首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
用简单、快速的方法从玉米幼苗初生叶分离出完整的有功能的叶肉原生质体和维管束鞘细胞束。羧化酶分布表明,初生叶属典型C_4型代谢。叶肉原生质体在光和暗中CO_2固定速率分别为7.2和 21.6 μmol·mg~(-1)chl·h~(-1)。加 10 mmol L~(-1)PEP,暗中的CO_2固定速率提高三倍,在光下PEP只有微弱促进作用。离体的维管束鞘细胞束也有一定的CO_2固定能力。  相似文献   

2.
玉米叶片淀粉和蔗糖的昼夜变化与光合产物的输出   总被引:4,自引:0,他引:4  
玉米叶片淀粉和蔗糖的昼夜变化有一定的规律,早晨叶片经日照后优先合成与积累蔗糖,并不断地从叶片中输出;淀粉的合成比蔗糖延迟,在蔗糖迅速积累的时候淀粉增长的速率为0.15 mg/10 cm~2/hr,当蔗糖的含量达恒态时淀粉增长的速率为 0.31mg/10 cm~2/hr;傍晚后二者的含量均迅速下降,经过一夜蔗糖的含量又降到前晨的水平,淀粉则降解殆尽。二者都是玉米叶片光合产物的暂贮形式。叶片白天光合产物的输出量为3.mg/10cm~2,夜晚为2.8mg/10cm~2。 当玉米叶片光合产物的输出受阻碍后,蔗糖与淀粉的积累速率均比对照增强,蔗糖合成的总量比对照减少25%,淀粉则增加80%;夜晚淀粉因用于呼吸消耗降解了11%;翌日叶片的光合作用显著下降,淀粉的合成减少38%;傍晚后以至翌日在光下叶片蔗糖的含量不大变化。 玉米叶片从暗(光)中转至光(暗)中不同时间P_i的含量无显著变化;光合产物的输出受阻碍后P_i的含量亦与对照差不多。看来P_i含量不是调节玉米叶片光合产物转化、积累与输出的重要因素。 暗一预处理的玉米植株照光后叶片淀粉合成的滞缓期延长,积累速率减缓,合成蔗糖的趋势则增强。大豆,甜菜叶片照光后淀粉的合成亦存在滞缓期。  相似文献   

3.
无机磷对叶片淀粉和蔗糖积累的影响   总被引:1,自引:0,他引:1  
C_3植物大豆的叶片无机磷含量随年龄增长而降低,淀粉则显著增加。蔗糖积累数量较少,随叶龄增长略有增加。 不同浓度P_i处理的大豆植株,在光合不变的情况下,随着叶片中P_i含量的增加,淀粉积累不断减少,蔗糖不断增多。各种年龄的大豆叶片都在含较多P_i时有利于蔗糖合成,不利于淀粉合成。 C_4植物玉米经不同浓度P_i处理,叶淀粉与蔗糖的积累都稳定在一定水平上。P_i浓度过高时,积累数量都下降。在C_4植物玉米叶组织中,P_i含量的变化不是调节淀粉与庶糖合成的重要因素。在C_3植物大豆和C_4植物玉米的叶组织中,P_i对淀粉和蔗糖合成的影响是不同的。  相似文献   

4.
用电镜对比研究了C_3植物Serradella,C_4型玉米和C_4型水牛草的叶组织切片的超微结构。结果表明C_3型Serradella和C_4型玉米和水牛草叶绿体超微结构的区別:C_4型叶内有维管束鞘细胞和叶肉细胞,分別具有不同类型的叶绿体,其维管束鞘细胞的叶绿体没有基粒结构,在叶肉细胞的叶绿体具有明显的基粒结构;C_3型叶内只有叶肉细胞和一种只有基粒结构的叶绿体。这种超微结构的不同,决定了它们在光合效率上的差异。  相似文献   

5.
玉米、小麦、水稻原生质体制备条件优化   总被引:3,自引:0,他引:3  
玉米Zea mays L.、小麦Triticum aestivum L.、水稻Oryza sativaL.是三大重要粮食作物,对其原生质体制备条件的优化具有重要意义.以玉米(综3)、小麦(中国春)、水稻(日本晴)10日龄幼苗为材料,研究了叶肉细胞原生质体分离过程中的酶浓度、酶解时间和离心力大小等因素对产量和活力的影响.结果表明:酶浓度和酶解时间对原生质体产量影响显著,随着酶解液浓度和酶解时间的提高,原生质体产量增加,但细胞碎片同时增多.水稻经真空处理后,原生质体产量大幅度提高.通过正交实验设计得出如下结果:玉米叶肉细胞原生质体分离的最佳条件为:纤维素酶1.5%,离析酶0.5%,50 r/min酶解7h,100×g离心2 min收集,原生质体产量为7×106/g FW;小麦叶肉细胞原生质体分离的最佳条件为:纤维素酶1.5%,离析酶0.5%,50 r/min酶解5h,100×g离心2 min收集,原生质体产量为6×106/g FW;水稻叶肉细胞原生质体分离的最佳条件为:纤维素酶2.0%,离析酶0.7%,50 r/min酶解7h,1 000×g离心2 min收集,得到的原生质体产量为6×106/g FW.通过二乙酸荧光素染色发现原生质体活力均在90%以上.用PEG-Ca2+介导法将含有绿色荧光蛋白的质粒转化入原生质体,转化率可达50% ~80%.  相似文献   

6.
用酶解_研磨法分离出烟草 (NicotianatabacumL .)受精后胚囊和初生胚乳细胞进行微室饲养培养。培养基为Km8p附加各种其他成分 ,饲养细胞为分裂旺盛的烟草叶肉原生质体 ,在 2 5℃下静止暗培养。培养 3d后 ,初生胚乳细胞开始第一次分裂 ,继续分裂至 14d时形成大的细胞团。首次报道了双子叶植物初生胚乳细胞的离体发育。  相似文献   

7.
杨树叶薄层培养中不定芽形态发生的细胞组织学研究   总被引:3,自引:0,他引:3  
过全生 《Acta Botanica Sinica》1997,39(12):1131-1137
将杂种杨树(Populus nigra var.betulifolia×P.trichocarpe)NE299叶主脉用振动切片机横切成400μm或800μm的薄切片,培养在附加0.2mg/L BA和0.01mg/L NAA的木本植物培养基上。培养后,位于主脉维管束两侧中上部的维管束鞘薄壁细胞首先启动分裂。几乎同时,与其邻接的一些栅栏组织细胞也分裂,并很快形成胚性分生细胞团。主脉的愈伤组织主要由维管束鞘薄壁细胞,以及与其邻接的一些栅栏组织细胞和韧皮部的薄壁细胞分裂而来。不定芽通常发生在愈伤组织的周边区,也可以起源于维管组织结节(vascular nodules)周围的形成层状细胞。侧脉的维管束鞘细胞分裂活动很强,可不经愈伤组织直接长成不定芽。杨树叶主脉处的维管束鞘薄壁细胞在与叶肉组织相邻接的细胞中,通常含有少量较小的叶绿体,而位于背腹面的细胞中含有贮藏的淀粉。对形态发生的特定部位及其细胞进行了讨论。  相似文献   

8.
运用免疫金标记电镜技术研究了禾本科C3植物大麦(Hordeum vulgare L.)和C4植物玉米(Zea mays L.)叶片中Rubisoo及其活化酶(RCA)的细胞定位,结果表明:两种植物叶片解剖结构及叶绿体超微结构差别明显.在大麦叶细胞中,只有一种叶肉细胞叶绿体,Rubisoo和RCA主要分布于叶绿体的间质中.在玉米叶细胞中,存在着维管束鞘细胞和叶肉细胞两种类型叶绿体,Rubisco主要分布于鞘细胞叶绿体的基质中,但在叶肉细胞叶绿体中亦有少量特异性标记;RCA在鞘细胞叶绿体和叶肉细胞叶绿体的基质中都有分布.两种植物叶绿体结构及光合作用关键酶定位的不同,体现了C3植物和C4植物在光合器结构与功能上的差异.  相似文献   

9.
刘林 《植物生理学通讯》2012,(10):1005-1010
为揭示蔗糖能否引起植物胚轴维管束细胞数量增多,将拟南芥播种于添加88mmol·L-1蔗糖和不添加糖的MS培养基上,对生长在不同培养基上的幼苗胚轴横切,显微镜下统计切片上维管束细胞数量。结果显示,与不加糖相比,加糖条件下萌发4d后幼苗维管束细胞总数增加约70%,维管薄壁细胞和导管分子都增加100%以上,筛管分子增加约90%,中柱鞘细胞数量不变。显然,蔗糖不仅使维管束薄壁细胞数量增多,也使筛管分子和导管分子数量增多。因此认为,添加蔗糖对拟南芥幼苗胚轴维管束具有双重效应,既引起维管薄壁细胞增殖,又促进维管薄壁细胞分化,从而使导管分子和筛管分子数量增多。  相似文献   

10.
叶片光合产物输出的抑制与淀粉和蔗糖的积累   总被引:7,自引:0,他引:7  
选择糖叶、淀粉叶及中间型植物叶片用水烫法处理叶片基部或将离体叶片插在水中,或用环剥的方法阻碍叶片输出光合产物与自然对照对比分析,观察输出与否对叶片淀粉与蔗糖合成的影响。 糖叶与中间型叶片在进行光合作用的同时有相当数量的光合产物输出,淀粉叶在光合作用的同时很少光合产物输出。糖叶输出停滞时主要增加蔗糖的积累。中间型叶片输出停滞时蔗糖与淀粉的积累均比对照增加。淀粉叶处理与否同淀粉与蔗糖的积累无显著差异。  相似文献   

11.
Kanai R  Edwards GE 《Plant physiology》1973,51(6):1133-1137
Mesophyll protoplasts and bundle sheath strands of maize (Zea mays L.) leaves have been isolated by enzymatic digestion with cellulase. Mesophyll protoplasts, enzymatically released from maize leaf segments, were further purified by use of a polyethylene glycol-dextran liquid-liquid two phase system. Bundle sheath strands released from the leaf segments were isolated using filtration techniques. Light and electron microscopy show separation of the mesophyll cell protoplasts from bundle sheath strands. Two varieties of maize isolated mesophyll protoplasts had chlorophyll a/b ratios of 3.1 and 3.3, whereas isolated bundle sheath strands had chlorophyll a/b ratios of 6.2 and 6.6. Based on the chlorophyll a/b ratios in mesophyll protoplasts, bundle sheath cells, and whole leaf extracts, approximately 60% of the chlorophyll in the maize leaves would be in mesophyll cells and 40% in bundle sheath cells. The purity of the preparations was also evident from the exclusive localization of phosphopyruvate carboxylase (EC 4.1.1.31) and NADP-dependent malate dehydrogenase (EC 1.1.1) in mesophyll cells and ribulose 1,5-diphosphate carboxylase (EC 4.1.1.39), phosphoribulokinase (EC 2.7.1.19), and “malic enzyme” (EC 1.1.1.40) in bundle sheath cells. NADP-glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) was found in both mesophyll and bundle sheath cells, while ribose 5-phosphate isomerase (EC 5.3.1.6) was primarily found in bundle sheath cells. In comparison to the enzyme activities in the whole leaf extract, there was about 90% recovery of the mesophyll enzymes and 65% recovery of the bundle sheath enzymes in the cellular preparations.  相似文献   

12.
Mesophyll and bundle sheath cells of maize leaves were separated and enzymes of starch and sucrose metabolism assayed. The starch content and activities of ADPglucose (ADPG) starch synthetase and phosphorylase expressed both on a chlorophyll and a protein basis were much lower in mesophyll cells compared to bundle sheath preparations. Exposure of the leaves to continuous illumination for 2·5 days caused the starch content of mesophyll cells to rise greatly and led to considerable increases in ADPG starch synthetase and phosphorylase activity. In glasshouse grown leaves the bulk of invertase, sucrose phosphate synthetase, sucrose phosphatase, UDPglucose pyrophosphorylase and amylase was situated in the mesophyll layer. Sucrose synthetase, ADPG starch synthetase and phosphorylase were largely confined to the bundle sheath. No enzyme could be completely assigned to one particular cell layer. Upon continuous illumination both ADPG starch synthetase and phosphorylase increased in the mesophyll bythe same relative amount. The mesophyll is likely to be a major site for sucrose synthesis in maize leaves.  相似文献   

13.
The cellular distribution of the starch biosynthetic and degradative enzymes in protoplasts prepared from maize leaf mesophyll and bundle sheath cells was investigated. In conformity with the cellular distribution of starch, starch biosynthetic enzymes (soluble starch synthase, ADPglucose pyrophosphorylase, branching enzyme and starch Phosphorylase) were exclusively localized in the bundle sheath cells. In contrast, starch degradative enzymes (α-amylase, β-amylase and debranching enzyme) were present in both types of leaf cells. Isolated chloroplasts from bundle sheath cells were shown to contain 100% of the starch biosynthetic enzymes. However, approximately 60% of the activity of degradative enzymes and 67% of the activity of starch Phosphorylase was localized in bundle sheath chloroplasts.  相似文献   

14.
Mesophyll protoplasts and bundle sheath strands were isolated from maize leaves. Light microscopic observation showed the preparations were pure and without cross contamination. Protein blot analysis of mesophyll and bundle sheath cell soluble protein showed that the concentration of pyruvate orthophosphate dikinase (EC 2.7.9.1) is about one-tenth as much in the bundle sheath cells as in mesophyll cells, but about eight times greater than that found in wheat leaves, on the basis of soluble protein. Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was barely detectable in the bundle sheath cells, while ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and NADP-dependent malic enzyme (EC 1.3.1.37) were exclusively present in the bundle sheath cells and were absent in the mesophyll cells. Whereas pyruvate, Pi dikinase was previously considered localized only in mesophyll cells of C4 plants, these results clearly demonstrate the presence of appreciable quantities of the enzyme in the bundle sheath cells of the C4 species maize.  相似文献   

15.
The intercellular localization of enzymes involved in starch metabolism and the kinetic properties of ADPglucose pyrophosphorylase were studied in mesophyll protoplasts and bundle sheath strands separated by cellulase digestion of Zea mays L. leaves. Activities of starch synthase, branching enzyme, and ADPglucose pyrophosphorylase were higher in the bundle sheath, whereas the degradative enzymes, starch phosphorylase, and amylase were more evenly distributed and slightly higher in the mesophyll. ADPglucose pyrophosphorylase partially purified from the mesophyll and bundle sheath showed similar apparent affinities for Mg2+, ATP, and glucose-1-phosphate. The pH optimum of the bundle sheath enzyme (7.0-7.8) was lower than that of the mesophyll enzyme (7.8-8.2). The bundle sheath enzyme showed greater activation by 3-phosphoglycerate than did the mesophyll enzyme, and also showed somewhat higher apparent affinity for 3-phosphoglycerate and lower apparent affinity for the inhibitor, orthophosphate. The observed activities of starch metabolism pathway enzymes and the allosteric properties of the ADPglucose pyrophosphorylases appear to favor the synthesis of starch in the bundle sheath while restricting it in the mesophyll.  相似文献   

16.
The distribution of nitrite reductase (EC 1.7.7.1) and sulfite reductase (EC 1.8.7.1) between mesophyll ceils and bundle sheath cells of maize ( Zea mays L. cv. Seneca 60) leaves was examined. This examination was complicated by the fact that both of these enzymes can reduce both NO-2 and SO2-3 In crude extracts from whole leaves, nitrite reductase activity was 6 to 10 times higher than sulfite reductase activity. Heat treatment (10 min at 55°C) caused a 55% decrease in salfite reductase activity in extracts from bundle sheath cells and mesophyll cells, whereas the loss in nitrite reductase activity was 58 and 82% in bundle sheath cells and mesophyll cell extracts, respectively. This result was explained, together with results from the literature, by the hypothesis that sulfite reductase is present in both bundle sheath cells and mesophyll cells, and that nitrite reductase is restricted to the mesophyll cells. This hypothesis was tested i) by comparing the distribution of nitrite reductase activity and sulfite reductase activity between bundle sheath and mesophyll cells with the presence of the marker enzymes ribulose-l, 5-bisphosphate carboxylase (EC 4.1.1.39) and phosphoe-nolpyruvate carboxylase (EC 4.1.1.32), ii) by examining the effect of cultivation of maize plants in the dark without a nitrogen source on nitrite reductase activity and sulfite reductase activity in the two types of cells, and iii) by studying the action of S2-on the two enzyme activities in extracts from bundle sheath and mesophyll cells. The results from these experiments are consistent with the above hypothesis.  相似文献   

17.
Mesophyll cells and bundle sheath strands were isolated rapidly from leaves of the C4 species Digitaria pentzii Stent. (slenderstem digitgrass) by a chopping and differential filtration technique. Rates of CO2 fixation in the light by mesophyll and bundle sheath cells without added exogenous substrates were 6.3 and 54.2 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of pyruvate or phosphoenolpyruvate to the mesophyll cells increased the rates to 15.2 and 824.6 micromoles of CO2 per milligram of chlorophyll per hour, respectively. The addition of ribose 5-phosphate increased the rate for bundle sheath cells to 106.8 micromoles of CO2 per milligram of chlorophyll per hour. These rates are comparable to those reported for cells isolated by other methods. The Km(HCO3) for mesophyll cells was 0.9 mm; for bundle sheath cells it was 1.3 mm at low, and 40 mm at higher HCO3 concentrations. After 2 hours of photosynthesis by mesophyll cells in 14CO2 and phosphoenolpyruvate, 88% of the incorporated 14C was found in organic acids and 0.8% in carbohydrates; for bundle sheath cells incubated in ribose 5-phosphate and ATP, more than 58% of incorporated 14C was found in carbohydrates, mainly starch, and 32% in organic acids. These findings, together with the stimulation of CO2 fixation by phosphoenolpyruvate for mesophyll cells and by ribose 5-phosphate plus ATP for bundle sheath cells, and the location of phosphoenolpyruvate and ribulose bisphosphate carboxylases in mesophyll and bundle sheath cells, respectively, are in accord with the scheme of C4 photosynthesis which places the Calvin cycle in the bundle sheath and C4 acid formation in mesophyll cells.  相似文献   

18.
Keunecke M  Hansen UP 《Planta》2000,210(5):792-800
The isolation of bundle sheath protoplasts from leaves of Zea mays L. for patch clamp whole-cell experiments presents special problems caused by the suberin layer surrounding these cells. These problems were overcome by the isolation technique described here. Two different types of whole-cell response were found: a small response caused by MB-1 (maize bundle sheath conductance type 1) which was instantaneously activated, and another caused by MB-2 (maize bundle sheath conductance type 2) consisting of an instantaneous response (maize bundle sheath K+ instantaneous current type 2; MB-KI2) similar to but stronger than the current through MB-1 plus a small time-dependent outward rectifying component (maize bundle sheath activated outward rectifying current; MB-AOR) with voltage-dependent delayed activation. The occurrence of MB-AOR was often accompanied by a smaller contribution from an inward rectifying channel at negative potentials. Activation of MB-2 required ATP. It is suggested that MB-1 and MB-2 are related to bundle sheath cells with and without direct contact with the xylem vessels. In mesophyll cells, only one type of response caused by MM-2 (maize mesophyll conductance type 2) was found with an instantaneous (maize mesophyll K+ instantaneous current type 2, MM-KI2) and a voltage-dependent delayed component (maize mesophyll activated outward rectifying current, MM-AOR). The most striking difference between bundle sheath and mesophyll cells was the pH dependence of K+ uptake. At pH 7.2, uptake of K+ by MB-2 was identical to that by MM-2 over the whole voltage range. However, acidification stimulated K+ conductance in bundle sheath cells, whereas a decrease was found for MM-2. At pH 6.15, the bundle sheath channel MB-2 had more than a 10-fold higher K+ uptake at positive and negative potentials than MM-2. The channel MB-1, too, was stimulated by low pH. This seems to indicate a putative role for MB-1 and MB-2 in charge balance during uptake of nutrients via cotransport from the xylem into the symplasm. Received: 23 April 1999 / Accepted: 19 July 1999  相似文献   

19.
Glycolate oxidase (EC 1.1.3.15) activity was detected both in the bundle sheath (79%) and mesophyll (21%) tissues of maize leaves. Three peaks of glycolate oxidase activity were separated from maize leaves by the linear KCl gradient elution from the DEAE-Toyopearl column. The first peak corresponded to the glycolate oxidase isoenzyme located in the bundle sheath cells, the second peak had a dual location and the third peak was related to the mesophyll fraction. The mesophyll isoenzyme showed higher affinity for glycolate (Km 23 micromol x L(-1)) and a higher pH optimum (7.5-7.6) as compared to the bundle sheath isoenzyme (Km 65 micromol x L(-1), pH optimum 7.3). The bundle sheath isoenzyme was strongly activated by isocitrate and by succinate while the mesophyll isoenzyme was activated by isocitrate only slightly and was inhibited by succinate. It is concluded that although the glycolate oxidase activity is mainly attributed to the bundle sheath, conversion of glycolate to glyoxylate occurs also in the mesophyll tissue of C4 plant leaves.  相似文献   

20.
The distribution of antioxidants between bundle sheath and mesophyll cells of maize leaves was analysed in plants grown at 20 degrees C, 18 degrees C and 15 degrees C. The purity of the isolated bundle sheath and mesophyll fractions was determined using compartment-specific marker enzymes. In plants grown at 15 degrees C, ascorbate peroxidase, CuZn-superoxide dismutase (CuZn-SOD) and monodehydroascorbate reductase activities were increased in the bundle sheath cells, and glutathione reductase, dehydroascorbate reductase and monodehydroascorbate reductase activities were enhanced in the mesophyll cells. SOD was absent from the mesophyll of plants grown at 20 degrees C but an Fe-SOD activity was found in the mesophyll of plants grown at 15 degrees C. Foliar Mn-SOD activities were decreased at 15 degrees C compared to 20 degrees C. Catalase was undetectable in the mesophyll extracts of plants grown at 15 degrees C. Ascorbate and glutathione contents were considerably higher in the mesophyll than the bundle sheath fractions of plants grown at 20 degrees C. The ratios of reduced to oxidized forms of these antioxidants were significantly decreased in the bundle sheath, but increased in the mesophyll of leaves grown at 15 degrees C. Foliar H2O2 accumulated at 15 degrees C compared to 20 degrees C. Most of the foliar H2O2 was localized in the mesophyll tissues at all growth temperatures. The differential distribution of antioxidants between leaf bundle sheath and mesophyll tissues, observed at 20 degrees C, is even more pronounced when plants are grown at 15 degrees C and may contribute to the extreme sensitivity of maize to low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号