首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present, for the red fluorescent protein mCherry acting as both fluorescence resonant energy transfer (FRET) donor and acceptor, Förster critical distance (r0) values with five important visible fluorescent protein (VFP) variants as well as with itself. The pair EYFP-mCherry exhibits an r0 of 5.66 nm, equaling or exceeding any combination of VFPs reported previously. Moreover, mCherry should be an excellent chromophore for homo-FRET with an r0 of 5.10 nm for energy transfer between two mCherry moieties. Finally, mCherry exhibits higher r0 values than does DsRed. These characteristics, combined with mCherry’s rapid folding and excellent spectral properties, suggest that mCherry constitutes a valuable long-wavelength hetero-FRET acceptor and probe for homo-FRET experiments.  相似文献   

2.
Förster resonance energy transfer (FRET)-based biosensors for the quantitative analysis of intracellular signaling, including sensors for monitoring cyclic adenosine monophosphate (cAMP), are of increasing interest. The measurement of the donor/acceptor emission ratio in tandem biosensors excited at the donor excitation wavelength is a commonly used technique. A general problem, however, is that this ratio varies not only with the changes in cAMP concentration but also with the changes of the ionic environment or other factors affecting the folding probability of the fluorophores. Here, we use a spectral FRET analysis on the basis of two excitation wavelengths to obtain a reliable measure of the absolute cAMP concentrations with high temporal and spatial resolution by using an “exchange protein directly activated by cAMP”. In this approach, FRET analysis is simplified and does not require additional calibration routines. The change in FRET efficiency (E) of the biosensor caused by [cAMP] changes was determined as ΔE = 15%, whereas E varies between 35% at low and 20% at high [cAMP], allowing quantitative measurement of cAMP concentration in the range from 150 nM to 15 μM. The method described is also suitable for other FRET-based biosensors with a 1:1 donor/acceptor stoichiometry. As a proof of principle, we measured the specially resolved cAMP concentration within living cells and determined the dynamic changes of cAMP levels after stimulation of the Gs-coupled serotonin receptor subtype 7 (5-HT7).  相似文献   

3.
Ensemble Förster resonance energy transfer (FRET) results can be analyzed in a variety of ways. Due to experimental artifacts, the results obtained from different analysis approaches are not always the same. To determine the optimal analysis approach to use for Nanodrop fluorometry, we have performed both ensemble and single-molecule FRET studies on oligomers of double-stranded DNA. We compared the single-molecule FRET results with those obtained using various ensemble FRET analysis approaches. This comparison shows that for Nanodrop fluorometry, analyzing the increase of the acceptor fluorescence is less likely to introduce errors in estimates of FRET efficiencies compared with analyzing the fluorescence intensity of the donor in the absence and presence of the acceptor.  相似文献   

4.
Mitochondria have roles in many cellular processes, from energy metabolism and calcium homeostasis to control of cellular lifespan and programmed cell death. These processes affect and are affected by the redox status of and ATP production by mitochondria. Here, we describe the use of two ratiometric, genetically encoded biosensors that can detect mitochondrial redox state and ATP levels at subcellular resolution in living yeast cells. Mitochondrial redox state is measured using redox-sensitive Green Fluorescent Protein (roGFP) that is targeted to the mitochondrial matrix. Mito-roGFP contains cysteines at positions 147 and 204 of GFP, which undergo reversible and environment-dependent oxidation and reduction, which in turn alter the excitation spectrum of the protein. MitGO-ATeam is a Förster resonance energy transfer (FRET) probe in which the ε subunit of the FoF1-ATP synthase is sandwiched between FRET donor and acceptor fluorescent proteins. Binding of ATP to the ε subunit results in conformation changes in the protein that bring the FRET donor and acceptor in close proximity and allow for fluorescence resonance energy transfer from the donor to acceptor.  相似文献   

5.
We report what to our knowledge is a novel approach for simultaneous imaging of two different Förster resonance energy transfer (FRET) sensors in the same cell with minimal spectral cross talk. Previous methods based on spectral ratiometric imaging of the two FRET sensors have been limited by the availability of suitably bright acceptors for the second FRET pair and the spectral cross talk incurred when measuring in four spectral windows. In contrast to spectral ratiometric imaging, fluorescence lifetime imaging (FLIM) requires measurement of the donor fluorescence only and is independent of emission from the acceptor. By combining FLIM-FRET of the novel red-shifted TagRFP/mPlum FRET pair with spectral ratiometric imaging of an ECFP/Venus pair we were thus able to maximize the spectral separation between our chosen fluorophores while at the same time overcoming the low quantum yield of the far red acceptor mPlum. Using this technique, we could read out a TagRFP/mPlum intermolecular FRET sensor for reporting on small Ras GTP-ase activation in live cells after epidermal growth factor stimulation and an ECFP/Venus Cameleon FRET sensor for monitoring calcium transients within the same cells. The combination of spectral ratiometric imaging of ECFP/Venus and high-speed FLIM-FRET of TagRFP/mPlum can thus increase the spectral bandwidth available and provide robust imaging of multiple FRET sensors within the same cell. Furthermore, since FLIM does not require equal stoichiometries of donor and acceptor, this approach can be used to report on both unimolecular FRET biosensors and protein-protein interactions with the same cell.  相似文献   

6.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   

7.
In vitro studies of the carotenoid peridinin, which is the primary pigment from the peridinin chlorophyll-a protein (PCP) light harvesting complex, showed a strong dependence on the lifetime of the peridinin lowest singlet excited state on solvent polarity. This dependence was attributed to the presence of an intramolecular charge transfer (ICT) state in the peridinin excited state manifold. The ICT state was also suggested to be a crucial factor in efficient peridinin to Chl-a energy transfer in the PCP complex. Here we extend our studies of peridinin dynamics to reconstituted PCP complexes, in which Chl-a was replaced by different chlorophyll species (Chl-b, acetyl Chl-a, Chl-d and BChl-a). Reconstitution of PCP with different Chl species maintains the energy transfer pathways within the complex, but the efficiency depends on the chlorophyll species. In the native PCP complex, the peridinin S1/ICT state has a lifetime of 2.7 ps, whereas in reconstituted PCP complexes it is 5.9 ps (Chl-b) 2.9 ps (Chl-a), 2.2 ps (acetyl Chl-a), 1.9 ps (Chl-d), and 0.45 ps (BChl-a). Calculation of energy transfer rates using the Förster equation explains the differences in energy transfer efficiency in terms of changing spectral overlap between the peridinin emission and the absorption spectrum of the acceptor. It is proposed that the lowest excited state of peridinin is a strongly coupled S1/ICT state, which is the energy donor for the major energy transfer channel. The significant ICT character of the S1/ICT state in PCP enhances the transition dipole moment of the S1/ICT state, facilitating energy transfer to chlorophyll via the Förster mechanism. In addition to energy transfer via the S1/ICT, there is also energy transfer via the S2 and hot S1/ICT states to chlorophyll in all reconstituted PCP complexes.  相似文献   

8.
Förster resonance energy transfer (FRET) efficiency distributions in single-molecule experiments contain both structural and dynamical information. Extraction of this information from these distributions requires a careful analysis of contributions from dye photophysics. To investigate how mechanisms other than FRET affect the distributions obtained by counting donor and acceptor photons, we have measured single-molecule fluorescence trajectories of a small α/β protein, i.e., protein GB1, undergoing two-state, folding/unfolding transitions. Alexa 488 donor and Alexa 594 acceptor dyes were attached to cysteines at positions 10 and 57 to yield two isomers—donor10/acceptor57 and donor57/acceptor10—which could not be separated in the purification. The protein was immobilized via binding of a histidine tag added to a linker sequence at the N-terminus to cupric ions embedded in a polyethylene-glycol-coated glass surface. The distribution of FRET efficiencies assembled from the trajectories is complex with widths for the individual peaks in large excess of that caused by shot noise. Most of this complexity can be explained by two interfering photophysical effects—a photoinduced red shift of the donor dye and differences in the quantum yield of the acceptor dye for the two isomers resulting from differences in quenching rate by the cupric ion. Measurements of steady-state polarization, calculation of the donor-acceptor cross-correlation function from photon trajectories, and comparison of the single molecule and ensemble kinetics all indicate that conformational distributions and dynamics do not contribute to the complexity.  相似文献   

9.
Single-molecule Förster resonance energy transfer (FRET) experiments are often used to study the properties of unfolded and intrinsically disordered proteins. Because of their large extinction coefficients and quantum yields, synthetic heteroaromatic chromophores covalently linked to the protein are often used as donor and acceptor fluorophores. A key issue in the interpretation of such experiments is the extent to which the properties of the unfolded chain may be affected by the presence of these chromophores. In this article, we investigate this question using all-atom explicit solvent replica exchange molecular dynamics simulations of three different unfolded or intrinsically disordered proteins. We find that the secondary structure and long-range contacts are largely the same in the presence or absence of the fluorophores, and that the dimensions of the chain with and without chromophores are similar. This suggests that, at least in the cases studied, extrinsic fluorophores have little effect on the structural properties of unfolded or disordered proteins. We also find that the critical FRET orientational factor κ2, has an average value and equilibrium distribution very close to that expected for isotropic orientations, which supports one of the assumptions frequently made when interpreting FRET efficiency in terms of distances.  相似文献   

10.
Molecular sensors based on intramolecular Förster resonance energy transfer (FRET) have become versatile tools to monitor regulatory molecules in living tissue. However, their use is often compromised by low signal strength and excessive noise. We analyzed signal/noise (SNR) aspects of spectral FRET analysis methods, with the following conclusions: The most commonly used method (measurement of the emission ratio after a single short wavelength excitation) is optimal in terms of signal/noise, if only relative changes of this uncalibrated ratio are of interest. In the case that quantitative data on FRET efficiencies are required, these can be calculated from the emission ratio and some calibration parameters, but at reduced SNR. Lux-FRET, a recently described method for spectral analysis of FRET data, allows one to do so in three different ways, each based on a ratio of two out of three measured fluorescence signals (the donor and acceptor signal during a short-wavelength excitation and the acceptor signal during long wavelength excitation). Lux-FRET also allows for calculation of the total abundance of donor and acceptor fluorophores. The SNR for all these quantities is lower than that of the plain emission ratio due to unfavorable error propagation. However, if ligand concentration is calculated either from lux-FRET values or else, after its calibration, from the emission ratio, SNR for both analysis modes is very similar. Likewise, SNR values are similar, if the noise of these quantities is related to the expected dynamic range. We demonstrate these relationships based on data from an Epac-based cAMP sensor and discuss how the SNR changes with the FRET efficiency and the number of photons collected.  相似文献   

11.
Förster resonance energy transfer (FRET) between the fluorescent ATP analogue 2′/3′-(N-methyl-anthraniloyl)-adenosine-5′-triphosphate (MANT–ATP) and enzymes is widely used to determine affinities for ATP–protein binding. However, in analysis of FRET fluorescence data, several important parameters are often ignored, resulting in poor accuracy of the calculated dissociation constant (Kd). In this study, we systematically analyze factors that interfere with Kd determination and describe methods for correction of primary and secondary inner filter effects that extend the use of the FRET method to higher MANT nucleotide concentrations. The interactions of the fluorescent nucleotide analogues MANT–ATP, MANT–ADP [2′/3′-O-(N-methylanthraniloyl) adenosine diphosphate], and MANT–AMP [2′/3′-O-(N-methylanthraniloyl) adenosine monophosphate] with the JAK2 tyrosine kinase domain are characterized. Taking all interfering factors into consideration, we found that JAK2 binds MANT–ATP tightly with a Kd of 15 to 25 nM and excluded the presence of a second binding site. The affinity for MANT–ADP is also tight with a Kd of 50 to 80 nM, whereas MANT–AMP does not bind. Titrations of JAK2 JH1 with nonhydrolyzable ATP analogue MANT–ATP-γ-S [2′/3′-O-(N-methylanthraniloyl) adenosine-5′-(thio)- triphosphate] yielded a Kd of 30 to 50 nM. The methods demonstrated here are applicable to other enzyme–fluorophore combinations and are expected to help improve the analysis of steady-state FRET data in MANT nucleotide binding studies and to obtain more accurate results for the affinities of nucleotide binding proteins.  相似文献   

12.

Background

Förster resonance energy transfer (FRET) is a mechanism where energy is transferred from an excited donor fluorophore to adjacent chromophores via non-radiative dipole-dipole interactions. FRET theory primarily considers the interactions of a single donor-acceptor pair. Unfortunately, it is rarely known if only a single acceptor is present in a molecular complex. Thus, the use of FRET as a tool for measuring protein-protein interactions inside living cells requires an understanding of how FRET changes with multiple acceptors. When multiple FRET acceptors are present it is assumed that a quantum of energy is either released from the donor, or transferred in toto to only one of the acceptors present. The rate of energy transfer between the donor and a specific acceptor (kD→A) can be measured in the absence of other acceptors, and these individual FRET transfer rates can be used to predict the ensemble FRET efficiency using a simple kinetic model where the sum of all FRET transfer rates is divided by the sum of all radiative and non-radiative transfer rates.

Methodology/Principal Findings

The generality of this approach was tested by measuring the ensemble FRET efficiency in two constructs, each containing a single fluorescent-protein donor (Cerulean) and either two or three FRET acceptors (Venus). FRET transfer rates between individual donor-acceptor pairs within these constructs were calculated from FRET efficiencies measured after systematically introducing point mutations to eliminate all other acceptors. We find that the amount of energy transfer observed in constructs having multiple acceptors is significantly greater than the FRET efficiency predicted from the sum of the individual donor to acceptor transfer rates.

Conclusions/Significance

We conclude that either an additional energy transfer pathway exists when multiple acceptors are present, or that a theoretical assumption on which the kinetic model prediction is based is incorrect.  相似文献   

13.
Fluorescence resonance energy transfer (FRET), measured by fluorescence intensity-based microscopy and fluorescence lifetime imaging, has been used to estimate the size of oligomers formed by the M2 muscarinic cholinergic receptor. The approach is based on the relationship between the apparent FRET efficiency within an oligomer of specified size (n) and the pairwise FRET efficiency between a single donor and a single acceptor (E). The M2 receptor was fused at the N terminus to enhanced green or yellow fluorescent protein and expressed in Chinese hamster ovary cells. Emission spectra were analyzed by spectral deconvolution, and apparent efficiencies were estimated by donor-dequenching and acceptor-sensitized emission at different ratios of enhanced yellow fluorescent protein-M2 receptor to enhanced green fluorescent protein-M2 receptor. The data were interpreted in terms of a model that considers all combinations of donor and acceptor within a specified oligomer to obtain fitted values of E as follows: n = 2, 0.495 ± 0.019; n = 4, 0.202 ± 0.010; n = 6, 0.128 ± 0.006; n = 8, 0.093 ± 0.005. The pairwise FRET efficiency determined independently by fluorescence lifetime imaging was 0.20–0.24, identifying the M2 receptor as a tetramer. The strategy described here yields an explicit estimate of oligomeric size on the basis of fluorescence properties alone. Its broader application could resolve the general question of whether G protein-coupled receptors exist as dimers or larger oligomers. The size of an oligomer has functional implications, and such information can be expected to contribute to an understanding of the signaling process.  相似文献   

14.

Background

While the static structure of the intracellular Ca2+ release channel, the ryanodine receptor type 1 (RyR1) has been determined using cryo electron microscopy, relatively little is known concerning changes in RyR1 structure that accompany channel gating. Förster resonance energy transfer (FRET) methods can resolve small changes in protein structure although FRET measurements of RyR1 are hampered by an inability to site-specifically label the protein with fluorescent probes.

Methodology/Principal Findings

A novel site-specific labeling method is presented that targets a FRET acceptor, Cy3NTA to 10-residue histidine (His) tags engineered into RyR1. Cy3NTA, comprised of the fluorescent dye Cy3, coupled to two Ni2+/nitrilotriacetic acid moieties, was synthesized and functionally tested for binding to His-tagged green fluorescent protein (GFP). GFP fluorescence emission and Cy3NTA absorbance spectra overlapped significantly, indicating that FRET could occur (Förster distance = 6.3 nm). Cy3NTA bound to His10-tagged GFP, quenching its fluorescence by 88%. GFP was then fused to the N-terminus of RyR1 and His10 tags were placed either at the N-terminus of the fused GFP or between GFP and RyR1. Cy3NTA reduced fluorescence of these fusion proteins by 75% and this quenching could be reversed by photobleaching Cy3, thus confirming GFP-RyR1 quenching via FRET. A His10 tag was then placed at amino acid position 1861 and FRET was measured from GFP located at either the N-terminus or at position 618 to Cy3NTA bound to this His tag. While minimal FRET was detected between GFP at position 1 and Cy3NTA at position 1861, 53% energy transfer was detected from GFP at position 618 to Cy3NTA at position 1861, thus indicating that these sites are in close proximity to each other.

Conclusions/Significance

These findings illustrate the potential of this site-specific labeling system for use in future FRET-based experiments to elucidate novel aspects of RyR1 structure.  相似文献   

15.
Genetically encoded voltage indicators (GEVIs) have improved to the point where they are beginning to be useful for in vivo recordings. While the ultimate goal is to image neuronal activity in vivo, one must be able to image activity of a single cell to ensure successful in vivo preparations. This procedure will describe how to image membrane potential in a single cell to provide a foundation to eventually image in vivo. Here we describe methods for imaging GEVIs consisting of a voltage-sensing domain fused to either a single fluorescent protein (FP) or two fluorescent proteins capable of Förster resonance energy transfer (FRET) in vitro. Using an image splitter enables the projection of images created by two different wavelengths onto the same charge-coupled device (CCD) camera simultaneously. The image splitter positions a second filter cube in the light path. This second filter cube consists of a dichroic and two emission filters to separate the donor and acceptor fluorescent wavelengths depending on the FPs of the GEVI. This setup enables the simultaneous recording of both the acceptor and donor fluorescent partners while the membrane potential is manipulated via whole cell patch clamp configuration. When using a GEVI consisting of a single FP, the second filter cube can be removed allowing the mirrors in the image splitter to project a single image onto the CCD camera.  相似文献   

16.
Protein-protein interactions can be studied in vitro, e.g. with bacterial or yeast two-hybrid systems or surface plasmon resonance. In contrast to in vitro techniques, in vivo studies of protein-protein interactions allow examination of spatial and temporal behavior of such interactions in their native environment. One approach to study protein-protein interactions in vivo is via Förster Resonance Energy Transfer (FRET). Here, FRET efficiency of selected FRET-pairs was studied at the single cell level using sensitized emission and Frequency Domain-Fluorescence Lifetime Imaging Microscopy (FD-FLIM). For FRET-FLIM, a prototype Modulated Electron-Multiplied FLIM system was used, which is, to the best of our knowledge, the first account of Frequency Domain FLIM to analyze FRET in single bacterial cells. To perform FRET-FLIM, we first determined and benchmarked the best fluorescent protein-pair for FRET in Bacillus subtilis using a novel BglBrick-compatible integration vector. We show that GFP-tagRFP is an excellent donor-acceptor pair for B. subtilis in vivo FRET studies. As a proof of concept, selected donor and acceptor fluorescent proteins were fused using a linker that contained a tobacco etch virus (TEV)-protease recognition sequence. Induction of TEV-protease results in loss of FRET efficiency and increase in fluorescence lifetime. The loss of FRET efficiency after TEV induction can be followed in time in single cells via time-lapse microscopy. This work will facilitate future studies of in vivo dynamics of protein complexes in single B. subtilis cells.  相似文献   

17.
Förster resonance energy transfer (FRET) microscopy is widely used to study protein interactions in living cells. Typically, spectral variants of the Green Fluorescent Protein (FPs) are incorporated into proteins expressed in cells, and FRET between donor and acceptor FPs is assayed. As appreciable FRET occurs only when donors and acceptors are within 10 nm of each other, the presence of FRET can be indicative of aggregation that may denote association of interacting species. By monitoring the excited-state (fluorescence) decay of the donor in the presence and absence of acceptors, dual-component decay analysis has been used to reveal the fraction of donors that are FRET positive (i.e., in aggregates)._However, control experiments using constructs containing both a donor and an acceptor FP on the same protein repeatedly indicate that a large fraction of these donors are FRET negative, thus rendering the interpretation of dual-component analysis for aggregates between separately donor-containing and acceptor-containing proteins problematic. Using Monte-Carlo simulations and analytical expressions, two possible sources for such anomalous behavior are explored: 1) conformational heterogeneity of the proteins, such that variations in the distance separating donor and acceptor FPs and/or their relative orientations persist on time-scales long in comparison with the excited-state lifetime, and 2) FP dark states.  相似文献   

18.
Förster resonance energy transfer (FRET) technology has been widely used in biological and biomedical research, and it is a very powerful tool for elucidating protein interactions in either dynamic or steady state. SUMOylation (the process of SUMO [small ubiquitin-like modifier] conjugation to substrates) is an important posttranslational protein modification with critical roles in multiple biological processes. Conjugating SUMO to substrates requires an enzymatic cascade. Sentrin/SUMO-specific proteases (SENPs) act as an endopeptidase to process the pre-SUMO or as an isopeptidase to deconjugate SUMO from its substrate. To fully understand the roles of SENPs in the SUMOylation cycle, it is critical to understand their kinetics. Here, we report a novel development of a quantitative FRET-based protease assay for SENP1 kinetic parameter determination. The assay is based on the quantitative analysis of the FRET signal from the total fluorescent signal at acceptor emission wavelength, which consists of three components: donor (CyPet–SUMO1) emission, acceptor (YPet) emission, and FRET signal during the digestion process. Subsequently, we developed novel theoretical and experimental procedures to determine the kinetic parameters, kcat, KM, and catalytic efficiency (kcat/KM) of catalytic domain SENP1 toward pre-SUMO1. Importantly, the general principles of this quantitative FRET-based protease kinetic determination can be applied to other proteases.  相似文献   

19.
Here, we study the homodimerization of the transmembrane domain of Neu, as well as an oncogenic mutant (V664E), in vesicles derived from the plasma membrane of mammalian cells. For the characterization, we use a Förster resonance energy transfer (FRET)-based method termed Quantitative Imaging-FRET (QI-FRET), which yields the donor and acceptor concentrations in addition to the FRET efficiencies in individual plasma membrane-derived vesicles. Our results demonstrate that both the wild-type and the mutant are 100% dimeric, suggesting that the Neu TM helix dimerizes more efficiently than other RTK TM domains in mammalian membranes. Furthermore, the data suggest that the V664E mutation causes a very small, but statistically significant change in dimer structure. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.  相似文献   

20.
The orientation factor κ2, one of the key parameters defining Förster resonance energy transfer efficiency, is determined by the transition dipole moment orientations of the donor and acceptor species. Using the results of quantum chemical and quantum mechanical/molecular mechanical calculations for the chromophore-containing pockets in selected colored proteins of the green fluorescent protein family, we derived transition dipole moments corresponding to the S0,min → S1 excitation for green fluorescent protein, red fluorescent protein (TagRFP), and kindling fluorescent protein, and the S1,min → S0 emission for TagRFP. These data allowed us to estimate κ2 values for the TagRFP-linker-kindling fluorescent protein tetrameric complex required for constructing novel sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号