首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
2.
Efficient vaccine delivery to mucosal tissues including mucosa-associated lymphoid tissues is essential for the development of mucosal vaccine. We previously reported that claudin-4 was highly expressed on the epithelium of nasopharynx-associated lymphoid tissue (NALT) and thus claudin-4-targeting using C-terminal fragment of Clostridium perfringens enterotoxin (C-CPE) effectively delivered fused antigen to NALT and consequently induced antigen-specific immune responses. In this study, we applied the C-CPE-based vaccine delivery system to develop a nasal pneumococcal vaccine. We fused C-CPE with pneumococcal surface protein A (PspA), an important antigen for the induction of protective immunity against Streptococcus pneumoniae infection, (PspA-C-CPE). PspA-C-CPE binds to claudin-4 and thus efficiently attaches to NALT epithelium, including antigen-sampling M cells. Nasal immunization with PspA-C-CPE induced PspA-specific IgG in the serum and bronchoalveolar lavage fluid (BALF) as well as IgA in the nasal wash and BALF. These immune responses were sufficient to protect against pneumococcal infection. These results suggest that C-CPE is an efficient vaccine delivery system for the development of nasal vaccines against pneumococcal infection.  相似文献   

3.
Recent studies indicate that the mechanism of nasopharynx-associated lymphoid tissue (NALT) organogenesis is different from that of other lymphoid tissues. NALT has an important role in the induction of mucosal immune responses, including the generation of T helper 1 and T helper 2 cells, and IgA-committed B cells. Moreover, intranasal immunization can lead to the induction of antigen-specific protective immunity in both the mucosal and systemic immune compartments. Therefore, a greater understanding of the differences between NALT and other organized lymphoid tissues, such as Peyer's patches, should facilitate the development of nasal vaccines.  相似文献   

4.
We previously identified follicular dendritic cell secreted protein (FDC-SP), a small secreted protein of unknown function expressed in human tonsillar germinal centers (GC). To assess potential in vivo activities of FDC-SP, transgenic mice were generated to constitutively express FDC-SP in lymphoid tissues. FDC-SP transgenic mice show relatively normal development of immune cell populations, with the exception of a small increase in mature follicular B cells, and normal lymphoid tissue architecture. Upon immunization with a T-dependent Ag, FDC-SP transgenic mice were capable of producing an Ag-specific Ab; however, the titers of Ag-specific IgG2a and IgE were significantly reduced. GC responses after immunization were markedly diminished, with transgenic mice showing decreased numbers and sizes of GCs but normal development of follicular dendritic cell networks and normal positioning of GCs. FDC-SP transgenic mice also showed reduced production of Ag-specific IgG3 Ab after immunization with a type II T-independent Ag, suggesting that the FDC-SP can also regulate the induction of B cell responses outside the GC. Purified FDC-SP transgenic B cells function normally in vitro, with the exception of blunted chemotaxis responses to CXCL12 and CXCL13. FDC-SP can induce the chemotaxis of CD40-stimulated nontransgenic B cells and can significantly enhance B cell migration in combination with chemokines, indicating that FDC-SP may function in part by regulating B cell chemotaxis. These results provide the first evidence for immunomodulatory activities of FDC-SP and implicate this molecule as a regulator of B cell responses.  相似文献   

5.
Nasal administration of Ags using a novel hybrid Ag delivery vehicle composed of envelope glycoproteins of Sendai virus on the surface of liposome membranes (fusogenic liposome) efficiently delivered Ags to Ag-sampling M cells in nasopharyngeal-associated lymphoreticular tissue. Additionally, fusogenic liposomes also effectively delivered the Ags into epithelial cells and macrophages in nasopharyngeal-associated lymphoreticular tissue and nasal passages. In vitro Ag presentation assays clearly showed that fusogenic liposomes effectively presented encapsulated Ags via the MHC class II-dependent pathway of epithelial cells as well as macrophages. Fusogenic liposomes also have an adjuvant activity against mucosal epithelial cells to enhance MHC class II expression. According to these high delivery and adjuvant activities of fusogenic liposomes, nasal immunization with OVA-encapsulated fusogenic liposomes induced high levels of OVA-specific CD4(+) Th1 and Th2 cell responses. Furthermore, Ag-specific CTL responses and Ab productions were also elicited at both mucosal and systemic sites by nasal immunization with Ag-encapsulated fusogenic liposomes. These results indicate that fusogenic liposome is a versatile and effective system for the stimulation of Ag-specific immune responses at both mucosal and systemic compartments.  相似文献   

6.
7.
The mechanisms underlying better immune protection by mucosal vaccination have remained poorly understood. In our current study we have investigated the mechanisms by which respiratory virus-mediated mucosal vaccination provides remarkably better immune protection against pulmonary tuberculosis than parenteral vaccination. A recombinant adenovirus-based tuberculosis (TB) vaccine expressing Mycobacterium tuberculosis Ag85A (AdAg85A) was administered either intranasally (i.n.) or i.m. to mice, and Ag-specific CD4 and CD8 T cell responses, including frequency, IFN-gamma production, and CTL, were examined in the spleen, lung interstitium, and airway lumen. Although i.m. immunization with AdAg85A led to activation of T cells, particularly CD8 T cells, in the spleen and, to a lesser extent, in the lung interstitium, it failed to elicit any T cell response in the airway lumen. In contrast, although i.n. immunization failed to effectively activate T cells in the spleen, it uniquely elicited higher numbers of Ag-specific CD4 and CD8 T cells in the airway lumen that were capable of IFN-gamma production and cytolytic activities, as assessed by an intratracheal in vivo CTL assay. These airway luminal T cells of i.n. immunized mice or splenic T cells of i.m. immunized mice, upon transfer locally to the lungs of naive SCID mice, conferred immune protection against M. tuberculosis challenge. Our study has demonstrated that the airway luminal T cell population plays an important role in immune protection against pulmonary TB, thus providing mechanistic insights into the superior immune protection conferred by respiratory mucosal TB vaccination.  相似文献   

8.
In this study, we investigated whether isolated lymphoid follicles (ILF) play a role in the regulation of intestinal IgA antibody (Ab) responses. The transfer of wild type (WT) bone marrow (BM) to lymphotoxin-alpha-deficient (LTalpha(-/-)) mice resulted in the formation of mature ILF containing T cells, B cells, and FDC clusters in the absence of mesenteric lymph nodes and Peyer's patches. Although the ILF restored total IgA Abs in the intestine, antigen (Ag)-specific IgA responses were not induced after oral immunization with recombinant Salmonella expressing fragment C of tetanus toxin. Moreover, Ag-specific cell proliferation was not detected in the ILF. Interestingly, no IgA anti-LPS Abs were detected in the fecal extracts of LTalpha(-/-) mice reconstituted with WT BM. On the basis of these findings, ILF can be presumed to play a role in the production of IgA Abs, but lymphoid nodules are not inductive sites for the regulation of Ag-specific intestinal IgA responses to recombinant Salmonella.  相似文献   

9.
Primary allergic sensitization--IgE formation after Ag exposure--is fundamental in the development of allergic respiratory disease. With the rising prevalence of asthma and allergic rhinitis, improved understanding of the determining factors for allergic sensitization is needed. Human epidemiologic studies suggest high-dose allergen exposure may paradoxically protect against sensitization. Prospective human studies of allergen dose effect on primary allergic sensitization are lacking. We prospectively examined the effect of respiratory Ag dose exposure on the rate of primary allergic sensitization to a neoantigen, keyhole limpet hemocyanin, using a unique model of human nasal allergic sensitization. Atopic human subjects were exposed to 0.1-, 10-, 1,000-, or 100,000-mug doses of intranasal keyhole limpet hemocyanin in conjunction with adjuvant intranasal diesel exhaust particles. Ag-specific IgE, IgG, and IgG4 were measured in nasal lavage samples at the conclusion of the sensitization protocol. Allergic sensitization rates for the 0.1-, 10-, 1,000-, and 100,000-mug dose groups were 0, 100, 57, and 11%, respectively. All subjects produced Ag-specific IgG with the highest levels observed in the high-dose group. These results provide direct evidence that primary allergic sensitization may be prevented by initial high levels of respiratory Ag exposure through induction of a modified, nonallergic immune response. This Ag dose effect was capable of overcoming the well-established allergic adjuvant effects of diesel exhaust particle exposure. Whether this immune response represents durable allergic tolerance is not yet known. Studies investigating the molecular mechanisms of this non-IgE response may be useful in developing therapy to prevent allergic sensitization.  相似文献   

10.
Nasal immunization of normal mice with HIVgp160-encapsulated hemagglutinating virus of Japan (HVJ)-liposome induced high titers of gp160-specific neutralizing IgG in serum and IgA in nasal wash, saliva, fecal extract, and vaginal wash, along with both Th1- and Th2-type responses. HIVgp160-specific IgG- and IgA-producing cells were also detected in mononuclear cells isolated from spleen, nasal cavity, salivary gland, intestinal lamina propria, and vaginal tissue of nasally immunized mice. In addition, CD8(+) CTLs were induced in mice nasally immunized with gp160-HVJ-liposome. These findings suggest that two layers of effective HIV-specific humoral and cellular immunity, in mucosal and systemic sites, were induced by this nasal vaccine. In immunodeficient mice, nasal immunization with gp160-HVJ-liposome induced Ag-specific immune responses for the systemic and mucosal compartments of both Th1 (IFN-gamma(-/-)) and Th2 (IL-4(-/-)). In vitro Ag-specific serum IgG Ab and vaginal wash samples possessing IgA and IgG Abs that had been induced by nasal immunization with gp160-HVJ-liposome were able to neutralize a clinically isolated strain of HIV-MN strain isolated from Japanese hemophiliac patients. Taken together, these results suggest that, for the prevention and control of AIDS, nasally administered gp160-HVJ-liposome is a powerful immunization tool that induces necessary Ag-specific immune responses at different stages of HIV infection.  相似文献   

11.
Aluminum hydroxide salts (alum) have been added to inactivated vaccines as safe and effective adjuvants to increase the effectiveness of vaccination. However, the exact cell types and immunological factors that initiate mucosal immune responses to alum adjuvants are unclear. In this study, the mechanism of action of alum adjuvant in nasal vaccination was investigated. Alum has been shown to act as a powerful and unique adjuvant when added to a nasal influenza split vaccine in mice. Alum is cytotoxic in the alveoli and stimulates the release of damage-associated molecular patterns, such as dsDNA, interleukin (IL)-1α, and IL-33. We found that Ag-specific IgA antibody (Ab) production was markedly reduced in IL-33-deficient mice. However, no decrease was observed in Ag-specific IgA Ab production with DNase I treatment, and no decrease was observed in IL-1α/β or IL-6 production in IL-33-deficient mice. From the experimental results of primary cultured cells and immunofluorescence staining, although IL-1α was secreted by alveolar macrophage necroptosis, IL-33 release was observed in alveolar epithelial cell necroptosis but not in alveolar macrophages. Alum- or IL-33-dependent Ag uptake enhancement and elevation of OX40L expression were not observed. By stimulating the release of IL-33, alum induced Th2 immunity via IL-5 and IL-13 production in group 2 innate lymphoid cells (ILC2s) and increased MHC class II expression in antigen-presenting cells (APCs) in the lung. Our results suggest that IL-33 secretion by epithelial cell necroptosis initiates APC- and ILC2-mediated T cell activation, which is important for the enhancement of Ag-specific IgA Ab production by alum.  相似文献   

12.
Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c(+) dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c(+) DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c(+) DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c(+) DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4(+) T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4(+) T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c(+) DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.  相似文献   

13.
Fusion proteins consisting of the ligand-binding domain of CTLA4 covalently attached to an antigen (Ag) are potent immunogens. This fusion strategy effectively induces Ag-specific immunity both when introduced as a DNA-based vaccine and as a recombinant protein. CTLA4 is a ligand for B7 molecules expressed on the surface of antigen-presenting cells (APCs), and this interaction is critical for the fusion protein to stimulate Ag-specific immunity. We show that interaction of the fusion protein with either B7-1 or B7-2 is sufficient to stimulate immune activity, and that T cells are essential for the development of IgG responses. In addition, we demonstrate that human dendritic cells (DCs) pulsed with CTLA4–Ag fusion proteins can efficiently present Ag to T cells and induce an Ag-specific immune response in vitro. These studies provide further mechanistic understanding of the process by which CTLA4–Ag fusion proteins stimulate the immune system, and represent an efficient means of generating Ag-specific T cells for immunotherapy.Dhanalakshmi Chinnasamy and Matt Tector contributed equally to this work  相似文献   

14.
Chronic inflammation promotes the formation of ectopic lymphoid tissue morphologically resembling secondary lymphoid tissues, though it is unclear whether this is a location where Ag-specific immune responses develop or merely a site of lymphocyte accumulation. Ectopic lymphoid tissue formation is associated with many humoral autoimmune diseases, including lupus induced by tetramethylpecadentane in mice. We examined whether an immune response to 4-hydroxy-3-nitrophenyl acetyl-keyhole limpet hemocyanin (NP-KLH) and NP-OVA develops within ectopic lymphoid tissue ("lipogranulomas") induced by tetramethylpecadentane in C57BL/6 mice. Following primary immunization, NP-specific B cells bearing V186.2 and related heavy chains as well as lambda-light chains accumulated within ectopic lymphoid tissue. The number of anti-NP-secreting B cells in the ectopic lymphoid tissue was greatly enhanced by immunization with NP-KLH. Remarkably, the H chain sequences isolated from individual lipogranulomas from these mice were diverse before immunization, whereas individual lipogranulomas from single immunized mice had unique oligo- or monoclonal populations of presumptive NP-specific B cells. H chain CDR sequences bore numerous replacement mutations, consistent with an Ag-driven and T cell-mediated response. In mice adoptively transferred with OT-II or DO11 T cells, there was a striking accumulation of OVA-specific T cells in lipogranulomas after s.c. immunization with NP-OVA. The selective colocalization of proliferating, Ag-specific T and B lymphocytes in lipogranulomas from tetramethylpecadentane-treated mice undergoing primary immunization implicates ectopic lymphoid tissue as a site where Ag-specific humoral immune responses can develop. This has implications for understanding the strong association of humoral autoimmunity with lymphoid neogenesis, which may be associated with deficient censoring of autoreactive cells.  相似文献   

15.
Our previous studies have shown that overexpression of bovine FcRn (bFcRn) in transgenic (Tg) mice leads to an increase in the humoral immune response, characterized by larger numbers of Ag-specific B cells and other immune cells in secondary lymphoid organs and higher levels of circulating Ag-specific antibodies (Abs). To gain additional insights into the mechanisms underlying this increase in humoral immune response, we further characterized the bFcRn Tg mice. Our Western blot analysis showed strong expression of the bFcRn transgene in peritoneal macrophages and bone marrow derived dendritic cells; and a quantitative PCR analysis demonstrated that the expression ratios of the bFcRn to mFcRn were 2.6- and 10-fold in these cells, respectively. We also found that overexpression of bFcRn enhances the phagocytosis of Ag-IgG immune complexes (ICs) by both macrophages and dendritic cells and significantly improves Ag presentation by dendritic cells. Finally, we determined that immunized bFcRn mice produce a much greater diversity of Ag-specific IgM, whereas only the levels, but not the diversity, of IgG is increased by overexpression of bFcRn. We suggest that the increase in diversity of IgG in Tg mice is prevented by a selective bias towards immunodominant epitopes of ovalbumin, which was used in this study as a model antigen. These results are also in line with our previous reports describing a substantial increase in the levels of Ag-specific IgG in FcRn Tg mice immunized with Ags that are weakly immunogenic and, therefore, not affected by immunodominance.  相似文献   

16.
The lymphoid chemokines CCL19 and CCL21 are known to be crucial both for lymphoid cell trafficking and for the structural organization of lymphoid tissues such as nasopharynx-associated lymphoid tissue (NALT). However, their role in allergic responses remains unclear, and so our current study aims to shed light on the role of CCL19/CCL21 in the development of allergic rhinitis. After nasal challenge with OVA, OVA-sensitized plt (paucity of lymph node T cells) mice, which are deficient in CCL19/CCL21, showed more severe allergic symptoms than did identically treated wild-type mice. OVA-specific IgE production, eosinophil infiltration, and Th2 responses were enhanced in the upper airway of plt mice. Moreover, in plt mice, the number of CD4(+)CD25(+) regulatory T cells declined in the secondary lymphoid tissues, whereas the number of Th2-inducer-type CD8alpha(-)CD11b(+) myeloid dendritic cells (m-DCs) increased in cervical lymph nodes and NALT. Nasal administration of the plasmid-encoding DNA of CCL19 resulted in the reduction of m-DCs in the secondary lymphoid tissues and the suppression of allergic responses in plt mice. These results suggest that CCL19/CCL21 act as regulatory chemokines for the control of airway allergic disease and so may offer a new strategy for the control of allergic disease.  相似文献   

17.
Understanding the requirements for protection against pneumococcal carriage and pneumonia will greatly benefit efforts in controlling these diseases. Recently, it has been shown that genetic polymorphisms can result in diminished expression of CCL5, which results in increased susceptibility to and progression of infectious diseases. We show that CCL5, together with Th cytokine mRNA expression, is temporally up-regulated during pneumococcal carriage. To determine the contribution of CCL5 to pneumococcal surface antigen A-specific humoral and cellular pneumococcal immunity, mice were treated with anti-CCL5 or control Abs before and during Streptococcus pneumoniae strain EF3030-challenge for the initiation of carriage. CCL5 blockade resulted in a decrease of CD4(+) and CD8(+) T cells as well as CD11b(+) cells in the spleen, cervical lymph node, lung, and nasopharyngeal associated lymphoid tissue during the recognition phase of the pneumococcal adaptive immune response. CCL5 blockade significantly reduced the Ag-specific IgG2a and IgG1 Abs in serum and IgA Ab levels in nasal washes. These decreases also corresponded to reductions in Ag-specific T cell (mucosal and systemic) responses. CCL5 inhibition resulted in decreasing the quantity of IL-4- and IFN-gamma-secreting CD4(+) T cells and increasing the number of Ag-specific IL-10-producing CD4(+) T cells; these changes combined also corresponded with the transition from pneumococcal carriage to lethal pneumonia. These data suggest that CCL5 is an essential factor for the induction and maintenance of protective pneumococcal immunity.  相似文献   

18.
CD3(-)CD4(+)CD45(+) inducer cells are required for the initiation of mucosa-associated organogenesis of both nasopharynx-associated lymphoid tissues (NALT) and Peyer's patches (PP) in the aerodigestive tract. CXCL13(-/-) mice and mice carrying the paucity of lymph node T cell (plt) mutation and lacking expression of CCL19 and CCL21 accumulate CD3(-)CD4(+)CD45(+) cells at the site of NALT but not of PP genesis. Although NALT was observed to develop in adult CXCL13(-/-) and plt/plt mice, the formation of germinal centers in CXCL13(-/-) mice was affected, and their population of B cells was much lower than in the NALT of CXCL13(+/-) mice. Similarly, fewer T cells were observed in the NALT of plt/plt mice than in control mice. These findings indicate that the initiation of NALT organogenesis is independent of CXCL13, CCL19, and CCL21. However, the expression of these lymphoid chemokines is essential for the maturation of NALT microarchitecture.  相似文献   

19.
Bacillus Calmette-Guerin (BCG) vaccine has failed to control the global tuberculosis (TB) epidemic, and there is a lack of safe and effective mucosal vaccines capable of potent protection against pulmonary TB. A recombinant replication-deficient adenoviral-based vaccine expressing an immunogenic Mycobacterium tuberculosis Ag Ag85A (AdAg85A) was engineered and evaluated for its potential to be used as a respiratory mucosal TB vaccine in a murine model of pulmonary TB. A single intranasal, but not i.m., immunization with AdAg85A provided potent protection against airway Mycobacterium tuberculosis challenge at an improved level over that by cutaneous BCG vaccination. Systemic priming with an Ag85A DNA vaccine and mucosal boosting with AdAg85A conferred a further enhanced immune protection which was remarkably better than BCG vaccination. Such superior protection triggered by AdAg85 mucosal immunization was correlated with much greater retention of Ag-specific T cells, particularly CD4 T cells, in the lung and was shown to be mediated by both CD4 and CD8 T cells. Thus, adenoviral TB vaccine represents a promising novel vaccine platform capable of potent mucosal immune protection against TB. Our study also lends strong evidence that respiratory mucosal vaccination is critically advantageous over systemic routes of vaccination against TB.  相似文献   

20.
Adoptive T-cell transfer has been shown to be a potentially effective strategy for cellular immunotherapy in some murine models of disease. However, several issues remain unresolved regarding some of the basic features involved in effective adoptive transfer, such as the influence of specific peptide antigen (Ag) boost after T-cell transfer, the addition of IL-2 post-T-cell transfer, the trafficking of transferred T cells to lymphoid and nonlymphoid tissues, and the functional stability of recoverable CD4(+) and CD8(+) T cells. We investigated several of these parameters, particularly as they relate to the persistence and maintenance of effector functions of murine CD4(+) and/or CD8(+) T lymphocytes after adoptive cellular transfer into partially gamma-irradiated syngeneic hosts. Our laboratory previously identified murine (H-2(d)) immunogenic CD4(+) and CD8(+) T-cell peptide epitopes reflecting codon 12 ras mutations as tumor-specific Ag. Therefore, the model system chosen here employed epitope-specific MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells produced from previously immunized BALB/c mice. Between 2 and 7 days after T-cell transfer, recipient mice received various combinations of peptide boosts and/or IL-2 treatments. At different times after the T-cell transfer, spleen and lung tissues were analyzed phenotypically to monitor the persistence of the immune T cells and functionally (via proliferation or cytotoxicity assays) to assess the maintenance of peptide specificity. The results showed that immune donor T lymphocytes (uncultured immune T cells or cloned T cells) were recoverable from the spleens and lungs of recipient mice after transfer. The recovery of Ag-specific T-cell responses was greatest from recipient mice that received peptide boosts and IL-2 treatment. However, mice that received a peptide boost without IL-2 treatment responded nearly as well, which suggested that including a peptide boost after T-cell transfer was more obligatory than exogenous IL-2 treatment to sustain adoptively transferred T cells in vivo. Ag-specific T-cell responses were weak in mice that either received IL-2 alone or did not receive the cognate peptide boost after T-cell transfer. The T-cell clones were also monitored by flow cytometry or RT-PCR based on expression of the T-cell receptor Vbeta-chain, which was previously characterized. Ag-specific T cells were recovered from both spleens and lungs of recipient mice, demonstrating that the T-cell clones could localize to both lymphoid and nonlymphoid tissues. This study demonstrates that both uncultured and in vitro-cloned T lymphocytes can migrate to lymphoid tissues and nonlymphoid (e.g., lung) tissues in recipient hosts and that their functional activities can be maintained at these sites after transfer, if they are exposed to peptide Ag in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号