首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Summary The staining properties of unifilarly bromodeoxyuridine (BrdU)-substituted chromatids were compared using fluorescent-plus-Giemsa (FPG) staining methods. It was found that the staining intensity of chromatids which had incorporated BrdU in the next to last S-phase is less than that of chromatids whose BrdU-containing strand came from the last cell cycle. Thus, FPG-staining is not a function of the number of BrdU-substituted DNA strands alone. These findings lead to the conclusion that the primary point of action of PFG staining leading to sister chromatid differentiation (SCD) are chromosomal proteins which have been altered in the replication of BrdU-substituted DNA and that the demonstration of the SCD and replication patterns with the same staining procedure is based on different mechanisms.  相似文献   

2.
A new permanent staining procedure for sister chromatid differentiation (SCD) in cultured Chinese hamster ovary cells has been established by combining the three-way differentiation in third mitosis (M3) chromosomes and the immunoperoxidase reaction developed with 3,3'-diaminobenzidine using a monoclonal anti-bromodeoxyuridine (BrdU) antibody. This procedure allows SCD at very low BrdU concentrations, and the evaluation of the sister chromatid exchange frequencies on a per cell-cycle basis.  相似文献   

3.
Summary Isolabeling observed during sister chromatid differentiation (SCD) was studied from human skin fibroblasts by the fluorescence-plus-Giemsa (FPG) technique. Bromodeoxyuridine (BrdU) was fed to exponentially dividing cells for 52 h to enable completion of two consecutive cycles of DNA replication. During this period, the late-replicating regions of some chromosomes were able to go through three replication cycles. These chromosome regions had evidently incorporated BrdU bifiliarly in both chromatids and hence, on staining with FPG, appeared isostained (isolabeled). Thus, incubation of exponentially dividing cells with BrdU for a period longer than that required for two cell cycles appears to be a suitable method for revealing the late-replicating regions of the genome, such as the X chromosome in a human female, as isolated.In another experiment with Indian muntjac chromosomes, isolabeled segments were darkly stained, which suggested unifilar incorporation of BrdU. In this case, unequal crossing-over or an unequal distribution of thymine residues probably is responsible for the isolabel.  相似文献   

4.
Hydrazine in high concentrations very effectively induces endoreduplication in Chinese hamster V 79 cells. The addition of 5-bromodeoxyuridine (BrdU) for the duration of one cell cycle prior to the induction of endoreduplication produces diplochromosomes with sister chromatid differentiation (SCD) after differential chromatid staining. The fact that diplochromosomes with complete SCD are obtained shows that endoreduplication was induced in cells that were in G2-phase. The analysis of sister chromatid exchanges (SCEs) showed that hydrazine treatment rarely led to increased SCE frequencies in mitoses after endoreduplication, but that it caused a strong SCE induction in diploid second division metaphases in the same culture. Neither catalase nor cysteine had an effect on the induction of endoreduplication or the incidence of SCEs. Treatment of the cells with mitomycin C prior to addition of BrdU led to increased SCE frequencies. Compared with the normal mitoses from the same preparation, the mitoses after endoreduplication showed a significantly reduced induction of SCEs. In contrast to these findings, SCE induction was not reduced in the common tetraploid V 79 cells after colcemid-induced polyploidization.  相似文献   

5.
BrdU (5-bromodeoxyuridine)-33258 Hoechst methods have been adapted for in vivo analyses of replication kinetics, sister chromatid differentiation and sister chromatid exchange (SCE) formation in mice. Sufficient in vivo BrdU substitution for cytological detection was effected with multiple intraperitoneal injections of the analogue. The combination of centromere staining asymmetry and sister chromatid differentiation at metaphase permits unambiguous determination of the number of replications in BrdU and dT (deoxythymidine) undergone by individual cells. Late-replicating regions in marrow and spermatogonial chromosomes are highlighted by bright fluorescence after sequential incorporation of BrdU followed by dT during a single DNA synthesis period. SCEs are analyzed in marrow and spermatogonial metaphases after successive complete cycles of BrdU and dT incorporation. Significant induction of SCE was observed with both mitomycin C and cyclophosphamide; the latter drug requires host-mediated activation to be effective. In meiotic metaphase cells harvested two weeks after BrdU incorporation, satellite DNA asymmetry, sister chromatid differentiation and SCE could be detected in a few chromosomes, most frequently the X and the Y.  相似文献   

6.
To determine a concentration of 5-bromo-2-deoxyuridine (BrdU) sufficient for sister chromatid differentiation (SCD), and yet having a minimal effect on the number of sister chromatid exchanges (SCEs), we assessed the effect produced on the number of SCEs by low concentrations (1, 3, and 10 micrograms/mL) of BrdU. SCD was not obtained in 19% of the 31 subjects with 1 microgram/mL of BrdU, while the differentiation was adequate for all samples treated with 3 and 10 micrograms/mL. We statistically analysed the effects of these three different doses and found no significant difference in the number of SCEs obtained with the doses of 1 and 3 micrograms/mL, but a significant difference was observed between these two concentrations and 10 micrograms/mL. We therefore suggest that the dose of 3 micrograms/mL, while sufficient to produce reliable differential staining, still permits an adequate evaluation of the base line of SCEs and appears to enhance the sensitivity of the test to evaluate between-individual variations. Our experiments also underline that SCE counts should include the centromere exchanges.  相似文献   

7.
Sister chromatids of metaphase chromosomes can be differentially stained if the cells have replicated their DNA semiconservatively for two cell cycles in a medium containing 5-bromodeoxyuridine (BrdU). When prematurely condensed chromosomes (PCC) are induced in cells during the second S phase after BrdU is added to the medium, the replicated chromosome segments show sister chromatid differential (SCD) staining. Employing this PCC-SCD system on synchronous and asynchronous Chinese hamster ovary (CHO) cells, we have demonstrated that the replication patterns of the CHO cells can be categorized into G1/S, early, early-mid, mid-late, and late S phase patterns according to the amount of replicated chromosomes. During the first 4 h of the S phase, the replication patterns show SCD staining in chains of small chromosome segments. The amount of replicated chromosomes increase during the mid-late and late S categories (last 4 h). Significantly, small SCD segments are also present during these late intervals of the S phase. Measurements of these replicated segments indicate the presence of characteristic chromosome fragment sizes between 0.2 to 1.2 m in all S phase cells except those at G1/S which contain no SCD fragments. These small segments are operationally defined as chromosome replicating units or chromosomal replicons. They are interpreted to be composed of clusters of molecular DNA replicons. The larger SCD segments in the late S cells may arise by the joining of adjacent chromosomal replicons. Further application of this PCC-SCD method to study the chromosome replication process of two other rodents, Peromyscus eremicus and Microtus agrestis, with peculiar chromosomal locations of heterochromatin has demonstrated an ordered sequence of chromosome replication. The euchromatin and heterochromatin of the two species undergo two separate sequences of decondensation, replication, and condensation during the early-mid and mid-late intervals respectively of the S phase. Similar-sized chromosomal replicons are present in both types of chromatin. These data suggest that mammalian chromosomes are replicated in groups of replicating units, or chromosomal replicons, along their lengths. The organization and structure of these chromosomal replicons with respect to those of the interphase nucleus and metaphase chromosomes are discussed.  相似文献   

8.
Summary Silver staining is reported to be reduced in chromatin substituted by BUDR. This quenching effect allows for the demonstration of replication patterns and differential chromatid staining. Though the differentiation, as compared to other staining techniques, is of inferior quality, it is of theoretical importance concerning the effect of BUDR incorporation into chromatin.  相似文献   

9.
Chinese hamster cells were grown for 1+ and 2+ cell cycles in the presence of BrdU and then treated by the sister chromatid differential staining technique (SCD). Those regions of a chromosome which had replicated twice in the presence of BrdU were pale staining and by selecting appropriate metaphase cells an accurate reconstruction of the DNA synthetic patterns was possible. A direct correlation between the staining intensity of the G bands and the order in which they replicate was found. Dark staining G bands were always the last region of a chromosome to replicate while G negative bands were first. It is concluded that each G band may be a cluster of replicons capable of initiating DNA synthesis simultaneously.  相似文献   

10.
Differential fluorescence of sister chromatids (SCD) and sister chromatid exchanges (SCE) were visualized in chromosomes obtained directly from growing chicken embryos. SCD was obtained by exposing 3-day embryos to BrdU (12.5-50 mug) in ovo for 26 hours and staining air dried chromosome preparations with 33258 Hoechst. Bright, stable fluorescence and continued SCD were achieved if slides were mounted in McIlvaine's pH 4.4 buffer. Embryo growth, mitotic activity and gross chromosome morphology were not adversely altered by the BrdU treatments. The SCE rate was estimated to be 0.07 SCEs per macrochromosome and 0.75 SCEs per metaphase for two cell cycles.  相似文献   

11.
Summary We have shown that a commercially available antibody allows the demonstration of bromodeoxyuridine (BrdU) incorporation into mammalian chromosomes by the typical immunologic staining techniques. the replication patterns obtained are comparable to those after BrdU-incorporation and FPG-staining, though with reversed staining specificity. The quality of the patterns equals that of commonly used differential staining but the sensitivity of BrdU-detection is superior. Thus the new technique may be very promising for all cytogenetic studies concerning any kind of chromosome replication.  相似文献   

12.
N. Kanda 《Chromosoma》1981,84(2):257-263
Selective differential staining of sister chromatids for the facultative heterochromatic X chromosome in the female mouse has been achieved by the combination of two differential staining techniques; one for the heterochromatic X chromosome and the other for sister chromatids. Thermal hypotonic treatment moderately destroyed the chromosome structure except for the heterochromatic X in BrdU labelled metaphase cells, resulting in the selective sister chromatid differentiation of this X with Giemsa stain. This technique enables us to know the exact frequency of the spontaneous sister chromatid exchanges in the heterochromatic X without using 3H-TdR labelling for detecting the late DNA replication. The results indicate that the sister chromatid exchange frequency of the heterochromatic X chromosome is not affected by its late DNA replication during S phase, or by the genetic inactivation and the resulting heterochromatinization.  相似文献   

13.
R Bamezai 《Mutation research》1989,226(2):137-140
The M3 endoreduplicated chromosomes account for SCE1-3 in a compact form after 3-way sister-chromatid differentiation (3-way SCD). However, a difficulty is faced in the analysis and interpretation of these results. Keeping this in view, the present work attempts to explain a number of possibilities correlating the SCD patterns to the probable patterns of uptake of bromodeoxyuridine (BrdU) over 3 successive cell cycles in M3 endoreduplicated chromosomes. This has been done to facilitate understanding of the staining patterns which could be obtained in the M3 endoreduplicated chromosomes after 3-way SCD, and further for the speedy analysis of such chromosomes, especially in scoring SCE1-3 precisely.  相似文献   

14.
Summary Protocols are compared demonstrating sister chromatid differentiation (SCD) in human amniotic fluid (AF) cells with and without partial synchronization. Partial synchronization both with an excess of 5-bromodeoxyuridine (BrdU) and an excess of thymidine leads to an increase of metaphases with SCD. Compared with unsynchronized cells, the rate of sister chromatid exchanges (SCE) is not increased. Studies on the late replicating X chromosome of female cells showed that the addition of mitomycin C (MMC) after releasing the thymidine block preferentially induces SCEs in late replicating regions. The partial synchronization with thymidine surplus provides a good basis for SCE experiments with AF cells and facilitates the prenatal diagnosis of diseases characterized by changes in the SCE rate.  相似文献   

15.
5-Bromodeoxyuridine (BrdU) tablets with different physical characteristics are useful in a wide variety of studies requiring detection of DNA replication in vivo. These tablets can effect a high substitution of BrdU in DNA, thereby permitting sister chromatid differentiation in chromosomes stained with 33258 Hoechst alone or in conjunction with Giemsa. Baseline and cyclophosphamide-induced in vivo sister chromatid exchange frequencies in mouse spleen, marrow, and thymus were measured and found to be significantly greater than those in spermatogonia. Sister chromatid exchange analysis was also extended to mouse liver and to Chinese hamster and Armenian hamster marrow cells. Sister chromatid differentiation was observed in Armenian hamster meiotic tissue, and evidence for interhomolog chromatid exchange obtained.  相似文献   

16.
Abstract. In vitro studies of BrdU-dependent sister chromatid differential staining typically employ two cycles of BrdU incorporation. Experiments are described which determined the actual fraction of both S-phases that the rat embryonic fibroblasts (Rat-1) cells had to traverse in order to show distinctive differential staining. Following synchronization of cells by a combination of serum deprivation and hydroxyurea blockage, sister chromatid differential staining, labelling index, mitotic index, and per cent DNA replication are determined. Results indicate that only ≤50% of the first S-phase is necessary in order to show distinctive differential staining. the importance of this finding to studies of cellular proliferation using BrdU incorporation is discussed.  相似文献   

17.
Chinese hamster cells were grown with 50 M 5-bromodeoxyuridine (BrdU) during the penultimate S phase to obtain chromosomes with the TB-TT chromatid constitution. Chromosome preparations made by the air-drying method were used to study the sister chromatid differential staining (SCD) resulting from ultraviolet (UV) irradiation followed by Giemsa staining by light and scanning electron microscopy (SEM). When chromosomes irradiated with UV light (253.7 nm, 5.2 J/m2/s) for more than 5 h were stained with 1% to 4% Giemsa in phosphate buffered saline (PBS) or in distilled water, the resulting SCD invariably belonged to the B-light type in which the TB-chromatid stained lightly. SEM observations of these chromosomes suggested that the B-light SCD was due to the selective photolysis of the TB-chromatid. On the other hand, when chromosomes were irradiated for only 10 min, and stained with 1% Giemsa in PBS, they showed a B-dark type SCD in which the TB-chromatid stained darkly. However, when chromosomes irradiated for 10 min were stained with 4% Giemsa in PBS or 1% Giemsa in distilled water, the resulting SCD again belonged to the B-light type. These findings indicate that when the irradiation dose is small, the resultant SCD is not a simple reflection of selective photolysis in the TB-chromatids and the type of SCD depends not only on the concentration of Giemsa but also on the salinity of the staining solution.  相似文献   

18.
Z. Gibas  J. Limon 《Chromosoma》1978,69(1):113-120
Isolabeling segments were found in the distal region of the long arm of Y chromosomes derived from human leukocytes grown through two replication cycles in medium containing BrdU and stained by the FPG technique. Three main types of Y chromosome staining patterns were demonstrated: I-Y chromosome with typical SCD, II-Y chromosome with weakly stained distal regions of long arms (isolabeling segments), III-Y chromosome with both terminal regions displaying SCD interrupted by one isolabeled segment. The existence of different types of Y chromosome staining patterns was explained on the basis of the previously described hypothesis of unequal distribution of thymine residues between two DNA polynucleotide chains in the distal part of the long arms of human Y chromosomes.  相似文献   

19.
K. Miller 《Human genetics》1986,72(2):160-163
Summary Sister chromatid exchange (SCE) rates were determined in human peripheral blood B and T lymphocyte populations highly purified by immunologic methods. The purified populations were supplemented with -irradiated unseparated autologous mononuclear cells to restore helper-functions and stimulated with pokeweed mitogen (PWM) and phytohemagglutinin (PHA), respectively. Measured at the different peaks of proliferation after identical bromodeoxyuridine (BrdU) incubation times, T lymphocytes showed significantly higher SCE frequencies than B lymphocytes. In both populations, different proliferation kinetics and a different minimal BrdU concentration for sister chromatid differentiation (SCD) were observed.  相似文献   

20.
Summary The three-way differentiation of sister chromatids (3-way SCD) in M3 endoreduplicated chromosomes in a Bloom syndrome (BS) B-lymphoid cell line, suggested that in addition to exchanges between sister chromatids (intra-exchanges), non-sister chromatid exchanges (inter-exchanges) also occur, especially in BS high SCE cells. In BS diploid chromosomes such inter-exchanges probably get confused with intra-exchanges when total SCEs are accounted for. Bloom syndrome high SCE cells probably do not follow the same bromodeoxyuridine (BrdU) uptake pattern over three cell cycles as normal cells. The 3-way SCD in M3 endoreduplicated chromosomes can be explained on the basis of Schvartzman's second model (1979) as well as Miller's model (1976), depending on the pattern of uptake of BrdU over three cell cycles. An interference in the previous events of exchanges in the following cell cycle (i.e., cancellation of SCEs) in BS chromosomes was observed in some regions, though not in high numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号