by the way individual plants allocate their resources between competing life‐history functions. Life‐history evolution across angiosperms might thus have constrained the present‐day assembly of local communities.  相似文献   

18.
Abstract. Structural (density, height, basal area, above‐ground tree biomass, leaf area index) and functional (leaf phenology, growth rate, fine litter fall, leaf decomposition) traits were quantified in four mature forests of Nothofagus pumilio (lenga) along an altitudinal sequence in Tierra del Fuego, Argentina. Three erect forest stands at 220, 440 and 540m and a krummholz stand at 640 m a.s.l. were selected. Along the altitudinal sequence, stem density increased while DBH, height, biomass, leaf‐size and growth period, mean growth rate and decay rate decreased. Dead stems increased and basal area and fine‐litter fall decreased with an increase in elevation among erect forests, but these trends inverted at krummholz. We suggest that krummholz is not only a morphological response to the adverse climate but is also a life form with functional advantages.  相似文献   

19.
Leaf phenology dictates the time available for carbon assimilation, transpiration and nutrient uptake in plants. Understanding the environmental cues that control phenology is therefore vital for predicting climate‐related changes to plant and ecosystem function. In contrast to temperate systems, and to a lesser degree, tropical forest systems, the cues initiating leaf drop in tropical savannas are poorly studied. We investigated the cues for leaf fall in a tropical monodominant arid savanna species, Colophospermum mopane, using an irrigation experiment. We tracked soil moisture, solar radiation, air temperature, leaf water status, leaf health and leaf carbon balance through the dry season in both irrigated and control plants. Water was the primary cue driving leaf loss of C. mopane rather than temperature or light. Trees watered throughout the dry season retained their canopies. These leaves remained functional and continued photosynthesis throughout the dry season. Leaf carbon acquisition rates did not decline with leaf age but were affected by soil moisture availability and temperature. Leaf loss did not occur when leaf carbon gain was zero, or when a particular leaf carbon threshold was reached. Colophospermum mopane is facultatively deciduous as water availability determines leaf drop in this widespread arid savanna species. Obligate deciduosity is not the only successful strategy in climates with a long dry season.  相似文献   

20.
Giant miscanthus (Miscanthus × giganteus) and giant reed (Arundo donax) are leading bioenergy crops. Both exhibit many invasive characteristics, though only giant reed is known to be invasive. Despite this, neither produces viable seed, limiting movement to vegetative propagules. Therefore, to assess vegetative fragments as potential propagules, we quantified seasonal changes in culm node viability and performance in giant miscanthus and giant reed under greenhouse conditions. Giant miscanthus culms were collected in spring, summer, fall, and winter from established fields, while giant reed culms were collected in summer, fall, and winter from feral stands. Treatments at each timing consisted of whole culms and single-node culm fragments planted in soil or placed in standing water for an 8-week period. Giant miscanthus whole culms and fragments produced shoots and roots in both soil and standing water immediately following cutting from spring to summer, but failed to produce shoots and roots after fall and winter cutting dates. All rhizome fragments survived and generated shoots and roots after burial. By comparison, giant reed produced shoots and roots in both soil and standing water throughout the year, regardless of cutting date. With giant miscanthus, precautions should be taken when living culms or rhizome fragments are harvested and transported through riparian habitats during the summer months. By comparison, giant reed showed a remarkable increase in propagule generation and productivity throughout the year and, thus, escaped propagules present a far greater risk of unintentional establishment compared to giant miscanthus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号