首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The idea that invasive species have higher recruitment and tolerate a wider range of conditions than native species requires more rigorous examination across a range of community types. We aimed to compare the recruitment and distribution patterns of adults and seedlings of an exotic invasive plant, glossy buckthorn (Frangula alnus), with four co-occurring native shrub species within a heterogeneous Wisconsin wetland. Detailed vegetation survey data were analyzed for spatial and compositional patterns of shrub distributions. In adult plant frequency and cover, buckthorn was not significantly different from the native winterberry. However, the number of glossy buckthorn seedlings exceeded by more than seven times the combined number of seedlings of the four native species. Sample units containing buckthorn adults were also much more likely to contain seedlings than for native shrubs. However, native seedlings were not more likely to occur at sites lacking adults, suggesting no greater dependence on recruitment away from adults in native species. Buckthorn, winterberry, poison sumac, and dogwood all showed preference for sites with higher tree densities and lower predominance of obligate wetland species in an ordination of 114 species. Glossy buckthorn adults and seedlings and winterberry seedlings were more widely distributed across seven community types than adults and seedlings of the other native species, suggesting broad tolerance to the conditions in different community types. High recruitment is the key factor that may allow glossy buckthorn to overcome community resistance and spread.  相似文献   

2.
Naturalization of Schinus molle (Anacardiaceae) has been observed in semi arid savanna of the Northern Cape Province of South Africa. However, with high dispersal ability, the species is expected to achieve greater densities and invade more widely. The study involved a field manipulation experiment over 14 months using a factorial block design to examine transplanted seedlings in different savanna environments. The experiments examine the effects of soil type (sandy and clay), microsite, and herbivores on seedling performance (establishment, growth and survival). Seedlings were grown in a greenhouse and individually transplanted into four treatment groups: in open grassland, under tree canopies, and with and without cages to exclude large herbivores (cattle and game). The same experiment was repeated in two different soil types: coarse sand and fine-textured clay soil. Results suggest that protection provided by canopies of large indigenous Acacia trees facilitates S. molle invasion into semi-arid savanna. In the field, S. molle seedlings performed considerably better beneath canopies of indigenous Acacia trees than in open areas regardless of soil type. Whether exposed or protected from large herbivores, no seedlings planted in open grassland survived the first winter. Although, seedlings grew better and had higher survival rates beneath tree canopies than in the open sites, exposure to large herbivores significantly decreased heights and canopy areas of seedlings compared with those protected from large herbivores. The effect was greater on clay soil than on sandy soil. The results suggest that low temperature (frost), and possibly inter-specific competition with grasses, may limit S. molle seedling establishment, survival and growth away from tree canopies in semi arid savannas. Low soil nutrient status and browsing may also delay growth and development of this species. The invasive potential of S. molle is thus greatest on fertile soils where sub-canopy microsites are present and browsing mammals are absent.  相似文献   

3.
Deserts shrubs are well known to facilitate vegetation aggregation, mostly through seed trapping, and stress amelioration during and after plant establishment. Because vegetation aggregation effects are a by‐product of shrub presence, beneficiary species may not only be native, but also exotic. However, despite the high risk that exotic invasive species pose to ecosystem services, little is known of the role of desert shrubs on plant invasions. We assessed the influence of two shrub species on the non‐dormant soil seed bank (i.e. the number of seeds that readily germinate with sufficient water availability) of an invasive annual grass (Schismus barbatus) and of coexisting native species in a central‐northern Monte Desert (Argentina). Soil samples were collected beneath the canopies of two dominant shrub species (Bulnesia retama and Larrea divaricata) and in open spaces (i.e. intercanopies) in May 2001. Overall, the density of germinated seedlings of Schismus and that of the native species were negatively associated across microsite types. Schismus density was similar to that of all native species pooled together (mostly annuals), and was highest in Larrea samples (with no significant differences between Bulnesia and intercanopies). On the contrary, the density of all native species pooled together was highest in Bulnesia samples. Our results suggest that shrubs may contribute to plant invasions in our study system but, most importantly, they further illustrate that this influence can be species specific. Further research is needed to assess the relative importance of in situ seed production (and survival) and seed redistribution on soil seed bank spatial patterns.  相似文献   

4.
Invasive species continue to alter the plant communities of the eastern United States. To better understand the mechanisms and characteristics associated with invasive success, we studied competition between two Acer species. In a greenhouse, we tested (1) the effect of forest soil type (beneath an invasive and native stand) on seedling growth of the invasive Acer platanoides (Norway maple) and native A. rubrum (red maple), and the (2) effects of full (above- and below-ground) and partial inter-specific competition on species growth. We found A. rubrum growth was negatively affected by soil from the invaded stand, as it had lower above-ground (32%) and below-ground (26%) biomass, and number of leaves (20%) than in the native soil. The root:shoot resource allocations of A. platanoides depended on soil type, as it had 14% greater root:shoot mass allocation in the native soil; this ability to change root:shoot allocation may be contributing to the ecological success of the species. Widely published as having a large ecological amplitude, A. rubrum may be a useful species for ecological restoration where A. platanoides has been present, but the impacts of A. platanoides on soil functioning and subsequent plant interactions must be addressed before protocols for native reintroductions are improved and implemented.  相似文献   

5.
Below‐ground interactions between soil microbial communities and plants play important roles in shaping plant community structure, but are currently poorly understood. Understanding these processes has important practical implications, including for restoration. In this study, we investigated whether soil microbes from remnant areas can aid the restoration of old‐fields, and whether soil microbes from an old‐field encourages further invasive establishment. In a glasshouse experiment, we measured growth and survival of two native grasses (Austrostipa nodosa and Rytidosperma auriculatum) and an invasive grass (Lolium rigidum) grown in sterile soil inoculated with whole soil from three locations: an old‐field, a remnant grassland, and a seed orchard planted with native grasses 7 years ago. Plants grown in sterile, non‐inoculated soil acted as controls. The orchard inoculant was included to test whether soil microbes from an area cultivated with native grasses induced plant responses similar to remnant areas. The remnant treatment resulted in the highest biomass and no mortality for R. auriculatum. All inoculant types increased the biomass of the invasive species equally. The native grass, A. nodosa, was the most sensitive to the addition of inoculum, whereas the invasive L. rigidum suffered very low mortality across all treatments. Overall, mortality was highest in the old‐field treatment at 42.9%. These results give insights into how soil microbes can affect community structure and dynamics, e.g. the high mortality of natives with old‐field inoculant may be one mechanism that allows invasive species to dominate. Poorer performance of native species with the orchard inoculant suggests it would not make a suitable replacement for remnant soil; therefore, more work is needed to understand the requirements of target species and their interactions before this technique can be exploited to maximum benefit.  相似文献   

6.
The invasive shrub Rhamnus cathartica L. (common buckthorn) dominates the understory of many temperate forests of eastern North America. Common buckthorn outcompetes native understory species for light, forming monospecific stands that suppress plant and animal diversity. Removing common buckthorn is a common management priority within its invasive range. In recent years, forestry mowing has become popular in removing common buckthorn. This control method removes a midstory of common buckthorn, increasing light availability to the lower understory (which could favor buckthorn regeneration) and creating a layer of mulch on the forest floor (which could suppress buckthorn regeneration). Here we investigate whether and how increased light availability and increased ground cover (mulch) resulting from forestry mowing affects buckthorn regeneration from the seed bank. We evaluated buckthorn germination, survival, and early growth in response to a factorial combination of shading treatments and buckthorn mulch depth treatments in an oak forest in Minnesota, U.S.A. Increased light availability increased buckthorn seedling survival and growth, whereas increased mulch depth did not significantly affect the number of buckthorn establishing from seed over one growing season and winter. Thus, removing buckthorn by forestry mowing (or any other method) is likely to facilitate buckthorn reestablishment by increasing light availability at the ground.  相似文献   

7.
Invasive plants apply new selection pressures on neighbor plant species by different means including allelopathy. Recent evidence shows allelopathy functions as remarkably influential mediator for invaders to be successful in their invaded range. However, few studies have determined whether native and non‐native species co‐occurring with invaders have evolved tolerance to allelopathy. In this study, we conducted germination and growth experiments to evaluate whether co‐occurring native Juncus pallidus and non‐native Lolium rigidum species may evolve tolerance to the allelochemicals induced by Cyanara cardunculus in Australian agricultural fields. The test species were germinated and grown in pots filled with collected invaded and uninvaded rhizosphere soil of C. cardunculus with and without activated carbon (AC). Additionally, a separate experiment was done to differentiate the direct effects of AC on the test species. The soil properties showed invaded rhizosphere soils had higher total phenolic and lower pH compared with uninvaded soils. We found significant reduction of germination percentage and seedling growth in terms of above‐ and belowground biomass, and maximum plant height and root length of native in the invaded rhizosphere soil of C. cardunculus, but little effect on non‐native grass species. Even soil manipulated with AC showed no significant differences in the measured parameters of non‐native except aboveground biomass. Taken together, the results indicate allelochemicals induced by C. cardunculus exert more suppressive effects on native than non‐native linking the coevolved tolerance of those.  相似文献   

8.
The invasive exotic tree species Bitter Willow (Salix elaeagnos; Salicaceae) has colonised areas of rank exotic grassland and has been found to contain indigenous seed, dispersed by frugivorous birds into the monospecific stands. This small pilot study examined whether indigenous seedlings that have germinated in the understorey of exotic Bitter Willow stands could be stimulated to establish through the creation of small‐scale canopy gaps. In Bitter Willow forest, four single Bitter Willow trees were poisoned to create canopy gaps. Light transmission and seedling regeneration of tree and shrub species were assessed beneath both the four manipulated and three comparable intact Bitter Willow canopies. Over 3 years, seedling height and density increased more beneath opened compared to intact Bitter Willow canopies. These results suggest that Bitter Willow can fill the roles of both a facilitative nurse and a perch tree. Larger‐scale canopy manipulation experiments of both Bitter Willow and other Salix species are needed to determine the full potential of canopy manipulations for forest restoration.  相似文献   

9.
This study is one of the first to show that invasive plant-induced changes in the soil microbial community can negatively impact native plant performance. This greenhouse experiment tested whether soil microbial communities specific to the rhizospheres of an invasive grass (Aegilops triuncialis) and two native plants (Lasthenia californica and Plantago erecta) affected invasive and/or native plant performance. Each of these species were grown in separate pots for 2 months to prime the soils with plant-specific rhizosphere microbial communities. Each plant species was then planted in native- and invasive-primed soil, and effects on plant performance were monitored. At 5 months, differences in microbial biomarker fatty acids between invaded and native soils mirrored previous differences found in field-collected soil. L. californica performance was significantly reduced when grown in invaded soil compared to native soil (flowering date was delayed, aboveground biomass decreased, specific root length increased, and root mass ratio increased). In contrast, P. erecta and A. triuncialis performance were unaffected when grown in invaded vs native soil. These results suggest that in some cases, invasion-induced changes in the soil microbial community may contribute to a positive feedback loop, leading to the increased dominance of invasive species in an ecosystem.  相似文献   

10.
Exotic plant invasion may alter underground microbial communities, and invasion-induced changes of soil biota may also affect the interaction between invasive plants and resident native species. Increasing evidence suggests that feedback of soil biota to invasive and native plants leads to successful exotic plant invasion. To examine this possible underlying invasion mechanism, soil microbial communities were studied where Ageratina adenophora was invading a native forest community. The plant–soil biota feedback experiments were designed to assess the effect of invasion-induced changes of soil biota on plant growth, and interactions between A. adenophora and three native plant species. Soil analysis showed that nitrate nitrogen (NO3-N), ammonium nitrogen (NH4+-N), and available P and K content were significantly higher in a heavily invaded site than in a newly invaded site. The structure of the soil microbial community was clearly different in all four sites. Ageratina adenophora invasion strongly increased the abundance of soil VAM (vesicular-arbuscular mycorrhizal fungi) and the fungi/bacteria ratio. A greenhouse experiment indicated that the soil biota in the heavily invaded site had a greater inhibitory effect on native plant species than on A. adenophora and that soil biota in the native plant site inhibited the growth of native plant species, but not of A. adenophora. Soil biota in all four sites increased A. adenophora relative dominance compared with each of the three native plant species and soil biota in the heavily invaded site had greater beneficial effects on A. adenophora relative dominance index (20% higher on average) than soil biota in the non-invaded site. Our results suggest that A. adenophora is more positively affected by the soil community associated with native communities than are resident natives, and once the invader becomes established it further alters the soil community in a way that favors itself and inhibits natives, helping to promote the invasion. Soil biota alteration after A. adenophora establishment may be an important part of its invasion process to facilitate itself and inhibit native plants.  相似文献   

11.
Our objective was to evaluate the effects of an invasive perennial forb, Acroptilon repens (Russian knapweed), on seed emergence and seedling survival of four native grass species that are important in semiarid grasslands of North America. Greenhouse experiments and field studies conducted at three sites in Colorado, USA were used to examine the response by four perennial grasses: Bouteloua gracilis, Koelaria cristata, Sporobolus cryptandrus, and Agropyon smithii to A. repens. In the greenhouse, seeds of each species were sown in pots that contained either live A. repens roots, A. repens litter on the soil surface, or both roots and litter. Field transects were placed inside stands of A. repens with adjacent control transects in the surrounding grass-dominated community. Emergence and initial survival were decreased by the presence of A. repens roots for K. cristata (35%), B. gracilis (31%), and S. cryptandrus (44%) in the greenhouse, and 57, 32, and 36%, respectively, in the field. Root weight was decreased by the presence of A. repens roots for both B. gracilis and K. cristata by more than 55% in the greenhouse. A. smithii survival and growth were unaffected by A. repens in either the greenhouse or the field. These species-specific responses to the presence of A. repens may explain, at least in part, differences in susceptibility and recovery of sites with different native grass species composition. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Invasion by exotic plants often is restricted by processes, such as seed predation, acting on early life-history stages; however, the relative importance of these processes might vary among habitats. Modern human land use has created a mosaic of habitats in many landscapes, including the landscape of the northeastern United States. European buckthorn (Rhamnus cathartica) is an exotic plant that has achieved varying success in North American habitats. We studied dispersal, seed survival, germination, and seedling survival of buckthorn populations at four plots in each of sugar maple (Acer saccharum) forests, old fields, and abandoned conifer plantations in central New York State. Dispersal was low in maple forests, as evidenced by low collection rates of R. cathartica seeds in seed traps. Rates of post-dispersal seed predation were highest in maple forests and lowest in old fields, suggesting greater use of maple forests by granivorous rodents. Germination rates did not vary among seeds planted in soils of these habitats when studied in the laboratory despite differences in soil pH. Survival of transplanted seedlings was low in maple forests relative to old fields and plantations. Buckthorn invasion of old fields and abandoned plantations was not strongly constrained by factors we considered, and the buckthorn populations in these habitats were large. A combination of low dispersal by frugivores, low seed survival due to predation, and low seedling survival due to dim light conditions apparently prevents R. cathartica from invasion of intact maple forests of our area. Native fauna and canopy closure may act synergistically to reduce success of invasive plants in natural habitats.  相似文献   

13.
A harmonious interspecies relationship is the key to the success of mixed afforestation. This study was conducted to assess the responses of afforestation species to their neighboring trees. We examined five types of stands—monocultures of Chinese pine (Pinus tabuliformis), black locust (Robinia pseudoacacia), sea‐buckthorn (Hippophae rhamnoides), and two mixtures (Chinese pine × black locust mixture and Chinese pine × sea‐buckthorn mixture)—in the Loess Plateau, northwestern China. The height and diameter at breast height of each tree species were measured, and rhizosphere soil, shoot, and root were sampled. In monocultures, black locust was taller than Chinese pine and sea‐buckthorn, while the height of Chinese pine and sea‐buckthorn was similar. In mixtures, Chinese pine grew better with sea‐buckthorn than alone as a result of modified soil properties and plant nutrition, but not with black locust. When Chinese pine was used as neighbors, it affected the level of arbuscular mycorrhizal (AM) colonization of black locust, soil properties and AM fungal spore density of black locust and sea‐buckthorn, but did not significantly affect their growth. Our results suggest that the reciprocal effects between tree species in mixture are not symmetric, and thus planning for efficient mixed afforestation requires knowledge of species‐specific growth rate, nutrient requirements, and species interactions.  相似文献   

14.
Questions: Can we use local native plants for roadside revegetation? What cultural methods help enhance the process? Location: Trans Canada Highway, Terra Nova National Park, Newfoundland. Objectives: To (1) test stratification requirements for seed ger‐mination, (2) determine if germination, survival and growth of seedlings and stem cuttings of selected plants can be increased by mulching treatments and (3) identify native plants and cultural treatments useful for revegetation. Methods: We tested seed germination of Kalmia angustifoliaIris versicolorJuncus effususEriophorum vaginatum, Clintonia borealis and Cornus canadensis in a greenhouse experiment. We conducted field experiments of roadside revegetation using seeds of K. angustifolia, I. versicolorJ. effusus and E. vaginatum, as well as seedlings of I. versicolor and rooted stem cuttings of Emptrum nigrum and Juniperus communis after hay‐mat mulch and organic matter mulch application. Results: Stratified seeds of K. angustifoliaI. versicolor, J. effusus and E. vaginatum germinated successfully in the greenhouse, whereas C. borealis and C. canadensis seeds did not. Along roadsides, only I. versicolor seeds germinated. Iris versicolor cover increased significantly in organic matter mulch compared to hay‐mat mulch and control. Transplanted I. versicolor seedlings had high survival in all treatments but growth was reduced in organic matter mulch. Survival and growth of stem cuttings of E. nigrum and J. communis were significantly increased on hay‐mat mulch. Application: Rooted stem cuttings of E. nigrum and J. communis planted on hay‐mat mulch can be used as a practical method of roadside revegetation. These shrubs have low structure, are evergreen, and exhibit stress‐tolerance properties, which make them ideal species for roadside revegetation. They are also non‐palatable to wildlife. Roadside ditches can be revegetated by seeds or seedlings of I. versicolor. Robust roots and rhizomes of this plant may provide soil stability and dark green leaves and attractive flowers create aesthetically pleasing vegetation cover.  相似文献   

15.
The mechanisms by which invasive species affect native communities are not well resolved. For example, invasive plants may influence other species through competition, altered ecosystem processes, or other pathways. We investigated one potential mechanism by which invasive plants may harm native species, allelopathy. Specifically, we explored whether native tree species respond differently to potential allelopathic effects of two invasive plant species. We assessed the separate effects of Lolium arundinaceam (tall fescue) and Elaeagnus umbellata (autumn olive) on three common successional tree species: Acer saccharinum (silver maple), Populus deltoides (eastern cottonwood), and Platanus occidentalis (sycamore). Tall fescue and autumn olive are widely planted and highly invasive or persistent throughout North America where they often grow in forest edges, old fields, and other sites colonized by pioneering tree species. In an exploratory greenhouse experiment, we applied aqueous extracts derived from soil, leaf litter, or live leaves to native trees. We compared these treatments to a sterile water control and also to minced leaves leached in water, a common, but potentially less realistic method of testing for allelopathy. For all tree species, minced leaves from tall fescue reduced the probability that seedlings emerged, and minced leaves of autumn olive reduced the number of days to emergence. During other demographic stages, the three native tree species diverged in their responses to the invasive plants. Platanus occidentalis exhibited the widest range of responses, with reduced root biomass due to minced tissue from both invasive species, reduced days to emergence and marginally reduced survival from minced tall fescue, and reduced leaf biomass from tall fescue leaf litter. Populus deltoides appeared insensitive to most extracts, although survival was marginally increased with application of minced or fresh leaf extracts from autumn olive. In addition, minced tall fescue shortened the time to seedling emergence for Acer saccharinum, potentially a positive effect. Overall, results suggest that allelopathy may be one mechanism underlying the negative impacts of tall fescue and autumn olive on other plant species, but that effects can depend strongly upon the source of allelochemicals and the tree species examined.  相似文献   

16.
Scattered trees in grass‐dominated ecosystems often act as islands of fertility with important influences on community structure. Despite the potential for these islands to be useful in restoring degraded rangelands, they can also serve as sites for the establishment of fast growing non‐native species. In California oak savannas, native perennial grasses are rare beneath isolated oaks and non‐native annual grasses dominate. To understand the mechanisms generating this pattern, and the potential for restoration of native grasses under oaks, we asked: what are the effects of the tree understory environment, the abundance of a dominant non‐native annual grass (Bromus diandrus), and soils beneath the trees on survival, growth, and reproduction of native perennial grass seedlings? We found oak canopies had a strong positive effect on survival of Stipa pulchra and Poa secunda. Growth and reproduction was enhanced by the canopy for Poa but negatively impacted for Stipa. We also found that Bromus suppressed growth and reproduction in Stipa and Poa, although less so for Stipa. These results suggest the oak understory may enhance survival of restored native perennial grass seedlings. The presence of exotic grasses can also suppress growth of native grasses, although only weakly for Stipa. The current limitation of native grasses to outside the canopy edge is potentially the result of interference from annual grasses under oaks, especially for short‐statured grasses like Poa. Therefore, control of non‐native annual grasses under tree canopies will enhance the establishment of S. pulchra and P. secunda when planted in California oak savannas.  相似文献   

17.
As temperatures increase in a warming world, there will be different responses among related plant species, with some species able to increase growth rate under warmer conditions and others less likely. Here, we identify survival and growth parameters in a group of 19 related Australian daisies from the genera Brachyscome and Pembertonia when exposed to higher soil temperature, focusing particularly on species from the alpine environment. We used a common garden approach to measure growth and survival under warming. We tested for the effects of evolutionary history by investigating phylogeny and testing for a phylogenetic signal, and for the effects of ecological history by considering climatic variables associated with species distributions in their native range. Evolutionary history did not have a detectable effect on warming responses. While there was a moderate signal for plant growth in the absence of warming, there was no signal for growth changes in response to warming, despite variability among species to warming that ranged from positive to negative growth responses. There was no strong effect of climate context, as species that showed a positive response to warming did not necessarily originate from hotter environments. In fact, several species from hot environments grew relatively poorly when exposed to higher soil temperature. However, species endemic to alpine areas were less likely to benefit from warming than widespread species. We found a strong phylogenetic signal for climate history, in that closely related species tend to occur in areas with similar annual variability in precipitation. Species differences in response to soil warming were variable and difficult to link to climate conditions except for the poor response of alpine endemics. There was no significant association between survival and warming responses of species. However, as some species showed weak growth responses, this may reduce their fitness into the future.  相似文献   

18.
After removing invasive plants, whether by herbicides or other means, typical restoration design focuses on rebuilding native plant communities while disregarding soil microbial communities. However, microbial–plant interactions are known to influence the relative success of native versus invasive plants. Therefore, the abundance and composition of soil microorganisms may affect restoration efforts. We assessed the effect of herbicide treatment on phytosymbiotic pink‐pigmented facultative methylotrophic (PPFM) bacteria and the potential consequences of native and invasive species establishment post‐herbicide treatment in the lab and in a coastal sage scrub (CSS)/grassland restoration site. Lab tests showed that 4% glyphosate reduced PPFM abundance. PPFM addition to seeds increased seedling length of a native plant (Artemisia californica) but not an invasive plant (Hirschfeldia incana). At the restoration site, methanol addition (a PPFM substrate) improved native bunchgrass (Nassella pulchra) germination and size by 35% over controls. In a separate multispecies field experiment, PPFM addition stimulated the germination of N. pulchra, but not that of three invasive species. Neither PPFM nor methanol addition strongly affected the growth of any plant species. Overall, these results are consistent with the hypothesis that PPFMs have a greater benefit to native than invasive species. Together, these experiments suggest that methanol or PPFM addition could be useful in improving CSS/grassland restorations. Future work should test PPFM effects on additional species and determine how these results vary under different environmental conditions.  相似文献   

19.
Abstract. The only trees in most of the Negev desert are 3 native Acacia species. We tested the hypothesis that they act as keystone species as a result of the improved soil conditions under their canopies. Furthermore, because many Acacia populations suffer high levels of mortality due to water stress, we tested whether trees in high mortality populations had diminished effects on plant species and soil quality under their canopies. We show that plant species diversity beneath the tree canopies is higher than in the surrounding areas. There was also a clearly identifiable suite of species with higher occurrence under the trees. Plant species composition differed significantly between high and low mortality sites. However, there was higher species diversity in high mortality sites and under trees with higher water stress. Soil nutrient content was higher under the trees than in the open areas, especially under larger trees and trees with higher water status. The results indicate that there is a combination of positive and negative effects of Acacia trees on the under‐canopy environment, which may include positive effects of higher soil nutrients and a negative influence of higher soil salinity.  相似文献   

20.
Twelve endophytic bacteria were isolated from the meristem of in vitro Cymbidium eburneum orchid, and screened according to indole yield quantified by colorimetric assay, in vitro phosphate solubilization, and potential for plant growth promotion under greenhouse conditions. Eight strains with positive results were classified into the genus Paenibacillus by FAME profile, and evaluated for their ability to increase survival and promote the growth of in vitro germinated Cattleya loddigesii seedlings during the acclimatization process. The obtained results showed that all strains produced detectable indole levels and did not exhibit potential for solubilizing inorganic phosphate. Particularly, an increase of the total biomass and number of leaves was observed. Two strains of Paenibacillus macerans promoted plant growth under greenhouse conditions. None of the treatments had a deleterious effect on growth of inoculated plants. These results suggest that these bacterial effects could be potentially useful to promote plant growth during seedling acclimatization in orchid species other than the species of origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号