首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Salt Marsh Restoration in Connecticut: 20 Years of Science and Management   总被引:4,自引:0,他引:4  
In 1980 the State of Connecticut began a tidal marsh restoration program targeting systems degraded by tidal restrictions and impoundments. Such marshes become dominated by common reed grass (Phragmites australis) and cattail (Typha angustifolia and T. latifolia), with little ecological connection to Long Island Sound. The management and scientific hypothesis was that returning tidal action, reconnecting marshes to Long Island Sound, would set these systems on a recovery trajectory. Specific restoration targets (i.e., pre‐disturbance conditions or particular reference marshes) were considered unrealistic. However, it was expected that with time restored tides would return ecological functions and attributes characteristic of fully functioning tidal salt marshes. Here we report results of this program at nine separate sites within six marsh systems along 110 km of Long Island Sound shoreline, with restoration times of 5 to 21 years. Biotic parameters assessed include vegetation, macroinvertebrates, and use by fish and birds. Abiotic factors studied were soil salinity, elevation and tidal flooding, and soil water table depth. Sites fell into two categories of vegetation recovery: slow, ca. 0.5%, or fast, more than 5% of total area per year. Although total cover and frequency of salt marsh angiosperms was positively related to soil salinity, and reed grass stand parameters negatively so, fast versus slow recovery rates could not be attributed to salinity. Instead, rates appear to reflect differences in tidal flooding. Rapid recovery was characterized by lower elevations, greater hydroperiods, and higher soil water tables. Recovery of other biotic attributes and functions does not necessarily parallel those for vegetation. At the longest studied system (rapid vegetation recovery) the high marsh snail Melampus bidentatus took two decades to reach densities comparable with a nearby reference marsh, whereas the amphipod Orchestia grillus was well established on a slow‐recovery marsh, reed grass dominated after 9 years. Typical fish species assemblages were found in restoration site creeks and ditches within 5 years. Gut contents of fish in ditches and on the high marsh suggest that use of restored marsh as foraging areas may require up to 15 years to reach equivalence with reference sites. Bird species that specialize in salt marshes require appropriate vegetation; on the oldest restoration site, breeding populations comparable with reference marshland had become established after 15 years. Use of restoration sites by birds considered marsh generalists was initially high and was still nearly twice that of reference areas even after 20 years. Herons, egrets, and migratory shorebirds used restoration areas extensively. These results support our prediction that returning tides will set degraded marshes on trajectories that can bring essentially full restoration of ecological functions. This can occur within two decades, although reduced tidal action can delay restoration of some functions. With this success, Connecticut's Department of Environmental Protection established a dedicated Wetland Restoration Unit. As of 1999 tides have been restored at 57 separate sites along the Connecticut coast.  相似文献   

2.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh. Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat. Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.  相似文献   

3.
Efforts are underway to restore tidal flow in New England salt marshes that were negatively impacted by tidal restrictions. We evaluated a planned tidal restoration at Mill Brook Marsh (New Hampshire) and at Drakes Island Marsh (Maine) where partial tidal restoration inadvertently occurred. Salt marsh functions were evaluated in both marshes to determine the impacts from tidal restriction and the responses following restoration. Physical and biological indicators of salt marsh functions (tidal range, surface elevations, soil water levels and salinities, plant cover, and fish use) were measured and compared to those from nonimpounded reference sites. Common impacts from tidal restrictions at both sites were: loss of tidal flooding, declines in surface elevation, reduced soil salinity, replacement of salt marsh vegetation by fresh and brackish plants, and loss of fish use of the marsh.Water levels, soil salinities and fish use increased immediately following tidal restoration. Salt-intolerant vegetation was killed within months. After two years, mildly salt-tolerant vegetation had been largely replaced in Mill Brook Marsh by several species characteristic of both high and low salt marshes. Eight years after the unplanned, partial tidal restoration at Drakes Island Marsh, the vegetation was dominated bySpartina alterniflora, a characteristic species of low marsh habitat.Hydrologic restoration that allowed for unrestricted saltwater exchange at Mill Brook restored salt marsh functions relatively quickly in comparison to the partial tidal restoration at Drakes Island, where full tidal exchange was not achieved. The irregular tidal regime at Drakes Island resulted in vegetation cover and patterns dissimilar to those of the high marsh used as a reference. The proper hydrologic regime (flooding height, duration and frequency) is essential to promote the rapid recovery of salt marsh functions. We predict that functional recovery will be relatively quick at Mill Brook, but believe that the habitat at Drakes Island will not become equivalent to that of the reference marsh unless the hydrology is further modified.Corresponding Editor: R.E. Turner Manuseript  相似文献   

4.
The demand for an improved knowledge base for planning and management of tidal marsh restoration worldwide has become more fully recognized. In the Sacramento‐San Joaquin Bay Delta, California, U.S.A., concerns have arisen about the degradation of the Delta and key ecosystem services. One restoration method proposed includes intentionally breaching levees that protect agricultural lands to re‐establish a hydrology that encourages tidal marsh development. Our research investigated relevant constraints on vegetation establishment and expansion of key tidal marsh species. We transplanted three macrophyte species (Schoenoplectus acutus, Schoenoplectus californicus, and Typha latifolia) using two transplant types (rhizomes and adults) in locations that varied in hydrologic and edaphic conditions at Liberty Island, a post‐levee breach tidal marsh restoration site. Two years of monitoring revealed that transplanted adults outperformed rhizomes. In addition, S. californicus exhibited greater survival and vegetation expansion. S. californicus vegetation expansion covered a maximum area of approximately 23 m2, which is two orders of magnitude (OOM) greater than the maximum area covered by S. acutus (approximately 0.108 m2) and three OOM greater than T. latifolia (approximately 0.035 m2). Results suggest that hydrologic regime and degree of soil compaction are influential in controlling vegetation establishment and expansion. Greater vegetation expansion occurred in transplant sites characterized by a deeper surface layer of non‐compacted soil in conjunction with shorter durations of flooding. Information derived from this study is valuable to restoration planning in the Delta and other tidal marshes worldwide where these species occur, especially in terms of setting restoration goals and trajectories based on site‐specific environmental characteristics.  相似文献   

5.
Modeling Habitat Change in Salt Marshes After Tidal Restoration   总被引:4,自引:0,他引:4  
Salt marshes continue to degrade in the United States due to indirect human impacts arising from tidal restrictions. Roads or berms with inadequate provision for tidal flow hinder ecosystem functions and interfere with self‐maintenance of habitat, because interactions among vegetation, soil, and hydrology within tidally restricted marshes prevent them from responding to sea level rise. Prediction of the tidal range that is expected after restoration relative to the current geomorphology is crucial for successful restoration of salt marsh habitat. Both insufficient (due to restriction) and excessive (due to subsidence and sea level rise) tidal flooding can lead to loss of salt marshes. We developed and applied the Marsh Response to Hydrological Modifications model as a predictive tool to forecast the success of management scenarios for restoring full tides to previously restricted areas. We present an overview of a computer simulation tool that evaluates potential culvert installations with output of expected tidal ranges, water discharges, and flood potentials. For three New England tidal marshes we show species distributions of plants for tidally restricted and nonrestricted areas. Elevation ranges of species are used for short‐term (<5 years) predictions of changes to salt marsh habitat after tidal restoration. In addition, elevation changes of the marsh substrate measured at these sites are extrapolated to predict long‐term (>5 years) changes in marsh geomorphology under restored tidal regimes. The resultant tidal regime should be designed to provide habitat requirements for salt marsh plants. At sites with substantial elevation losses a balance must be struck that stimulates elevation increases by improving sediment fluxes into marshes while establishing flooding regimes appropriate to sustain the desired plants.  相似文献   

6.
Because of land reclamation, reinforcement of dikes, and the deepening of shipping channels, large areas of tidal marshes have been removed or eroded from the Scheldt estuary during the last two centuries. Tidal wetland restoration contributes toward compensating this loss of habitat. Not all restoration projects are meticulously planned, however; some are forced by nature. During a severe storm in 1990, a dike was breached in the brackish part of the Scheldt estuary and returned tidal influence to the Sieperda polder. In the 10 years since the dike breach, the former polder has changed into a brackish tidal marsh. Here we report on the geomorphologic and ecological developments that have taken place in the marsh. Tidal intrusion into the former polder turned crop fields into mudflats and changed pastures into salty marsh vegetation. The digging of a new creek improved marsh hydrology and enhanced tidal intrusion further into the marsh. Macrofauna typical of estuarine mudflats established rapidly in the developing marsh. Vegetation succession took place rapidly. Within 5 years, large areas of mudflats became covered with marsh vegetation. Birds characteristic of salt marshes were observed breeding or seen foraging in the marsh. The number of wading birds declined as areas of mudflat became overgrown. It is demonstrated that tidal flow is the engine to tidal marsh restoration. Tidal influence caused geomorphologic changes, which directed ecological developments in the former polder.  相似文献   

7.
滨海湿地生态修复已成为阻止海岸带生态系统退化、保护生物多样性以及提供生态服务的关键措施。以长江口原生盐沼植物海三棱藨草(Scirpus mariqueter)为研究对象,选取崇明东滩新生滩涂湿地为研究区域,通过沿潮滩高程梯度的海三棱藨草植株斑块的移植实验,探究胁迫梯度假说和互惠理论(即种内的正相互作用)对长江口海三棱藨草种群恢复的指导意义。研究结果显示:(1)在一定的胁迫梯度范围内(潮滩高程2.0 m以上),增大种植斑块可以促进海三棱藨草的种内正相互作用,显著提高种植斑块的存活率和植株密度(P0.05);(2)潮滩水文动力沉积条件与潮滩高程梯度密切相关(P0.05),水文动力沉积作用对海三棱藨草定居和生长的胁迫随高程梯度下降而增强。潮滩高程2.0 m以下处强烈的水文动力条件干扰限制了生物-物理因素的正反馈作用。滨海湿地盐沼植被修复工作的成功率可以通过改进种植方式,增强种内的正相互作用得到极大的提高。研究可为开展大规模滨海湿地盐沼植被修复工程和提高生态修复效率提供科学依据和技术支持。  相似文献   

8.
Adequately evaluating the success of coastal tidal marsh restoration has lagged behind the actual practice of restoring tidally restricted salt marshes. A Spartina-dominated valley marsh at Barn Island Wildlife Management Area, Stonington, Connecticut, was tidally restricted in 1946 and consequently converted mostly to Typha angustifolia. With the re-introduction of tidal flooding in 1978, much of the marsh has reverted to Spartina alterniflora. Using a geographical information system (GIS), this study measures restoration success by the extent of geographical similarity between the vegetation of the restored marsh and the pre-impounded marsh. Based on geographical comparisons among different hydrologic states, pre-impounded (1946), impounded (1976), and restored (1988) tidal marsh restoration is a convergent process. Although salt marsh species currently dominate the restored system, the magnitude of actual agreement between the pre-impounded vegetation and that of the restored marsh is only moderate. Further restoration of the salt marsh vegetation may be limited by continued tidal restriction, marsh surface subsidence, and reduced accretion rates. General trends of recovery are identified using a gradient approach and the geographic pattern’ of vegetation change. In the strictest sense, if restoration refers only to vegetation types that geographically replicate preexisting types, then only 28% of the marsh has been restored. Restoration in a broader sense, however, representing the original salt marsh vegetation regardless of spatial position, amounts to 63% restored. Unrestored marsh, dominated by Typha angustifolia and Phragmites australis, remains at 37%. By emphasizing trends during vegetation recovery, this evaluation technique aims to understand the restoration process, direct future research goals, and ultimately aid in future restoration projects.  相似文献   

9.
Tidal marshes are among the most threatened habitats on Earth because of their limited natural extent, a long history of human drainage and modification, and anticipated future sea‐level rise. Tidal marshes also provide services to humans and support species of high conservation interest. Consequently, millions of dollars have been spent on tidal marsh restoration throughout North America. Southern New England has a long history of tidal marsh restorations, often focused on removal of the invasive plant Phragmites australis. Working in 18 Connecticut marshes, we examined the bird community in 21 plots in restoration sites and 19 plots in reference sites. Restoration plots were divided into those in marshes where management involved restoring tidal flow and those where direct Phragmites control (e.g. cutting, herbicide) was used. Saltmarsh sparrows Ammodramus caudacutus, which are considered globally vulnerable to extinction, were less common where tidal flow had been restored than at reference sites and nested in only one of 14 tidal‐flow restoration plots. No abundance differences were found for large wading birds, willets Tringa semipalmata, or seaside sparrows Ammodramus maritimus. Vegetation at sites where tidal flow had been restored showed characteristics typical of lower‐elevation marsh, which is unsuitable for nesting saltmarsh sparrows. We conclude that, although tidal‐flow restorations in Connecticut control Phragmites and restore native saltmarsh vegetation, they produce conditions that are largely unsuitable for one of the highest conservation priority species found in eastern U.S. salt marshes.  相似文献   

10.
Intertidal restoration through realignment of flood defenses has become an important component of the U.K. coastal and estuarine management strategy. Although experimentation with recent deliberate breaches is in progress, the long‐term prognosis for salt marsh restoration can be investigated at a number of sites around Essex, southeast England where salt marshes have been reactivated (unmanaged restoration) by storm events over past centuries. These historically reactivated marshes possess higher creek densities than their natural marsh counterparts. Both geomorphology and sedimentology determine the hydrology of natural and restored salt marshes. Elevation relative to the tidal frame is known to be the primary determinant of vegetation colonization and succession. Yet vegetation surveys and geotechnical analysis at a natural marsh, where areas with good drainage exist in close proximity to areas of locally hindered drainage at the same elevation, revealed a significant inverse relationship between water saturation in the root zone and the abundance of Atriplex portulacoides, normally the physiognomic dominant on upper salt marsh in the region. Elsewhere in Essex natural and restored marshes are typified by very high sediment water contents, and this is reflected in low abundance of A. portulacoides. After a century of reestablishment no significant difference could be discerned between the vegetation composition of the storm‐reactivated marshes and their natural marsh counterparts. We conclude that vegetation composition may be restored within a century of dike breaching, but this vegetation does not provide a reliable indicator of ecological functions related to creek structure.  相似文献   

11.
Salt marshes exhibit striking vegetation zonation corresponding to spatially variable elevation gradients which dictate their frequency of inundation by the tides. The salt marshes in the upper Bay of Fundy, a dynamic hypertidal system, are of considerable interest due to increasing recognition of salt marsh ecosystem values and the extent of prior conversion of salt marshes to agricultural lands, much of which are no longer in use. To determine the suitability of two potential restoration sites at Beausejour Marsh in New Brunswick, Canada, geomatics technologies and techniques were used to assess vegetation and elevation patterns in an adjacent reference salt marsh and the proposed restoration sites. Light detection and ranging digital elevation models (DEMs) were created for the reference marsh and the restoration sites in both the spring (leaf-off) and late summer (leaf-on, maximum biomass) periods. Aerial photographs and Quickbird multispectral imagery were used to visually interpret vegetation zones on the reference marsh and were field validated using vegetation characteristics from quadrats referenced with differential GPS. Elevation limits of the salt marsh vegetation zones were extracted from the DEM of the reference marsh and applied to the DEM of the restoration sites to determine the percentage area of each site that would be immediately suitable for new salt marsh growth. Of the two restoration sites assessed, one had experienced significant subsidence since dyking; only about 40 % of the site area was determined to be of sufficient elevation for immediate vegetation colonization. The second site, while more than 88 % suitable, would require the installation of a large dyke on the landward side of the restoration site to prevent flooding of adjacent lands. This study provides essential high resolution elevation and vegetation zonation data for use in restoration site assessments, and highlights the usefulness of applied geomatics in the salt marsh restoration planning process.  相似文献   

12.
The purpose of this paper was to examine the vegetative, sedimentary, nekton and hydrologic conditions pre‐restoration and the initial 2 years post‐restoration at a partially restricted macro‐tidal salt marsh site. Replacement of the culvert increased tidal flow by 88%. This was instrumental in altering the geomorphology of the site, facilitating the creation of new salt marsh pannes, expansion of existing pannes in the mid and high marsh zones, and expansion of the tidal creek network by incorporating relict agricultural ditches. In addition, the increase in area flooded resulted in a significant increase in nekton use, fulfilling the mandate of a federal habitat compensation program to increase and improve the overall availability and accessibility of fish habitat. The restoration of a more natural hydrological regime also resulted in the die‐off of freshwater and terrestrial vegetation along the upland edge of the marsh. Two years post‐restoration, Salicornia europea (glasswort) and Atriplex glabriuscula (marsh orache), were observed growing in these die‐back areas. Similar changes in the vegetation community structure were not observed at the reference site; however, the latter did contain higher species richness. This study represents the first comprehensive, quantitative analysis of ecological response to culvert replacement in a hypertidal ecosystem. These data will contribute to the development of long‐term data sets of pre‐ and post‐restoration, and reference marsh conditions to determine if a marsh is proceeding as expected, and to help with models that are aimed at predicting the response of marshes to tidal restoration at the upper end of the tidal spectrum.  相似文献   

13.
Salt marshes restored through managed coastal realignment (MR) often develop slowly and show persistent differences in vegetation from natural marshes. Development might be constrained by the availability of propagules or poor suitability of the abiotic environment for their establishment. To distinguish between these factors, we compared vegetation colonization and environmental conditions at a salt marsh created by MR at Brancaster, Norfolk, UK, with five reference marshes, varying in age from 30 to circa 6,000 years. After 5 years, plant communities of the MR site remained different from those in mature reference marshes. In contrast, the communities of the youngest reference marsh were not significantly different from mature reference marshes. At the MR site, abundance of perennial and later‐successional species was low and large areas remained unvegetated. These differences are unlikely to be due to dispersal limitation, because 76% of the species from the local species pool colonized the site within 5 years. Although the annuals Salicornia europaea and Suaeda maritima were abundant by year 2, they were not ubiquitous until the end of the study. Tidal elevations of the MR site were suitable for vegetation development, but soil redox potentials were lower than that at the reference sites. Reducing conditions in the MR site appear to be the major cause of vegetation differences from the reference marshes, as they are associated with an abundance of bare ground and a small range of vegetation clusters. Measures to avoid low sediment redox potentials may have a great benefit in some salt marsh restoration projects.  相似文献   

14.
Salt marsh management often embraces diverse goals, ranging from the restoration of degraded marshes through re-introduction of tidal flow to the control of salt marsh mosquito production by altering marsh surface topography through Open Water Marsh Management (OMWM). However, rarely have these goals been incorporated in one project. Here we present the concept of Integrated Marsh Management (IMM), which combines the best management practices of salt marsh restoration and OMWM. Although IMM offers a comprehensive approach to ecological restoration and mosquito control, research evaluating this concept??s practical implementations has been inadequate. A long-term IMM project at Wertheim National Wildlife Refuge located in a highly urbanized watershed on Long Island, New York, USA was designed to fill this knowledge gap. A combination of restoration and OMWM techniques was employed at two treatment marshes, the results monitored before and after alterations, and compared to two adjacent control marshes. The treatment marshes experienced decreased mosquito production, reduced cover of the invasive common reed (Phragmites australis), expansion of native marsh vegetation, increased killifish and estuarine nekton species abundance, as well as increased avian species diversity and waterbird abundance. This demonstration project validated the IMM conceptual approach and may serve as a case study for similar IMM projects in the future.  相似文献   

15.
The effective restoration of wetland habitats requires understanding the establishment requirements, growth responses, and expansion dynamics of targeted plant species. This is particularly true when restoring areas that have been previously managed for other activities, such as agriculture, which can have legacy effects on the local environment. We investigated environmental factors (specifically hydrology and soil physicochemical conditions) that may influence the establishment, growth and expansion of Schoenoplectus californicus in a tidal freshwater marsh restoration site in the Sacramento–San Joaquin Delta, California, USA. This study site was previously leveed, drained, and utilized for agricultural production. A 1997 levee breach restored tidal connectivity and wetland vegetation has re-established in portions of the area. Our approach coupled an intensively-sampled transect study in S. californicus-dominated marshes with a spatially-extensive survey of S. californicus lateral expansion rates and elevation. Lateral expansion of S. californicus marsh edge was significantly less in lower elevation areas (0.61 ± 0.04 m NAVD88), whereas the marsh edge at higher elevations (0.84 ± 0.03 m NAVD88) exhibited greater expansion, often at rates greater than 1.0 m year?1. These elevation means correspond to percentages of time that the marsh surface was flooded of 100 and 94 %, respectively. Although marsh edge expansion was influenced by elevation and the resultant hydrology, other factors, such as physical exposure of marsh shorelines and compacted agricultural soils also appear to be important. However, once established, S. californicus appears to be able to ameliorate high soil bulk densities over time as the advancing marsh platform develops.  相似文献   

16.
Fire has long been recognised as a natural force in structuring Northern Hemisphere salt marshes, yet little is known about the impact of fire on molluscs and native vegetation dynamics of Southern Hemisphere coastal salt marshes. Following a fire at Ash Island, Hunter River New South Wales, Australia in the summer 2012, we assessed patterns of recovery through time of gastropod populations and resident salt marsh vegetation including biomass for three keystone native plant species, Native Rush (Juncus kraussii Hochst.), a chenopod (Sarcocornia quinqueflora Bunge ex Ungen‐Sternberg A.J. Scott), Salt Couch (Sporobolus virginicus, L. Kunth) and the invasive Spiny Rush (Juncus acutus). In temperate east‐coast Australian salt marshes, Spiny Rush is displacing native salt marsh vegetation. After twelve months, the biomass of Native Rush recovered to similar pre‐burn levels. While fire affected the abundance, richness and composition of the gastropod assemblage differences were also largely driven by spatial variability. Gastropod assemblages associated with two of the higher elevation native species (Native Rush and Salt Couch) were impacted the most by fire. Greater abundance (between 1 and 5 orders of magnitude difference in abundance) and richness of gastropods were found in unburnt compared with burnt Native Rush and Salt Couch vegetation, while more gastropods were found in Spiny Rush in one site. Species prevalent in burnt vegetation included larger species of gastropods Ophicardelus ornatus (Ferussac, 1821) and Phallomedusa solida (Martens, 1878) with an unexpected spike in number of the smaller gastropod Tatea huonensis (Tenison‐Woods, 1876) in the spiny rush at one site only. In salt marsh habitats, many gastropods have planktonic larval dispersal stages which are dependent on the tidal height for transport and the structural complexity provided by vegetation at settlement. Since fire appears to negatively affect salt marsh gastropod populations within structurally complex Native Rush and Salt Couch, due consideration of the importance of these refuges for gastropods is recommended when fire or other disturbances occur in ecologically endangered salt marsh in the Southern Hemisphere. Managers need to consider spatial heterogeneity of molluscs and their recovery in the event of fire in Southern Hemisphere salt marshes.  相似文献   

17.
Jana Gesina Engels  Kai Jensen 《Oikos》2010,119(4):679-685
Understanding the mechanisms that shape plant distribution patterns is a major goal in ecology. We investigated the role of biotic interactions (competition and facilitation) and abiotic factors in creating horizontal plant zonation along salinity gradients in the Elbe estuary. We conducted reciprocal transplant experiments with four dominant species from salt and tidal freshwater marshes at two tidal elevations. Ten individuals of each species were transplanted as sods to the opposing marsh type and within their native marsh (two sites each). Transplants were placed at the centre of 9‐m2 plots along a line parallel to the river bank. In order to disentangle abiotic and biotic influences, we set up plots with and without neighbouring vegetation, resulting in five replicates per site. Freshwater species (Bolboschoenus maritimus and Phragmites australis) transplanted to salt marshes performed poorly regardless of whether neighbouring vegetation was present or not, although 50–70% of the transplants did survive. Growth of Phragmites transplants was impaired also by competition in freshwater marshes. Salt marsh species (Spartina anglica and Puccinellia maritima) had extremely low biomass when transplanted to freshwater marshes and 80–100% died in the presence of neighbours. Without neighbours, biomass of salt marsh species in freshwater marshes was similar to or higher than that in salt marshes. Our results indicate that salt marsh species are precluded from freshwater marshes by competition, whereas freshwater species are excluded from salt marshes by physical stress. Thus, our study provides the first experimental evidence from a European estuary for the general theory that species boundaries along environmental gradients are determined by physical factors towards the harsh end and by competitive ability towards the benign end of the gradient. We generally found no significant impact of competition in salt marshes, indicating a shift in the importance of competition along the estuarine gradient.  相似文献   

18.
The cycling and sequestration of carbon are important ecosystem functions of estuarine wetlands that may be affected by climate change. We conducted experiments across a latitudinal and climate gradient of tidal marshes in the northeast Pacific to evaluate the effects of climate- and vegetation-related factors on litter decomposition. We manipulated tidal exposure and litter type in experimental mesocosms at two sites and used variation across marsh landscapes at seven sites to test for relationships between decomposition and marsh elevation, soil temperature, vegetation composition, litter quality, and sediment organic content. A greater than tenfold increase in manipulated tidal inundation resulted in small increases in decomposition of roots and rhizomes of two species, but no significant change in decay rates of shoots of three other species. In contrast, across the latitudinal gradient, decomposition rates of Salicornia pacifica litter were greater in high marsh than in low marsh. Rates were not correlated with sediment temperature or organic content, but were associated with plant assemblage structure including above-ground cover, species composition, and species richness. Decomposition rates also varied by litter type; at two sites in the Pacific Northwest, the grasses Deschampsia cespitosa and Distichlis spicata decomposed more slowly than the forb S. pacifica. Our data suggest that elevation gradients and vegetation structure in tidal marshes both affect rates of litter decay, potentially leading to complex spatial patterns in sediment carbon dynamics. Climate change may thus have direct effects on rates of decomposition through increased inundation from sea-level rise and indirect effects through changing plant community composition.  相似文献   

19.
Tidal flow to salt marshes throughout the northeastern United States is often restricted by roads, dikes, impoundments, and inadequately sized culverts or bridge openings, resulting in altered ecological structure and function. In this study we evaluated the response of vegetation and nekton (fishes and decapod crustaceans) to restoration of full tidal flow to a portion of the Sachuest Point salt marsh, Middletown, Rhode Island. A before, after, control, impact study design was used, including evaluations of the tide‐restricted marsh, the same marsh after reintroduction of tidal flow (i.e., tide‐restored marsh), and an unrestricted control marsh. Before tidal restoration vegetation of the 3.7‐ha tide‐restricted marsh was dominated by Phragmites australis and was significantly different from the adjacent 6.3‐ha Spartina‐dominated unrestricted control marsh (analysis of similarities randomization test, p < 0.001). After one growing season vegetation of the tide‐restored marsh had changed from its pre‐restoration condition (analysis of similarities randomization test, p < 0.005). Although not similar to the unrestricted control marsh, Spartina patens and S. alterniflora abundance increased and abundance and height of Phragmites significantly declined, suggesting a convergence toward typical New England salt marsh vegetation. Before restoration shallow water habitat (creeks and pools) of the unrestricted control marsh supported a greater density of nekton compared with the tide‐restricted marsh (analysis of variance, p < 0.001), but after one season of restored tidal flow nekton density was equivalent. A similar trend was documented for nekton species richness. Nekton density and species richness from marsh surface samples were similar between the tide‐restored marsh and unrestricted control marsh. Fundulus heteroclitus and Palaemonetes pugio were the numerically dominant fish and decapod species in all sampled habitats. This study provides an example of a quantitative approach for assessing the response of vegetation and nekton to tidal restoration.  相似文献   

20.
Californian Salt-Marsh Vegetation: An Improved Model of Spatial Pattern   总被引:6,自引:0,他引:6  
Although tidal wetland vegetation patterns are typically related to elevation, we hypothesized that the vertical range of a species may shift where the topography is more heterogeneous. We examined plant species occurrences in relation to elevation, proximity to the bay, and proximity to tidal creeks at a near-pristine wetland in San Quintín Bay, Baja California, Mexico. At the whole-wetland scale, most species occurred primarily within a 30-cm elevation band (the marsh plain). However, Spartina foliosa occurred only at the bayward margin, even though “suitable” elevations were present further inland. A similar pattern was found in San Diego Bay. At the microtopographic scale, three species on the marsh plain were strongly influenced by elevation, whereas four species responded to both elevation and proximity to tidal creeks. The latter species tended to “avoid” the lower 10 cm of the marsh plain except near a tidal creek. Species richness was thus greater (by 0.6 species at the lowest 10-cm class) at the tidal creek margin. Better drainage near creeks is the hypothesized cause. Our results help explain why species that are transplanted to constructed wetlands do not always grow at the full range of elevations they occupy in natural wetlands. We recommend that species be introduced to their modal elevation (determined from nearby reference marshes) and that salt-marsh construction designs include topographic heterogeneity (complex tidal creek networks). The analysis of broad-scale and fine-scale patterns of occurrence also suggests new habitat nomenclature. Elevation-based terms (“low,”“middle,” and “high” marsh) should be replaced by a system that considers elevation, landscape position, and conspicuous species. We suggest three habitat designations: (a) the high marsh—a 30- to 70-cm elevation range with Salicornia subterminalis; (b) the marsh plain—a 30-cm elevation range with heterogeneous topography and up to nine common species; and (c) cordgrass habitat—the bayward portion of the marsh plain and lower elevations, all occupied by Spartina foliosa. Although these habitats do not have discrete boundaries, separate terms are needed for wetland restoration plans and these designations will improve recognition that vegetation patterns respond to horizontal, as well as vertical, position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号