首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Myocardin is thought to have a key role in smooth muscle cell (SMC) development by acting on CArG-dependent genes. However, it is unclear whether myocardin-induced SMC maturation and increases in agonist-induced calcium signalling are also associated with increases in the expression of non-CArG-dependent SMC-specific genes. Moreover, it is unknown whether myocardin promotes SMC development from human embryonic stem cells.

Methodology/Principal

Findings The effects of adenoviral-mediated myocardin overexpression on SMC development in human ESC-derived embryoid bodies were investigated using immunofluorescence, flow cytometry and real time RT-PCR. Myocardin overexpression from day 10 to day 28 of embryoid body differentiation increased the number of smooth muscle α-actin+ and smooth muscle myosin heavy chain+ SMC-like cells and increased carbachol-induced contractile function. However, myocardin was found to selectively regulate only CArG-dependent SMC-specific genes. Nevertheless, myocardin expression appeared to be sufficient to specify the SMC lineage.

Conclusions/Significance

Myocardin increases the development and maturation of SMC-like cells from human embryonic stem cells despite not activating the full repertoire of SMC genes. These findings have implications for vascular tissue engineering and other applications requiring large numbers of functional SMCs.  相似文献   

2.
3.
4.
5.
6.
7.
8.
Hu J  Xie C  Ma H  Yang B  Ma PX  Chen YE 《PloS one》2012,7(4):e35580
Vascular smooth muscle cells (SMCs) have been broadly used for constructing tissue-engineered blood vessels. However, the availability of mature SMCs from donors or patients is very limited. Derivation of SMCs by differentiating embryonic stem cells (ESCs) has been reported, but not widely utilized in vascular tissue engineering due to low induction efficiency and, hence, low SMC purity. To address these problems, SMCs were enriched from retinoic acid induced mouse ESCs with LacZ genetic labeling under the control of SM22α promoter as the positive sorting marker in the present study. The sorted SMCs were characterized and then cultured on three-dimensional macro-porous nano-fibrous scaffolds in vitro or implanted subcutaneously into nude mice after being seeded on the scaffolds. Our data showed that the LacZ staining, which reflected the corresponding SMC marker SM22α expression level, was efficient as a positive selection marker to dramatically enrich SMCs and eliminate other cell types. After the sorted cells were seeded into the three-dimensional nano-fibrous scaffolds, continuous retinoic acid treatment further enhanced the SMC marker gene expression level while inhibited pluripotent maker gene expression level during the in vitro culture. Meanwhile, after being implanted subcutaneously into nude mice, the implanted cells maintained the positive LacZ staining within the constructs and no teratoma formation was observed. In conclusion, our results demonstrated the potential of SMCs derived from ESCs as a promising cell source for therapeutic vascular tissue engineering and disease model applications.  相似文献   

9.
Overactive bladder (OAB) is a pervasive clinical problem involving alterations in both neurogenic and myogenic activity. While there has been some progress in understanding neurogenic inputs to OAB, the mechanisms controlling myogenic bladder activity are unclear. We report the involvement of myocardin (MYOCD) and microRNA‐1 (miR‐1) in the regulation of connexin 43 (GJA1), a major gap junction in bladder smooth muscle, and the collective role of these molecules during post‐natal bladder development. Wild‐type (WT) mouse bladders showed normal development from early post‐natal to adult including increases in bladder capacity and maintenance of normal sensitivity to cholinergic agents concurrent with down‐regulation of MYOCD and several smooth muscle cell (SMC) contractile genes. Myocardin heterozygous‐knockout mice exhibited reduced expression of Myocd mRNA and several SMC contractile genes concurrent with bladder SMC hypersensitivity that was mediated by gap junctions. In both cultured rat bladder SMC and in vivo bladders, MYOCD down‐regulated GJA1 expression through miR‐1 up‐regulation. Interestingly, adult myocardin heterozygous‐knockout mice showed normal increases in bladder and body weight but lower bladder capacity compared to WT mice. These results suggest that MYOCD down‐regulates GJA1 expression via miR‐1 up‐regulation, thereby contributing to maintenance of normal sensitivity and development of bladder capacity. J. Cell. Physiol. 228: 1819–1826, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

10.
We used mRNA subtraction of differentiated and dedifferentiated smooth muscle cells (SMCs) to reveal the molecular mechanisms underlying the phenotypic modulation of SMCs. With this approach, we found that a 10 kb mRNA encoding a homotypic cell adhesion molecule, cadherin 6B, was strongly expressed in differentiated vascular and visceral SMCs, but not in the dedifferentiated SMCs derived from them. In vivo, cadherin 6B was expressed in vascular and visceral SMCs, in addition to brain, spinal cord, retina and kidney, at a late stage of chicken embryonic development. These results suggest that cadherin 6B is a novel molecular marker for vascular and visceral SMC phenotypes and is involved in the late differentiation of SMCs.  相似文献   

11.
Multiple steps, including the migration of vascular smooth muscle cells (SMCs), are involved in the pathogenesis of atherosclerosis. To discover genes which are involved in these steps, we screened mutant mouse lines established by the exchangeable gene trap method utilizing X-gal staining during their embryonic development. One of these lines showed strong reporter gene expression in the vitelline vessels of yolk sacs at embryonic day (E) 12.5. The trap vector was inserted into the fifth intron of alpha/beta hydrolase domain containing 2 (Abhd2) gene which was shown to be expressed in vascular and non-vascular SMCs of adult mice. Although homozygous mutant mice were apparently normal, enhanced SMC migration in the explants SMCs culture and marked intimal hyperplasia after cuff placement were observed in homozygous mice in comparison with wild-type mice. Our results show that Abhd2 is involved in SMC migration and neointimal thickening on vascular SMCs.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
Tropomodulins (Tmods) comprise a family of capping proteins for actin filament pointed ends. To decipher the significance of Tmod1 functions during de novo myofibrillogenesis, we generated Tmod1 null embryonic stem (ES) cells and studied their differentiation into cardiomyocytes. Strikingly, in vitro cardiomyocyte differentiation of wild type (WT) ES cells faithfully recapitulates in vivo cardiomyocyte differentiation, allowing us to evaluate the phenotypes of Tmod1 knockout (KO) myofibrils irrespective of embryonic lethality of Tmod1 KO mice. Immunofluorescence and electron microscopy studies revealed that Tmod1 null cardiac myocytes were round, morphologically immature, and contained underdeveloped myofibrils that were shorter, narrower, and had fewer thin filaments than those in WT cells. Unexpectedly, clear gaps in the staining pattern for F-actin at the H-zone were detected in most KO cells, indicating the presence of filaments at uniform lengths. This indicates that additional mechanisms other than capping proteins are responsible for thin filament length maintenance in cardiac myocytes. Also unexpectedly, approximately 40% of the KO cardiac myocytes exhibited contractile activity. Our data indicate that differentiating ES cells are a powerful system to investigate the functional properties of contractile proteins and that Tmod1 functions are critical for late stages of myofibrillogenesis, and for the maturation of myofibrils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号