首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Antifreeze proteins depress the non-equilibrium freezing point of aqueous solutions, but only have a small effect on the equilibrium melting point. This difference between the freezing and melting points has been termed thermal hysteresis activity (THA). THA identifies the presence and relative activity of antifreeze proteins. Two antifreeze protein cDNAs, dafp-1 and dafp-4, encoding two self-enhancing (have a synergistic effect on THA) antifreeze proteins (DAFPs) from the beetle Dendroides canadensis, were introduced into the genome of Arabidopsis thaliana via Agrobacterium-mediated floral dip transformation. Southern blot analysis indicated multiple insertions of transgenes. Both DAFP-1 and/or DAFP-4 were expressed in transgenic A. thaliana as shown by RT-PCR and Western blot. Apoplastic fluid from T 3 DAFP-1 + DAFP-4-producing transgenic A. thaliana exhibited THA in the range of 1.2–1.35°C (using the capillary method to determine THA), demonstrating the presence of functioning antifreeze proteins (with signal peptides for extracellular secretion). The freezing temperature of DAFP-1 + DAFP-4-producing transgenic A. thaliana was lowered by approximately 2–3°C compared with the wild type.  相似文献   

2.
Antifreeze proteins (AFPs) found in many organisms can noncolligatively lower the freezing point of water without altering the melting point. The difference between the depressed freezing point and the melting point, termed thermal hysteresis (TH), is usually a measure of the antifreeze activity of AFPs. Certain low molecular mass molecules and proteins can further enhance the antifreeze activity of AFPs. Interaction between an enhancer and arginine is known to play an important role in enhancing the antifreeze activity of an AFP from the beetle Dendroides canadensis (DAFP-1). Here, we examined the enhancement effects of several prevalent phosphate-containing coenzymes on the antifreeze activity of DAFP-1. β-Nicotinamide adenine dinucleotide (reduced) (NADH) is identified as the most efficient enhancer of DAFP-1, which increases the antifreeze activity of DAFP-1 by around 10 times. Examination of the enhancement abilities of a series of NADH analogs and various molecular fragments of NADH reveals that the modifications of nicotinamide generate a series of highly efficient enhancers, though none as effective as NADH itself, and the whole molecular structure of NADH is necessary for its highly efficient enhancement effect. We also demonstrated a 1:1 binding between DAFP-1 and NADH. The binding was characterized by high-performance liquid chromatography (HPLC) using the gel filtration method of Hummel and Dreyer. The data analysis suggests binding between DAFP-1 and NADH with a dissociation constant in the micromolar range. Interactions between DAFP-1 and NADH are discussed along with molecular mechanisms of enhancer action.  相似文献   

3.
Expanding cryopreservation methods to include a wider range of cell types, such as those sensitive to freezing, is needed for maintaining the viability of cell-based regenerative medicine products. Conventional cryopreservation protocols, which include use of cryoprotectants such as dimethylsulfoxide (Me2SO), have not prevented ice-induced damage to cell and tissue matrices during freezing. A family of antifreeze proteins (AFPs) produced in the larvae of the beetle, Dendroides canadensis allow this insect to survive subzero temperatures as low as −26 °C. This study is an assessment of the effect of the four hemolymph D. canadensis AFPs (DAFPs) on the supercooling (nucleating) temperature, ice structure patterns and viability of the A10 cell line derived from the thoracic aorta of embryonic rat. Cryoprotectant solution cocktails containing combinations of DAFPs in concentrations ranging from 0 to 3 mg/mL in Unisol base mixed with 1 M Me2SO were first evaluated by cryomicroscopy. Combining multiple DAFPs demonstrated significant supercooling point depressing activity (∼9 °C) when compared to single DAFPs and/or conventional 1 M Me2SO control solutions. Concentrations of DAFPs as low as 1 μg/mL were sufficient to trigger this effect. In addition, significantly improved A10 smooth muscle cell viability was observed in cryopreservation experiments with low DAFP-6 and DAFP-2 concentrations in combination with Me2SO. No significant improvement in viability was observed with either DAFP-1 or DAFP-4. Low and effective DAFP concentrations are advantageous because they minimize concerns regarding cell cytotoxicity and manufacturing cost. These findings support the potential of incorporating DAFPs in solutions used to cryopreserve cells and tissues.  相似文献   

4.
Summary Purified antifreeze proteins (AFPs) from the larvae of the beetle Dendroides canadensis do not produce the high levels of antifreeze activity seen in the hemolymph of overwintering larvae, even when the purified AFPs are assayed at very high concentrations. However, addition of certain proteins or agar (at concentrations sufficiently low that the gel state does not result) to the Dendroides AFP resulted in a 2–3-fold increase in activity. A 70-kDa protein with AFP-activating capabilities was purified from Dendroides larvae. Addition of this endogenous activator protein to a 4 mg·ml-1 solution of AFP increased the activity of the AFPs to values comparable to those of the hemolymph of overwintering larvae. Data derived from a modified immunoblot technique demonstrate that the activators bind to the AFP, or vice versa. Formation of this association must allow the AFP to block ice crystal growth by binding to the surface of potential seed crystals in the normal fashion. However, because the AFP-activator complex is much larger than the AFP alone, the complex probably blocks a greater surface area of the crystal and is thus a more efficient antifreeze.Abbreviations AFP antifreeze protein - BSA bovine serum albumine - DEAE diethylaminoethyl - Ig immunoglubolin - LPIN lipoprotein ice nucleator - PIN protein ice nucleator - SDS sodium dodecyl sulfate - PAGE polyacrylamide gel electrophoresis - TH thermal hysteresis  相似文献   

5.
Abstract

We purified many kinds of antifreeze proteins with high activity from the leaves of Ammopiptanthus mongolicus by several biochemical techniques. The antifreeze activities of these AFPs were measured by both osmometry and differential scanning calorimetry, and the inhibition of growth of ice crystals by the AFPs was obvious. Additionally, the antifreeze proteins were analyzed by sequencing, glycosylation reaction, mass spectroscopy, and circular dichroism spectroscopy. Both samples have some other unique structures different from those of fishes and of insects. It was suggested that plant AFPs might have a particular antifreeze mechanism in comparison with that of fish and insects.  相似文献   

6.
Summary Four antifreeze proteins (AFPs) were purified from larvae of the beetle Dendroides canadensis. The AFPs are similar in amino acid compositions, having high contents of hydrophilic amino acids (45–55 mol%) and cysteine (16 mol% Cys). Approximately half of the Cys residues form disulfide bridges, and both the disulfide bridges and free sulfhydryls are essential for activity. The N-terminals of the AFPs are blocked. The pH optimum of the AFPs is 7.8, but major loss of activity occurred only at very high pH (12.0). The detergents SDS and Triton X-100 did not inactivate the AFPs. Circular dichroism spectra indicate the presence of both and secondary structures in the AFPs, in addition to a large random structure component.Abbreviations AFP antifreeze protein - CD circular dichroism - DTT dithiothreitol - HPLC high pressure liquid chromatography - PAGE polyacrylamide gel electrophoresis - PAS periodic acid Schiff - SDS sodium dodecyl sulfate - TFA trifluoroacetic acid  相似文献   

7.
A variety of organisms have independently evolved proteins exhibiting antifreeze activity that allows survival at subfreezing temperatures. The antifreeze proteins (AFPs) bind ice nuclei and depress the freezing point by a noncolligative absorption–inhibition mechanism. Many organisms have a heterogeneous suite of AFPs with variation in primary sequence between paralogous loci. Here, we demonstrate that the diversification of the AFP paralogues is promoted by positive Darwinian selection in two independently evolved AFPs from fish and beetle. First, we demonstrate an elevated rate of nonsynonymous substitutions compared to synonymous substitutions in the mature protein coding region. Second, we perform phylogeny-based tests of selection to demonstrate a subset of codons is subjected to positive selection. When mapped onto the three-dimensional structure of the fish antifreeze type III antifreeze structure, these codons correspond to amino acid positions that surround but do not interrupt the putative ice-binding surface. The selective agent may be related to efficient binding to diverse ice surfaces or some other aspect of AFP function. Received: 27 February 2001 / Accepted: 12 September 2001  相似文献   

8.
Transgenic Arabidopsis thaliana plants which express genes encoding insect, Dendroides canadensis, antifreeze proteins (AFP) were produced by Agrobacterium-mediated transformation. The antifreeze protein genes, both with and without the signal peptide sequence (for protein secretion), were expressed in transformed plants. Thermal hysteresis activity (indicating the presence of active AFPs) was present in protein extracts from plants expressing both proteins and was also detected in leaf apoplast fluid from plants expressing AFPs with the signal peptide. Transgenic lines did not demonstrate improved ability to survive freezing when compared to wild-type. However, when cooled under four different regimes, transgenic lines with AFPs in the apoplast fluid froze at significantly lower temperatures than did wild-type, especially in the absence of extrinsic nucleation events.  相似文献   

9.
Aquatic larvae of the midge, Chironomus tentans, synthesize a 185-kDa silk protein (sp185) with the cysteine-containing motif Cys-X-Cys-X-Cys (where X is any residue) every 20–28 residues. We report here the cloning and full-length sequence of cDNAs encoding homologous silk proteins from Chironomus pallidivittatus (sp185) and Chironomus thummi (sp220). Deduced amino acid sequences reveal proteins of nearly identical mass composed of 72 blocks of 20–28 residues, 61% of which can be described by the motif X5–8-Cys-X5-(Trp/Phe/Tyr)-X4-Cys-X-Cys-X-Cys. Spatial arrangement of these residues is preserved more than surrounding sequences. cDNA clones enabled us to map the genes on polytene chromosomes and identify for the first time the homolog of the Camptochironomus Balbiani ring 3 locus in Chironomus thummi. The apparent molecular weight difference between these proteins (185 vs 220 kDa) is not attributable to primary structure and may be due to differential N-linked glycosylation. DNA distances and codon substitutions indicate that the C. tentans and C. pallidivittatus genes are more related to each other than either is to C. thummi; however, substitution rates for the 5′- and 3′-halves of these genes are different. Blockwise sequence comparisons suggest intragenic variation in that some regions evolved slower or faster than the mean and may have been subjected to different selective pressures. Received: 30 August 1996 / Accepted: 6 November 1996  相似文献   

10.
The equilibrium heat stability and the kinetic heat tolerance of a recombinant antifreeze protein (AFP) from the beetle Rhagium mordax (RmAFP1) are studied through differential scanning calorimetry and circular dichroism spectroscopy. In contrast to other insect AFPs studied with this respect, the RmAFP1 has only one disulfide bridge. The melting temperature, Tm, of the protein is determined to be 28.5°C (pH 7.4), which is much lower than most of those reported for AFPs or globular proteins in general. Despite its low melting temperature, both biophysical and activity measurements show that the protein almost completely refolds into the native state after repeated exposure of 70°C. RmAFP1 thus appears to be kinetically stable even far above its melting temperature. Thermodynamically, the insect AFPs seem to be dividable in three groups, relating to their content of disulfide bridges and widths of the ice binding motifs; high melting temperature AFPs (high disulfide content, TxT motifs), low melting temperature but high refolding capability AFPs (one disulfide bridge, TxTxTxT motifs) and irreversibly unfolded AFPs at low temperatures (no disulfide bridges, TxTxTxTxT motifs). The property of being able to cope with high temperature exposures may appear peculiar for proteins which strictly have their effect at subzero temperatures. Different aspects of this are discussed.  相似文献   

11.
We have usedDrosophila melanogaster as a model system for the transgenic expression of cystine-rich Type II antifreeze protein (AFP) from sea raven. This protein was synthesized and secreted into fly haemolymph where it migrated as a larger species (16 kDa) than the mature form of the protein (14 kDa) as judged by immunoblotting.Drosophila-produced Type II AFP demonstrated antifreeze activity both in terms of thermal hysteresis (0.13 °C) and inhibition of ice recrystallization. Recombinant AFP was purified and N-terminal sequencing revealed a 17 aa extension that began at the predicted signal peptide cleavage point. The expression of all three AFP types in transgenicDrosophila has now been achieved. We conclude that the globular Type II and Type III AFPs are better choices for antifreeze transfer to other organisms than is the more widely used linear Type I AFP.  相似文献   

12.
Some creatures living in extremely low temperatures can produce some special materials called “antifreeze proteins” (AFPs), which can prevent the cell and body fluids from freezing. AFPs are present in vertebrates, invertebrates, plants, bacteria, fungi, etc. Although AFPs have a common function, they show a high degree of diversity in sequences and structures. Therefore, sequence similarity based search methods often fails to predict AFPs from sequence databases. In this work, we report a random forest approach “AFP-Pred” for the prediction of antifreeze proteins from protein sequence. AFP-Pred was trained on the dataset containing 300 AFPs and 300 non-AFPs and tested on the dataset containing 181 AFPs and 9193 non-AFPs. AFP-Pred achieved 81.33% accuracy from training and 83.38% from testing. The performance of AFP-Pred was compared with BLAST and HMM. High prediction accuracy and successful of prediction of hypothetical proteins suggests that AFP-Pred can be a useful approach to identify antifreeze proteins from sequence information, irrespective of their sequence similarity.  相似文献   

13.
Antifreeze proteins (AFPs) are known to polypeptide components formed by certain plants, animals, fungi and bacteria which support to survive in sub-zero temperature. Current study highlighted the seven different antifreeze proteins of fish Ocean pout (Zoarces americanus), in which protein (amino acids sequence) were collected from National Centre for Biotechnology Information and finely characterized using several in silico tools. Such biocomputational techniques applied to figure out the physicochemical, functional and conformational characteristics of targeted AFPs. Multiple physicochemical properties such as Isoelectric Point, Extinction Coefficient and Instability Index, Aliphatic Index, Grand Average Hydropathy were calculated and analysed by ExPASy-ProtParam prediction web server. EMBOSS: pepwheel online tool was used to represent the protein sequences in a helical form. The primary structure analysis shows that most of the AFPs are hydrophobic in nature due to the high content of non-polar residues. The secondary structure of these proteins was calculated using SOPMA tool. SOSUI server and CYS_REC program also run for ideal prediction of transmembrane helices and disulfide bridges of experimental proteins respectively. The modelling of 3D structures of seven desired AFPs were executed by the homology modelling programmes; SWISS MODEL and ProSA web server. UCSF Chimera, Antheprot 3D, PyMOL and RAMPAGE were used to visualize and analysis of the structural variation of the predicted protein model. MEGA7.0.9 software used to know the phylogenetic relationship among these AFPs. These models offered excellent and reliable baseline information for functional characterization of the experimentally derived protein domain composition by using the advanced tools and techniques of Computational Biology.  相似文献   

14.
Cloning and characterization of a cold-and ABA-inducible Arabidopsis gene   总被引:40,自引:0,他引:40  
We have identified by differential screening a novel Arabidopsis thaliana gene, called kin1, which is induced at +44 °C. The nucleotide sequences of both the genomic clone and the corresponding cDNA were determined. The deduced 6.5 kDa polypeptide has an unusual amino acid composition being rich in alanine, glycine and lysine. The gene belongs to a family of at least two genes. Northern blot analysis revealed that the level of kin1 mRNA is increased 20-fold in cold-treated plants. In addition to being expressed in cold, kin1 mRNAlso induced by water stress and the plant hormone abscisic acid (ABA) which has been suggested to be a common mediator for osmotic stress responses and cold acclimation in plants. Sequence comparisons showed that the kin1 gene product has similarities to fish antifreeze proteins (AFPs).  相似文献   

15.
Antifreeze proteins (AFPs) provide protection for organisms subjected to the presence of ice crystals. The psychrophilic diatom Fragilariopsis cylindrus which is frequently found in polar sea ice carries a multitude of AFP isoforms. In this study we report the heterologous expression of two antifreeze protein isoforms from F. cylindrus in Escherichia coli. Refolding from inclusion bodies produced proteins functionally active with respect to crystal deformation, recrystallization inhibition and thermal hysteresis. We observed a reduction of activity in the presence of the pelB leader peptide in comparison with the GS-linked SUMO-tag. Activity was positively correlated to protein concentration and buffer salinity. Thermal hysteresis and crystal deformation habit suggest the affiliation of the proteins to the hyperactive group of AFPs. One isoform, carrying a signal peptide for secretion, produced a thermal hysteresis up to 1.53 °C ± 0.53 °C and ice crystals of hexagonal bipyramidal shape. The second isoform, which has a long preceding N-terminal sequence of unknown function, produced thermal hysteresis of up to 2.34 °C ± 0.25 °C. Ice crystals grew in form of a hexagonal column in presence of this protein. The different sequences preceding the ice binding domain point to distinct localizations of the proteins inside or outside the cell. We thus propose that AFPs have different functions in vivo, also reflected in their specific TH capability.  相似文献   

16.
Exotic functions of antifreeze proteins (AFP) and antifreeze glycopeptides (AFGP) have recently been attracted with much interest to develop them as commercial products. AFPs and AFGPs inhibit ice crystal growth by lowering the water freezing point without changing the water melting point. Our group isolated the Antarctic yeast Glaciozyma antarctica that expresses antifreeze protein to assist it in its survival mechanism at sub-zero temperatures. The protein is unique and novel, indicated by its low sequence homology compared to those of other AFPs. We explore the structure-function relationship of G. antarctica AFP using various approaches ranging from protein structure prediction, peptide design and antifreeze activity assays, nuclear magnetic resonance (NMR) studies and molecular dynamics simulation. The predicted secondary structure of G. antarctica AFP shows several α-helices, assumed to be responsible for its antifreeze activity. We designed several peptide fragments derived from the amino acid sequences of α-helical regions of the parent AFP and they also showed substantial antifreeze activities, below that of the original AFP. The relationship between peptide structure and activity was explored by NMR spectroscopy and molecular dynamics simulation. NMR results show that the antifreeze activity of the peptides correlates with their helicity and geometrical straightforwardness. Furthermore, molecular dynamics simulation also suggests that the activity of the designed peptides can be explained in terms of the structural rigidity/flexibility, i.e., the most active peptide demonstrates higher structural stability, lower flexibility than that of the other peptides with lower activities, and of lower rigidity. This report represents the first detailed report of downsizing a yeast AFP into its peptide fragments with measurable antifreeze activities.  相似文献   

17.
Type I antifreeze proteins (AFPs) are alanine-rich α-helical polypeptides found in some species of right-eye flounders, sculpin, and snailfish. In this study, a shorthorn sculpin skin type I cDNA clone was used to probe an Atlantic snailfish liver cDNA library in order to locate expressed genes corresponding to snailfish plasma AFPs. Clones isolated from the cDNA library had sections with substantial amino acid and nucleotide sequence similarity to snailfish type I AFPs. However, further analysis revealed that the positives were actually three different liver-expressed proteins—two were eggshell proteins, while the third was a type II keratin. We propose that a shift in reading frame could produce alanine-rich candidate AFPs with possible antifreeze activity or ice crystal modification properties. Furthermore, it is plausible that one or more of the liver-expressed proteins represent the progenitors of snailfish type I AFPs. [Reviewing Editor: Dr. John Oakeshott]  相似文献   

18.
Lin FH  Davies PL  Graham LA 《Biochemistry》2011,50(21):4467-4478
Inchworm larvae of the pale beauty geometer moth, Campaea perlata, exhibit strong (6.4 °C) freezing point depression activity, indicating the presence of hyperactive antifreeze proteins (AFPs). We have purified two novel Thr- and Ala-rich AFPs from the larvae as small (~3.5 kDa) and large (~8.3 kDa) variants and have cloned the cDNA sequences encoding both. They have no homology to known sequences in current BLAST databases. However, these proteins and the newly characterized AFP from the Rhagium inquisitor beetle both contain stretches rich in alternating Thr and Ala residues. On the basis of these repeats, as well as the discontinuities between them, a detailed structural model is proposed for the 8.3 kDa variant. This 88-residue protein is organized into an extended parallel-stranded β-helix with seven strands connected by classic β-turns. The alternating β-strands form two β-sheets with a thin core composed of interdigitating Ala and Ser residues, similar to the thin hydrophobic core proposed for some silks. The putative ice-binding face of the protein has a 4 × 5 regular array of Thr residues and is remarkably flat. In this regard, it resembles the nonhomologous Thr-rich AFPs from other moths and some beetles, which contain two longer rows of Thr in contrast to the five shorter rows in the inchworm protein. Like that of some other hyperactive AFPs, the spacing between these ice-binding Thr residues is a close match to the spacing of oxygen atoms on several planes of ice.  相似文献   

19.
The antarctic eel pout, Austrolycicthys brachycephalus, synthesizes two predominant antifreeze peptides (AFPs) which, based on purification yields, make up about 94 and 6%, respectively, of the antifreezes in its serum. The amino acid sequences of these two AFPs, AB1 and AB2, were determined using automated sequencing, and compositional analyses of peptide fragments from enzymatic digests, and verified by molecular masses obtained with Fast Atom Bombardment Mass spectrometry. Substantial homologies in amino acid sequence exist between the AFPs of Austrolycicthys and those of other Southern and Northern eel pouts. 72% of the residues of AB1, and 84% of AB2, are identical to those of an AFP from another antarctic eel pout, Rhigophila dearborni. Between AB1 and AB2, 83% of the residues are identical. Secondary structure data based on circular dichroism studies indicated AB1 to be a random chain, but a sharp thermal transition of CD spectra around 30 degrees C suggested the presence of definite secondary or tertiary structure.  相似文献   

20.
Antifreeze proteins (AFPs) are characterized by their capacity to inhibit the growth of ice and are produced by a variety of polar fish, terrestrial arthropods and other organisms inhabiting cold environments. This capacity reflects their role as stabilizers of supercooled body fluids. The longhorn beetle Rhagium inquisitor is known to express AFPs in its body fluids. In this work we report on the primary structure and structural characteristics of a 12.8 kDa AFP from this beetle (RiAFP). It has a high capacity to evoke antifreeze activity as compared to other known insect AFPs and it is structurally unique in several aspects. In contrast to the high content of disulfide bond-formation observed in other coleopteran AFPs, RiAFP contains only a single such bond. Six internal repeat segments of a thirteen residue repeat pattern is irregularly spaced apart throughout its sequence. The central part of these repeat segments is preserved as TxTxTxT, which is effectively an expansion of the TxT ice-binding motif found in the AFPs of several known insect AFPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号