首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Roy J 《Biometrics》2003,59(4):829-836
In longitudinal studies with dropout, pattern-mixture models form an attractive modeling framework to account for nonignorable missing data. However, pattern-mixture models assume that the components of the mixture distribution are entirely determined by the dropout times. That is, two subjects with the same dropout time have the same distribution for their response with probability one. As that is unlikely to be the case, this assumption made lead to classification error. In addition, if there are certain dropout patterns with very few subjects, which often occurs when the number of observation times is relatively large, pattern-specific parameters may be weakly identified or require identifying restrictions. We propose an alternative approach, which is a latent-class model. The dropout time is assumed to be related to the unobserved (latent) class membership, where the number of classes is less than the number of observed patterns; a regression model for the response is specified conditional on the latent variable. This is a type of shared-parameter model, where the shared "parameter" is discrete. Parameter estimates are obtained using the method of maximum likelihood. Averaging the estimates of the conditional parameters over the distribution of the latent variable yields estimates of the marginal regression parameters. The methodology is illustrated using longitudinal data on depression from a study of HIV in women.  相似文献   

2.
Yuan Y  Little RJ 《Biometrics》2009,65(2):478-486
Summary .  Selection models and pattern-mixture models are often used to deal with nonignorable dropout in longitudinal studies. These two classes of models are based on different factorizations of the joint distribution of the outcome process and the dropout process. We consider a new class of models, called mixed-effect hybrid models (MEHMs), where the joint distribution of the outcome process and dropout process is factorized into the marginal distribution of random effects, the dropout process conditional on random effects, and the outcome process conditional on dropout patterns and random effects. MEHMs combine features of selection models and pattern-mixture models: they directly model the missingness process as in selection models, and enjoy the computational simplicity of pattern-mixture models. The MEHM provides a generalization of shared-parameter models (SPMs) by relaxing the conditional independence assumption between the measurement process and the dropout process given random effects. Because SPMs are nested within MEHMs, likelihood ratio tests can be constructed to evaluate the conditional independence assumption of SPMs. We use data from a pediatric AIDS clinical trial to illustrate the models.  相似文献   

3.
4.
Roy J  Daniels MJ 《Biometrics》2008,64(2):538-545
Summary .   In this article we consider the problem of fitting pattern mixture models to longitudinal data when there are many unique dropout times. We propose a marginally specified latent class pattern mixture model. The marginal mean is assumed to follow a generalized linear model, whereas the mean conditional on the latent class and random effects is specified separately. Because the dimension of the parameter vector of interest (the marginal regression coefficients) does not depend on the assumed number of latent classes, we propose to treat the number of latent classes as a random variable. We specify a prior distribution for the number of classes, and calculate (approximate) posterior model probabilities. In order to avoid the complications with implementing a fully Bayesian model, we propose a simple approximation to these posterior probabilities. The ideas are illustrated using data from a longitudinal study of depression in HIV-infected women.  相似文献   

5.
Within the pattern-mixture modeling framework for informative dropout, conditional linear models (CLMs) are a useful approach to deal with dropout that can occur at any point in continuous time (not just at observation times). However, in contrast with selection models, inferences about marginal covariate effects in CLMs are not readily available if nonidentity links are used in the mean structures. In this article, we propose a CLM for long series of longitudinal binary data with marginal covariate effects directly specified. The association between the binary responses and the dropout time is taken into account by modeling the conditional mean of the binary response as well as the dependence between the binary responses given the dropout time. Specifically, parameters in both the conditional mean and dependence models are assumed to be linear or quadratic functions of the dropout time; and the continuous dropout time distribution is left completely unspecified. Inference is fully Bayesian. We illustrate the proposed model using data from a longitudinal study of depression in HIV-infected women, where the strategy of sensitivity analysis based on the extrapolation method is also demonstrated.  相似文献   

6.
Joint modeling of various longitudinal sequences has received quite a bit of attention in recent times. This paper proposes a so‐called marginalized joint model for longitudinal continuous and repeated time‐to‐event outcomes on the one hand and a marginalized joint model for bivariate repeated time‐to‐event outcomes on the other. The model has several appealing features. It flexibly allows for association among measurements of the same outcome at different occasions as well as among measurements on different outcomes recorded at the same time. The model also accommodates overdispersion. The time‐to‐event outcomes are allowed to be censored. While the model builds upon the generalized linear mixed model framework, it is such that model parameters enjoy a direct marginal interpretation. All of these features have been considered before, but here we bring them together in a unified, flexible framework. The model framework's properties are scrutinized using a simulation study. The models are applied to data from a chronic heart failure study and to a so‐called comet assay, encountered in preclinical research. Almost surprisingly, the models can be fitted relatively easily using standard statistical software.  相似文献   

7.
Hogan JW  Lin X  Herman B 《Biometrics》2004,60(4):854-864
The analysis of longitudinal repeated measures data is frequently complicated by missing data due to informative dropout. We describe a mixture model for joint distribution for longitudinal repeated measures, where the dropout distribution may be continuous and the dependence between response and dropout is semiparametric. Specifically, we assume that responses follow a varying coefficient random effects model conditional on dropout time, where the regression coefficients depend on dropout time through unspecified nonparametric functions that are estimated using step functions when dropout time is discrete (e.g., for panel data) and using smoothing splines when dropout time is continuous. Inference under the proposed semiparametric model is hence more robust than the parametric conditional linear model. The unconditional distribution of the repeated measures is a mixture over the dropout distribution. We show that estimation in the semiparametric varying coefficient mixture model can proceed by fitting a parametric mixed effects model and can be carried out on standard software platforms such as SAS. The model is used to analyze data from a recent AIDS clinical trial and its performance is evaluated using simulations.  相似文献   

8.
Liang Li  Bo Hu  Tom Greene 《Biometrics》2009,65(3):737-745
Summary .  In many longitudinal clinical studies, the level and progression rate of repeatedly measured biomarkers on each subject quantify the severity of the disease and that subject's susceptibility to progression of the disease. It is of scientific and clinical interest to relate such quantities to a later time-to-event clinical endpoint such as patient survival. This is usually done with a shared parameter model. In such models, the longitudinal biomarker data and the survival outcome of each subject are assumed to be conditionally independent given subject-level severity or susceptibility (also called frailty in statistical terms). In this article, we study the case where the conditional distribution of longitudinal data is modeled by a linear mixed-effect model, and the conditional distribution of the survival data is given by a Cox proportional hazard model. We allow unknown regression coefficients and time-dependent covariates in both models. The proposed estimators are maximizers of an exact correction to the joint log likelihood with the frailties eliminated as nuisance parameters, an idea that originated from correction of covariate measurement error in measurement error models. The corrected joint log likelihood is shown to be asymptotically concave and leads to consistent and asymptotically normal estimators. Unlike most published methods for joint modeling, the proposed estimation procedure does not rely on distributional assumptions of the frailties. The proposed method was studied in simulations and applied to a data set from the Hemodialysis Study.  相似文献   

9.
Shared random effects joint models are becoming increasingly popular for investigating the relationship between longitudinal and time‐to‐event data. Although appealing, such complex models are computationally intensive, and quick, approximate methods may provide a reasonable alternative. In this paper, we first compare the shared random effects model with two approximate approaches: a naïve proportional hazards model with time‐dependent covariate and a two‐stage joint model, which uses plug‐in estimates of the fitted values from a longitudinal analysis as covariates in a survival model. We show that the approximate approaches should be avoided since they can severely underestimate any association between the current underlying longitudinal value and the event hazard. We present classical and Bayesian implementations of the shared random effects model and highlight the advantages of the latter for making predictions. We then apply the models described to a study of abdominal aortic aneurysms (AAA) to investigate the association between AAA diameter and the hazard of AAA rupture. Out‐of‐sample predictions of future AAA growth and hazard of rupture are derived from Bayesian posterior predictive distributions, which are easily calculated within an MCMC framework. Finally, using a multivariate survival sub‐model we show that underlying diameter rather than the rate of growth is the most important predictor of AAA rupture.  相似文献   

10.
Summary Often a binary variable is generated by dichotomizing an underlying continuous variable measured at a specific time point according to a prespecified threshold value. In the event that the underlying continuous measurements are from a longitudinal study, one can use the repeated‐measures model to impute missing data on responder status as a result of subject dropout and apply the logistic regression model on the observed or otherwise imputed responder status. Standard Bayesian multiple imputation techniques ( Rubin, 1987 , in Multiple Imputation for Nonresponse in Surveys) that draw the parameters for the imputation model from the posterior distribution and construct the variance of parameter estimates for the analysis model as a combination of within‐ and between‐imputation variances are found to be conservative. The frequentist multiple imputation approach that fixes the parameters for the imputation model at the maximum likelihood estimates and construct the variance of parameter estimates for the analysis model using the results of Robins and Wang (2000, Biometrika 87, 113–124) is shown to be more efficient. We propose to apply ( Kenward and Roger, 1997 , Biometrics 53, 983–997) degrees of freedom to account for the uncertainty associated with variance–covariance parameter estimates for the repeated measures model.  相似文献   

11.
Life expectancy is increasing in many countries and this may lead to a higher frequency of adverse health outcomes. Therefore, there is a growing demand for predicting the risk of a sequence of events based on specified factors from repeated outcomes. We proposed regressive models and a framework to predict the joint probabilities of a sequence of events for multinomial outcomes from longitudinal studies. The Markov chain is used to link marginal and sequence of conditional probabilities to predict the joint probability. Marginal and sequence of conditional probabilities are estimated using marginal and regressive models. An application is shown using the Health and Retirement Study data. The bias of parameter estimates for all models from all bootstrap simulation is less than 1% in most of the cases. The estimated mean squared error is also very low. Results from the simulation study show negligible bias and the usefulness of the proposed model. The proposed model and framework would be useful to solve real-life problems from various fields and big data analysis.  相似文献   

12.
For observational longitudinal studies of geriatric populations, outcomes such as disability or cognitive functioning are often censored by death. Statistical analysis of such data may explicitly condition on either vital status or survival time when summarizing the longitudinal response. For example a pattern-mixture model characterizes the mean response at time t conditional on death at time S = s (for s > t), and thus uses future status as a predictor for the time t response. As an alternative, we define regression conditioning on being alive as a regression model that conditions on survival status, rather than a specific survival time. Such models may be referred to as partly conditional since the mean at time t is specified conditional on being alive (S > t), rather than using finer stratification (S = s for s > t). We show that naive use of standard likelihood-based longitudinal methods and generalized estimating equations with non-independence weights may lead to biased estimation of the partly conditional mean model. We develop a taxonomy for accommodation of both dropout and death, and describe estimation for binary longitudinal data that applies selection weights to estimating equations with independence working correlation. Simulation studies and an analysis of monthly disability status illustrate potential bias in regression methods that do not explicitly condition on survival.  相似文献   

13.
Bayesian inference in ecology   总被引:14,自引:1,他引:13  
Bayesian inference is an important statistical tool that is increasingly being used by ecologists. In a Bayesian analysis, information available before a study is conducted is summarized in a quantitative model or hypothesis: the prior probability distribution. Bayes’ Theorem uses the prior probability distribution and the likelihood of the data to generate a posterior probability distribution. Posterior probability distributions are an epistemological alternative to P‐values and provide a direct measure of the degree of belief that can be placed on models, hypotheses, or parameter estimates. Moreover, Bayesian information‐theoretic methods provide robust measures of the probability of alternative models, and multiple models can be averaged into a single model that reflects uncertainty in model construction and selection. These methods are demonstrated through a simple worked example. Ecologists are using Bayesian inference in studies that range from predicting single‐species population dynamics to understanding ecosystem processes. Not all ecologists, however, appreciate the philosophical underpinnings of Bayesian inference. In particular, Bayesians and frequentists differ in their definition of probability and in their treatment of model parameters as random variables or estimates of true values. These assumptions must be addressed explicitly before deciding whether or not to use Bayesian methods to analyse ecological data.  相似文献   

14.
We explore a Bayesian approach to selection of variables that represent fixed and random effects in modeling of longitudinal binary outcomes with missing data caused by dropouts. We show via analytic results for a simple example that nonignorable missing data lead to biased parameter estimates. This bias results in selection of wrong effects asymptotically, which we can confirm via simulations for more complex settings. By jointly modeling the longitudinal binary data with the dropout process that possibly leads to nonignorable missing data, we are able to correct the bias in estimation and selection. Mixture priors with a point mass at zero are used to facilitate variable selection. We illustrate the proposed approach using a clinical trial for acute ischemic stroke.  相似文献   

15.
In longitudinal studies investigators frequently have to assess and address potential biases introduced by missing data. New methods are proposed for modeling longitudinal categorical data with nonignorable dropout using marginalized transition models and shared random effects models. Random effects are introduced for both serial dependence of outcomes and nonignorable missingness. Fisher‐scoring and Quasi–Newton algorithms are developed for parameter estimation. Methods are illustrated with a real dataset.  相似文献   

16.
Missing outcomes or irregularly timed multivariate longitudinal data frequently occur in clinical trials or biomedical studies. The multivariate t linear mixed model (MtLMM) has been shown to be a robust approach to modeling multioutcome continuous repeated measures in the presence of outliers or heavy‐tailed noises. This paper presents a framework for fitting the MtLMM with an arbitrary missing data pattern embodied within multiple outcome variables recorded at irregular occasions. To address the serial correlation among the within‐subject errors, a damped exponential correlation structure is considered in the model. Under the missing at random mechanism, an efficient alternating expectation‐conditional maximization (AECM) algorithm is used to carry out estimation of parameters and imputation of missing values. The techniques for the estimation of random effects and the prediction of future responses are also investigated. Applications to an HIV‐AIDS study and a pregnancy study involving analysis of multivariate longitudinal data with missing outcomes as well as a simulation study have highlighted the superiority of MtLMMs on the provision of more adequate estimation, imputation and prediction performances.  相似文献   

17.
Roy J  Lin X 《Biometrics》2005,61(3):837-846
We consider estimation in generalized linear mixed models (GLMM) for longitudinal data with informative dropouts. At the time a unit drops out, time-varying covariates are often unobserved in addition to the missing outcome. However, existing informative dropout models typically require covariates to be completely observed. This assumption is not realistic in the presence of time-varying covariates. In this article, we first study the asymptotic bias that would result from applying existing methods, where missing time-varying covariates are handled using naive approaches, which include: (1) using only baseline values; (2) carrying forward the last observation; and (3) assuming the missing data are ignorable. Our asymptotic bias analysis shows that these naive approaches yield inconsistent estimators of model parameters. We next propose a selection/transition model that allows covariates to be missing in addition to the outcome variable at the time of dropout. The EM algorithm is used for inference in the proposed model. Data from a longitudinal study of human immunodeficiency virus (HIV)-infected women are used to illustrate the methodology.  相似文献   

18.
Dobson A  Henderson R 《Biometrics》2003,59(4):741-751
We present a variety of informal graphical procedures for diagnostic assessment of joint models for longitudinal and dropout time data. A random effects approach for Gaussian responses and proportional hazards dropout time is assumed. We consider preliminary assessment of dropout classification categories based on residuals following a standard longitudinal data analysis with no allowance for informative dropout. Residual properties conditional upon dropout information are discussed and case influence is considered. The proposed methods do not require computationally intensive methods over and above those used to fit the proposed model. A longitudinal trial into the treatment of schizophrenia is used to illustrate the suggestions.  相似文献   

19.
Aims Data assimilation is a useful tool to extract information from large datasets of the net ecosystem exchange (NEE) of CO2 obtained by eddy-flux measurements. However, the number of parameters in ecosystem models that can be constrained by eddy-flux data is limited by conventional inverse analysis that estimates parameter values based on one-time inversion. This study aimed to improve data assimilation to increase the number of constrained parameters.Methods In this study, we developed conditional Bayesian inversion to maximize the number of parameters to be constrained by NEE data in several steps. In each step, we conducted a Bayesian inversion to constrain parameters. The maximum likelihood estimates of the constrained parameters were then used as prior to fix parameter values in the next step of inversion. The conditional inversion was repeated until there were no more parameters that could be further constrained. We applied the conditional inversion to hourly NEE data from Harvard Forest with a physiologically based ecosystem model.Important findings Results showed that the conventional inversion method constrained 6 of 16 parameters in the model while the conditional inversion method constrained 13 parameters after six steps. The cost function that indicates mismatch between the modeled and observed data decreased with each step of conditional Bayesian inversion. The Bayesian information criterion also decreased, suggesting reduced information loss with each step of conditional Bayesian inversion. A wavelet analysis reflected that model performance under conditional Bayesian inversion was better than that under conventional inversion at multiple time scales, except for seasonal and half-yearly scales. In addition, our analysis also demonstrated that parameter convergence in a subsequent step of the conditional inversion depended on correlations with the parameters constrained in a previous step. Overall, the conditional Bayesian inversion substantially increased the number of parameters to be constrained by NEE data and can be a powerful tool to be used in data assimilation in ecology.  相似文献   

20.
In many observational studies, individuals are measured repeatedly over time, although not necessarily at a set of pre-specified occasions. Instead, individuals may be measured at irregular intervals, with those having a history of poorer health outcomes being measured with somewhat greater frequency and regularity. In this paper, we consider likelihood-based estimation of the regression parameters in marginal models for longitudinal binary data when the follow-up times are not fixed by design, but can depend on previous outcomes. In particular, we consider assumptions regarding the follow-up time process that result in the likelihood function separating into two components: one for the follow-up time process, the other for the outcome measurement process. The practical implication of this separation is that the follow-up time process can be ignored when making likelihood-based inferences about the marginal regression model parameters. That is, maximum likelihood (ML) estimation of the regression parameters relating the probability of success at a given time to covariates does not require that a model for the distribution of follow-up times be specified. However, to obtain consistent parameter estimates, the multinomial distribution for the vector of repeated binary outcomes must be correctly specified. In general, ML estimation requires specification of all higher-order moments and the likelihood for a marginal model can be intractable except in cases where the number of repeated measurements is relatively small. To circumvent these difficulties, we propose a pseudolikelihood for estimation of the marginal model parameters. The pseudolikelihood uses a linear approximation for the conditional distribution of the response at any occasion, given the history of previous responses. The appeal of this approximation is that the conditional distributions are functions of the first two moments of the binary responses only. When the follow-up times depend only on the previous outcome, the pseudolikelihood requires correct specification of the conditional distribution of the current outcome given the outcome at the previous occasion only. Results from a simulation study and a study of asymptotic bias are presented. Finally, we illustrate the main results using data from a longitudinal observational study that explored the cardiotoxic effects of doxorubicin chemotherapy for the treatment of acute lymphoblastic leukemia in children.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号