首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
According to classic theory, species'' population dynamics and distributions are less influenced by species interactions under harsh climatic conditions compared to under more benign climatic conditions. In alpine and boreal ecosystems in Fennoscandia, the cyclic dynamics of rodents strongly affect many other species, including ground-nesting birds such as ptarmigan. According to the ‘alternative prey hypothesis’ (APH), the densities of ground-nesting birds and rodents are positively associated due to predator–prey dynamics and prey-switching. However, it remains unclear how the strength of these predator-mediated interactions change along a climatic harshness gradient in comparison with the effects of climatic variation. We built a hierarchical Bayesian model to estimate the sensitivity of ptarmigan populations to interannual variation in climate and rodent occurrence across Norway during 2007–2017. Ptarmigan abundance was positively linked with rodent occurrence, consistent with the APH. Moreover, we found that the link between ptarmigan abundance and rodent dynamics was strongest in colder regions. Our study highlights how species interactions play an important role in population dynamics of species at high latitudes and suggests that they can become even more important in the most climatically harsh regions.  相似文献   

2.
Andrew R. Jenkins 《Ostrich》2013,84(3-4):281-290
Jenkins, A.R. 1994. The influence of habitat on the distribution and abundance of Peregrine and Lanner Falcons in South Africa. Ostrich 65: 281–290.

The distribution and abundance of Peregrine and Lanner Falcons in South Africa was compared using recorded sightings from various sources, including the Southern African Bird Atlas Project. Falcon distributions were compared with the distribution of cliffs and vegetation, to quantify differences in the habitat preferences of the two species in the breeding and the non-breeding seasons. Lanner Falcons outnumbered Peregrine Falcons in most areas by at least 10:1. Peregrine Falcons were more habitat specific than Lanner Falcons, in terms of topographic and biotic requirements. Peregrine Falcons were largely restricted to high cliff areas throughout the year and there probably were no large-scale seasonal movements within the population. The bulk of the resident Peregrine Falcon population was found in the fynbos biome, in the southwestern Cape. Outside of this area, Peregrine Falcons were concentrated in woodlands. Lanner Falcons were less dependent on high cliffs, although cliff availability was important in defining the ranges of both species. Lanner Falcons were most common in the sour grasslands in the east of the country in the breeding season, with apparent movements in the non-breeding season into the fynbos, the Nama Karoo and the southern Kalahari. Overall, Peregrine Falcons favoured relatively closed habitats and Lanner Falcons favoured relatively open habitats. The differences in the two species' habitat preferences are proximate factors influencing distribution and abundance.  相似文献   

3.
During recent years the role of predation as a simple mechanism to produce cyclical population fluctuations in microtine rodent populations has gained stronger empirical and theoretical support. Predation by several generalist species produces non-cyclicity, and predation by resident specialists, such as small mustelids, produces a synchronous cyclic pattern of population fluctuations in several vole species. At the same time, behavioural ecological studies have shown that the same group of specialist predators crucial for cyclicity causes the strongest antipredatory responses in vole behaviour. Recently, breeding suppression in cyclic microtines under risk of mustelid predation has been documented both in the laboratory and in the field. This review links the new population ecological studies and modelling of cyclic microtines and their predators with recent findings on antipredatory adaptations of voles.  相似文献   

4.
J.-O. Helldin 《Ecography》1999,22(3):324-336
Winter diet, body condition, growth, reproduction, and age structure of pine martens Martes martes were studied during cycles in microtine density in south-central Sweden. I analysed 398 scats collected in winters 1988 89 to 1996-97. and 483 carcasses from martens trapped in winters 1989-90 to 1992-93. Microtines were the single most frequent prey category in the winter diet, and the consumption of microtines was correlated with microtine density. In the absence of microtines. pine martens increased the relative consumption of some alternative prey, most notably hares. Among adults, total food consumption, body condition, and reproductive success did not follow microtine density. Among juveniles, there were indications of lower total food consumption, smaller fat deposits, and higher trapping vulnerability, and among juvenile females also of lower body growth, when microtines were scarce. The data were, however, not consistent in this respect. I suggest that pine martens in the southern boreal region do not suffer from food shortage at microtine lows, and accordingly, that the demography of pine martens is independent of microtine cycles.  相似文献   

5.
D. C. H. Plowes 《Ostrich》2013,84(2):111-121
Van Zyl, A.J, Jenkins, A.R. &; Allan, D.G. 1994. Evidence for seasonal movements by Rock Kestrels Falco tinnunculus and Lanner Falcons F. biarmicus in South Africa. Ostrich 65:111-121.

Patterns of seasonal movement by Rock Kestrels Falco tinnunculus and Lanner Falcons F. biarmicus in South Africa were determined using data from the Southern African Bird Atlas Project, road transect counts, ringing recoveries and other sources. Both species were found to be partial, facultative migrants, and Lanner Falcon movements involved mostly immature birds. Rock Kestrels were found to concentrate in the southwest of the country in the breeding season, and to move north and east in the non-breeding season. Lanner Falcons concentrated in the east of the country during the breeding season, and moved into the west in the non-breeding season. The movement by both species into the arid northwest of the country is probably associated with dramatic increases in prey abundance, in turn associated with summer rah events. Lanner Falcon movement into the southern Cape apparently coincides with cereal farming practices, affecting the availability of prey (granivorous birds and rodents). Rock Kestrel movement into the east of the aunt is probably to exploit increases in insect abundance mated with summer rain. The pattern of Rock Kestrel movements suggests that it does not compete for food with the Lesser Kestrel F. naumanni. a Palearctic migrant to the east of the country.  相似文献   

6.
Predation has been invoked as a factor synchronizing the population oscillations of sympatric prey species, either because predators kill prey unselectively (the Shared Predation Hypothesis; hereafter SPH), or because predators switch to alternative prey after a density decline in their main prey (the Alternative Prey Hypothesis; APH). A basic assumption of the APH is that the impact of predators on alternative prey depends more on the density of main prey than on the predator/alternative prey ratio. Both SPH and APH assume that the impact of predators on alternative prey is at least periodically strong enough to depress prey populations. To examine these assumptions, we utilized data from replicated field experiments in large areas where we reduced the breeding densities of avian predators during three years and the numbers of least weasels (Mustela nivalis) in two years when vole populations declined. In addition, we reduced the breeding densities of avian predators in two years when vole populations were high. The reduction of least weasels increased the abundance of their alternative prey, small birds breeding on the ground, but did not affect the abundance of common shrews (Sorex araneus). In years when vole populations declined, the reduction of avian predators increased the abundance of their alternative prey, common shrews and small birds. Therefore, vole‐eating predators do at least periodically depress the abundance of their alternative prey. At high vole densities, the reduction of avian predators did not increase the abundance of common shrews, although the ratio of avian predators to alternative prey was similar to years when vole populations declined, which supported APH. In contrast, the abundance of small birds increased after the reduction of avian predators also at high vole densities, which supported SPH. The manipulations had no obvious effect on the number of game birds, which are only occasionally killed by these small‐sized predators. We conclude that in communities where most predators are small or specialize on a single prey type, the synchronizing impact of predation is restricted to a few similar‐sized species.  相似文献   

7.
Medium-sized predators sometimes switch to alternative prey species as their main prey declines. Our objective of this study was to test the alternative prey hypothesis for a medium sized predator (red fox, Vulpes vulpes ), a small cyclically fluctuating main prey (microtine voles) and larger alternative prey (roe deer fawns, Capreolus capreolus ). We used long-term time series (28 years) on voles, red fox and roe deer from the Grimsö Wildlife Research Area (59°40'N, 15°25'E) in south-central Sweden to investigate interspecific relationships in the annual fluctuations in numbers of the studied species. Annual variation in number of roe deer fawns in autumn was significantly and positively related to vole density and significantly and negatively related to the number of fox litters in the previous year. In years of high vole density, predation on roe deer fawns was small, but in years of low vole density predation was more severe. The time lag between number of fox litters and predation on fawns was due to the time lag in functional response of red fox in relation to voles. This study demonstrates for the first time that the alternative prey hypothesis is applicable to the system red fox, voles and roe deer fawns.  相似文献   

8.
What causes extended lows in microtine cycles?   总被引:1,自引:0,他引:1  
Summary Synchronous declines of sympatric shrew and microtine populations in boreal regions of Fennoscandia have been claimed as evidence that predation deepens and extends the low phase of the microtine population cycles. Assuming that shrews and microtines have the same maximum intrinsic rate of increase, and that the predators kill the shrews and microtines that they encounter unselectively, this hypothesis predicts that sympatric shrew and microtine populations will decline and increase simultaneously. In this study conducted at 60°56N in southeast Norway, as well as in 13 of 15 other studies at sites in Fennoscandia, the shrew populations declined simultaneously with the sympatric microtine populations, but recovered sooner. The shrew-microtine ratio among animals trapped peaked about 2 years after the peak in the microtine population. The same pattern was found in the diet of raptors in Fennoscandia. Since the maximum intrinsic rate of increase does not seem to be higher in shrews than in microtines, the pattern suggests that either predation is not causing the extended lows in the microtine populations, or that the proportion of predators that selectively kill microtines fluctuates during the microtine cycle. The most likely candidates for selective killers are weasels.  相似文献   

9.
The populations of many species of sub-Arctic animals have recently ceased to fluctuate cyclically. The ultimate cause of this would seem to be changes in the weather, and the proximate cause has been credited to less winter snow allowing predators better access to their prey, thus enabling them to prevent surges in the prey's abundance. But there is evidence that this is not so; that, rather, the numbers of predators are limited by the abundance of their prey. Furthermore, there is alternative evidence that suggests that changes in the cyclical availability of food, brought about by changing weather conditions, may be dampening fluctuations in the abundance of these populations. On the wider ecological front, the evidence presented here further supports the commonality of how a shortage of food of a quality that can support breeding, not the action of predators, generally limits the abundance of populations of both prey and predator.  相似文献   

10.
Three-to-five-year population oscillations of northern small rodents are usually synchronous over hundreds of square kilometers. This regional synchrony could be due to similarity in climatic factors, or due to nomadic predators reducing the patches of high prey density close to the average density of a larger area. We estimated avian predator and small rodent densities in 4–5 predator reduction and 4–5 control areas (c. 3 km2 each) during 1989–1992 in western Finland. We studied whether nomadic avian predators concentrate at high prey density areas, and whether this decreases spatial variation in prey density. The yearly mean number of avian predator breeding territories was 0.2–1.0 in reduction areas and 3.0–8.2 in control areas. Hunting birds of prey concentrated in high prey density areas after their breeding season (August), but not necessarily during the breeding season (April to June), when they were constrained to hunt in vicinity of the nest. The experimental reduction of breeding avian predators increased variation in prey density among areas but not within areas. The difference in variation between raptor reduction and control areas was largest in the late breeding season of birds of prey, and decreased rapidly after the breeding season. These results appeared to support the hypothesis that the geographic synchrony of population cycles in small mammals may be driven by nomadic predators concentrating in high prey density areas. Predation and climatic factors apparently are complementary, rather than exclusive, factors in contributing to the synchrony.  相似文献   

11.
Joshua T. Ackerman 《Oikos》2002,99(3):469-480
Coexisting prey species interact indirectly via their shared predators when one prey type influences predation rates of the second prey type. In a temperate system where the predominant shared predator is a generalist, I studied the indirect effects of rodent populations on waterfowl nest success, both within the nesting season among sites and among years. Among six to ten upland fields (14 to 27 ha), mallard ( Anas platyrhynchos ) nest success was positively correlated with rodent abundance in all three years of the study. After removing year effects, mallard nest success remained positively correlated with the relative abundance of rodents. Of the rodent species present, California voles ( Microtus californicus ) were the most important coexisting prey type influencing nest success. Among years, mallard nest success was positively correlated with vole abundance; the asymptotic relationship suggests a threshold response to vole abundance, beyond which predators become satiated and additional voles do little to affect nest success. I tested and rejected three alternative explanations for the observed positive correlation between mallard nest success and rodent abundance that do not involve an indirect effect of coexisting prey populations. The influences of dense nesting cover, nesting density, and predator activity did not explain the observed patterns of nest success. These results suggest that rodent populations buffer predation on waterfowl nests, both within and among years, via the behavioral responses of shared predators to coexisting prey.  相似文献   

12.
Global warming is predicted to change ecosystem functioning and structure in Arctic ecosystems by strengthening top‐down species interactions, i.e. predation pressure on small herbivores and interference between predators. Yet, previous research is biased towards the summer season. Due to greater abiotic constraints, Arctic ecosystem characteristics might be more pronounced in winter. Here we test the hypothesis that top‐down species interactions prevail over bottom‐up effects in Scandinavian mountain tundra (Northern Sweden) where effects of climate warming have been observed and top‐down interactions are expected to strengthen. But we test this ‘a priori’ hypothesis in winter and throughout the 3–4 yr rodent cycle, which imposes additional pulsed resource constraints. We used snowtracking data recorded in 12 winters (2004–2015) to analyse the spatial patterns of a tundra predator guild (arctic fox Vulpes lagopus, red fox Vulpes vulpes, wolverine Gulo gulo) and small prey (ptarmigan, Lagopus spp). The a priori top‐down hypothesis was then tested through structural equation modelling, for each phase of the rodent cycle. There was weak support for this hypothesis, with top‐down effects only discerned on arctic fox (weakly, by wolverine) and ptarmigan (by arctic fox) at intermediate and high rodent availability respectively. Overall, bottom‐up constraints appeared more influential on the winter community structure. Cold specialist predators (arctic fox and wolverine) showed variable landscape associations, while the boreal predator (red fox) appeared strongly dependent on productive habitats and ptarmigan abundance. Thus, we suggest that the unpredictability of food resources determines the winter ecology of the cold specialist predators, while the boreal predator relies on resource‐rich habitats. The constraints imposed by winters and temporary resource lows should therefore counteract productivity‐driven ecosystem change and have a stabilising effect on community structure. Hence, the interplay between summer and winter conditions should determine the rate of Arctic ecosystem change in the context of global warming.  相似文献   

13.
Although population cycles of rodents are geographically widespread and occur in a number of rodent species, higher‐order food web interactions mediated by predator–rodent dynamics have primarily been described from boreal and arctic biomes. During periods of low rodent abundance, predators may switch to alternative prey, which may affect other predators directly or indirectly. Using a long‐term dataset, we assessed the frequency of Pine Marten Martes martes predation on the nests of Tengmalm's Owl Aegolius funereus during periods of fluctuating rodent abundance in Central Europe. The number of nests predated by Pine Martens was positively correlated with the annual number of nests available. The probability of predation by Pine Martens on Tengmalm's Owl nests decreased with increasing spring abundance index of Apodemus mice, but was not related to the abundance index of Myodes and Microtus voles, pooled rodent abundance or age of the nestbox. Additionally, we found no relationship between the breeding frequency (i.e. the number of nesting attempts per nestboxes available) and an abundance index of Microtus and Myodes voles, Apodemus mice or overall rodent abundance. Our results demonstrate, for the first time in a temperate area, that during periods of low Apodemus mouse abundance, the switching response of an opportunistic mammalian predator can lead to indirect food web interactions through an increase in nest predation on a sympatric avian predator.  相似文献   

14.
Inter-individual diet variation within populations is likely to have important ecological and evolutionary implications. The diet-fitness relationships at the individual level and the emerging population processes are, however, poorly understood for most avian predators inhabiting complex terrestrial ecosystems. In this study, we use an isotopic approach to assess the trophic ecology of nestlings in a long-lived raptor, the Bonelli’s eagle Aquila fasciata, and investigate whether nestling dietary breath and main prey consumption can affect the species’ reproductive performance at two spatial scales: territories within populations and populations over a large geographic area. At the territory level, those breeding pairs whose nestlings consumed similar diets to the overall population (i.e. moderate consumption of preferred prey, but complemented by alternative prey categories) or those disproportionally consuming preferred prey were more likely to fledge two chicks. An increase in the diet diversity, however, related negatively with productivity. The age and replacements of breeding pair members had also an influence on productivity, with more fledglings associated to adult pairs with few replacements, as expected in long-lived species. At the population level, mean productivity was higher in those population-years with lower dietary breadth and higher diet similarity among territories, which was related to an overall higher consumption of preferred prey. Thus, we revealed a correspondence in diet-fitness relationships at two spatial scales: territories and populations. We suggest that stable isotope analyses may be a powerful tool to monitor the diet of terrestrial avian predators on large spatio-temporal scales, which could serve to detect potential changes in the availability of those prey on which predators depend for breeding. We encourage ecologists and evolutionary and conservation biologists concerned with the multi-scale fitness consequences of inter-individual variation in resource use to employ similar stable isotope-based approaches, which can be successfully applied to complex ecosystems such as the Mediterranean.  相似文献   

15.
In the forests of northern Fennoscandia during the I980's, the dynamics of microtine rodents changed from multiannual high amplitude fluctuations (cycles) to, depending on species, fluctuations with a strong seasonal component or fluctuations with smaller amplitude and lower frequency. Microtine and predator data from the Pallasjarvi area, Finnish Lapland, suggest that this transition took place at different rates in different parts of the taiga landscape. Generally, densities in forest habitats have been primarily seasonal since 198S-86. In mesic spruce taiga and in drier forest habitats microtines had a prolonged peak in 1981-83 and a crash in 1984-83. At the timberline, however, microtine populations dropped from peak to low densities already in 1982-83 but the final crash did not occur until spring 1985. The synchronous decrease in microtines densities in all habitat types in 1984-85 coincided with increase in weasel activity. Activity of other carnivores was consistently high in mesic lowland habitats. The data support following three conjectures. 1) Periodic abundance of least weasels is crucial for sustained vole cycles. 2) Predominance of stoats and other generalist predators lead to less regular fluctuations with a strong seasonal component where density declines occur in autumn and early winter. 3) In barren tundra areas, the vegetation cannot sustain high densities of microtines and. consequently, predation is not a necessary condition for population crashes.  相似文献   

16.
1. Predation plays an integral role in many community interactions, with the number of predators and the rate at which they consume prey (i.e. their functional response) determining interaction strengths. Owing to the difficulty of directly observing predation events, attempts to determine the functional response of predators in natural systems are limited. Determining the forms that predator functional responses take in complex systems is important in advancing understanding of community interactions. 2. Prey survival has a direct relationship to the functional response of their predators. We employed this relationship to estimate the functional response for bald eagle Haliaeetus leucocepalus predation of Canada goose Branta canadensis nests. We compared models that incorporated eagle abundance, nest abundance and alternative prey presence to determine the form of the functional response that best predicted intra-annual variation in survival of goose nests. 3. Eagle abundance, nest abundance and the availability of alternative prey were all related to predation rates of goose nests by eagles. There was a sigmoidal relationship between predation rate and prey abundance and prey switching occurred when alternative prey was present. In addition, predation by individual eagles increased as eagle abundance increased. 4. A complex set of interactions among the three species examined in this study determined survival rates of goose nests. Results show that eagle predation had both prey- and predator-dependent components with no support for ratio dependence. In addition, indirect interactions resulting from the availability of alternative prey had an important role in mediating the rate at which eagles depredated nests. As a result, much of the within-season variation in nest survival was due to changing availability of alternative prey consumed by eagles. 5. Empirical relationships drawn from ecological theory can be directly integrated into the estimation process to determine the mechanisms responsible for variation in observed survival rates. The relationship between predator functional response and prey survival offers a flexible and robust method to advance our understanding of predator-prey interactions in many complex natural systems where prey populations are marked and regularly visited.  相似文献   

17.
Knowledge of demographic parameters affecting population dynamics is critical to the formulation of effective conservation strategies. Sooty Falcon Falco concolor is a little‐studied, Near‐threatened species; estimates of global population size and trend for this species are uncertain. They lay eggs during mid‐summer and sometimes nest in colonies. This unusual breeding ecology suggests that demographic parameters driving their population growth rate may differ from those of most other falcons. We studied Sooty Falcon reproduction at breeding aggregations on Fahal Island and the Daymaniyat islands in the Sea of Oman during 2007–2014, modelled population growth and identified important life history parameters using elasticity analysis. The mean (± se) clutch and brood size was 2.83 ± 0.06 and 2.11 ± 0.07, respectively. Overall, 11.7% of nests failed between the egg and nestling stages, and the failure rate differed significantly between Fahal and the Daymaniyats, and across years. The mean proportion of eggs that hatched annually was 0.66 ± 0.02, and broods were significantly smaller on the Daymaniyats than on Fahal. Falcons on Fahal Island had a higher rate of hatching, a higher rate of nests that produced at least one chick, and produced more chicks per nest than on the Daymaniyats. We suggest that Fahal's proximity to the mainland gives breeding Sooty Falcons access to a more plentiful and stable source of food, especially during the period between arrival from the wintering grounds and the onset of the autumn migration of prey birds, resulting in the better reproductive rates for falcons on Fahal Island, relative to those on the Daymaniyat Islands. The annual asymptotic population growth rate (λ) was 0.87 (95% confidence interval (CI) 0.75–0.99), suggesting a declining population, although Sooty Falcons enjoyed a slightly higher population growth rate on Fahal than on the Daymaniyats. Because our study population is on the edge of the breeding range and is isolated from other breeding areas, measures to improve reproductive success of Sooty Falcons breeding on the islands in the Sea of Oman could be important for conservation of Sooty Falcons in Oman.  相似文献   

18.
Predators will often respond to reductions in preferred prey by switching to alternative prey resources. However, this may not apply to all alternative prey groups in patchy landscapes. We investigated the demographic and aggregative numerical and functional responses of Common Buzzards Buteo buteo in relation to variations in prey abundance on a moor managed for Red Grouse Lagopus lagopus scotica in south‐west Scotland over three consecutive breeding and non‐breeding seasons. We predicted that predation of Red Grouse by Buzzards would increase when abundance of their preferred Field Vole Microtus agrestis prey declined. As vole abundance fluctuated, Buzzards responded functionally by eating voles in relation to their abundance, but they did not respond demographically in terms of either breeding success or density. During a vole crash year, Buzzards selected a wider range of prey typical of enclosed farmland habitats found on the moorland edge but fewer Grouse from the heather moorland. During a vole peak year, prey remains suggested a linear relationship between Grouse density and the number of Grouse eaten (a Type 1 functional response), which was not evident in either intermediate or vole crash years. Buzzard foraging intensity varied between years as vole abundance fluctuated, and foraging intensity declined with increasing heather cover. Our findings did not support the prediction that predation of Red Grouse would increase when vole abundance was low. Instead, they suggest that Buzzards predated Grouse incidentally while hunting for voles, which may increase when vole abundances are high through promoting foraging in heather moorland habitats where Grouse are more numerous. Our results suggest that declines in their main prey may not result in increased predation of all alternative prey groups when predators inhabit patchy landscapes. We suggest that when investigating predator diet and impacts on prey, knowledge of all resources and habitats that are available to predators is important.  相似文献   

19.
During a five-year period, 1975–1979, a total of 2881 prey individuals of 65 prey species were collected at 162 golden eagle nests from northern Sweden and from the island of Gotland. In northern Sweden birds are taken in higher numbers than mammals but calculated as weight the two categories are of equal importance, The main prey during the breeding season are capercaillie, black grouse, willow grouse, ptarmigan, mountain hare and reindeer fawns which together form 91% of the total food biomass. The capercaillie and the black grouse are taken more in the southern part of the coniferous region than in the northern. In contrast, in northern areas, reindeer fawns are more preyed upon than in the South, Ptarmigan and willow grouse are the most commonly captured prey species in mountain areas. The total number of reindeer fawns taken (dead and/or alive) by the Swedish golden eagle population during one summer is estimated at 600 individuals. On Gotland the golden eagles take mammals more often than in its northern distribution area. Rabbit and hedgehog arc the most important species.  相似文献   

20.
Multi-factor analyses of territory quality in relation to fitness components of adults are rare, especially in non-migratory species. I studied the influence of multiple attributes of territory quality (habitat type and the abundance of food and predators) on the reproductive success and survival of a threatened Australian passerine, the southern emu-wren Stipiturus malachurus . The abundance of frequently-selected prey types (lepidoptera, diptera, hemiptera and larvae) varied significantly across territories according to habitat type. Reproductive success (number of offspring fledged) was highest in territories containing a greater proportion of tall shrubland, which had the highest insect abundance of any habitat. Closed heathland and sedge/rushland also had high food abundance compared to other habitat types, but higher fledging success occurred only within closed heathland, possibly because predator density was lower in this habitat type. High snake density was associated with reduced adult survival during the breeding season and a lower probability of nest success. In sedge/rushland, any benefits of prey abundance may therefore be offset by a high density of predators. Emu-wren age and size were unrelated to breeding output of pairs, suggesting that ecological factors may swamp effects of individual quality on emu-wren fitness components. Preservation of tall shrubland and closed heathland habitats appear to be of key conservation priority for emu-wrens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号