首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of residual structure in the unfolded state of the N-terminal SH3 domain of Drosophila drk (drkN SH3 domain) has been investigated using far- and near-UV circular dichroism (CD), fluorescence, and NMR spectroscopy. The unfolded (U(exch)) state of the drkN SH3 domain is significantly populated and exists in equilibrium with the folded (F(exch)) state under non-denaturing conditions near physiological pH. Denaturation experiments have been performed on the drkN SH3 domain in order to monitor the change in ellipticity, fluorescence intensity, and chemical shift between the U(exch) state and chemically or thermally denatured states. Differences between the unfolded and chemically or thermally denatured states highlight specific areas of residual structure in the unfolded state that are cooperatively disrupted upon denaturation. Results provide evidence for cooperative interactions in the unfolded state involving residues of the central beta-sheet, particularly the beta4 strand. Denaturation as well as hydrogen-exchange experiments demonstrate a non-native burial of the Trp ring within this "cooperative" core of the unfolded state. These findings support the presence of non-native hydrophobic clusters, organised by Trp rings, within disordered states.  相似文献   

2.
The isolated N-terminal SH3 domain of the Drosophila signal transduction protein Drk (drkN SH3) is a useful model for the study of residual structure and fluctuating structure in disordered proteins since it exists in slow exchange between a folded (Fexch) and compact unfolded (Uexch) state in roughly equal proportions under nondenaturing conditions. The single tryptophan residue, Trp36, is believed to play a key role in forming a non-native hydrophobic cluster in the Uexch state, with a number of long-range nuclear Overhauser contacts (NOEs) observed primarily to the indole proton. Substitution of Trp36 for 5-fluoro-Trp36 resulted in a substantial shift in the equilibrium to favor the Fexch state. A variety of 19F NMR measurements were performed to investigate the degree of solvent exposure and hydrophobicity associated with the 5-fluoro position in both the Fexch and Uexch states. Ambient T1 measurements and H2O/D2O solvent isotope effects indicated extensive protein contacts to the 5-fluoro position in the Fexch state and greater solvent exposure in the Uexch state. This was corroborated by the measurements of paramagnetic effects (chemical shift perturbations and T1 relaxation enhancement) from dissolved oxygen at a partial pressure of 20 atm. In contrast, paramagnetic effects from dissolved oxygen revealed less solvent exposure to the indole proton of Trp36 in the Uexch state than that observed for the Fexch state, consistent with the model in which Trp36 indole belongs to a non-native cluster. Thus, although the Uexch state may be described as a dynamically interconverting ensemble of conformers, there appears to be significant asymmetry in the environment of the indole group and the six-membered ring or backbone of Trp36. This implied lack of averaging of a side chain position is in contrast to the general view of fluctuating side chains within disordered states.  相似文献   

3.
4.
The size distribution of molecules within an unfolded state of the N-terminal SH3 domain of drk (drkN SH3) has been studied by small-angle X-ray scattering (SAXS) and pulsed-field-gradient NMR (PFG-NMR) methods. An empirical model to describe this distribution in the unfolded state ensemble has been proposed based on (i) the ensemble-averaged radius of gyration and hydrodynamic radius derived from the SAXS and PFG-NMR data, respectively, and (ii) a histogram of the size distribution of structures obtained from preliminary analyses of structural parameters recorded on the unfolded state. Results show that this unfolded state, U(exch), which exists in equilibrium with the folded state, F(exch), under non-denaturing conditions, is relatively compact, with the average size of conformers within the unfolded state ensemble only 30-40% larger than the folded state structure. In addition, the model predicts a significant overlap in the size range of structures comprising the U(exch) state with those in a denatured state obtained by addition of 2 M guanidinium chloride.  相似文献   

5.
Due to their dynamic ensemble nature and a deficiency of experimental restraints, disordered states of proteins are difficult to characterize structurally. Here, we have expanded upon our previous work on the unfolded state of the Drosophila drk N-terminal (drkN) SH3 domain with our program ENSEMBLE, which assigns population weights to pregenerated conformers in order to calculate ensembles of structures whose properties are collectively consistent with experimental measurements. The experimental restraint set has been enlarged with newly measured paramagnetic relaxation enhancements from Cu(2+) bound to an amino terminal Cu(2+)-Ni(2+) binding (ATCUN) motif as well as nuclear Overhauser effect (NOE) and hydrogen exchange data from recent studies. In addition, two new pseudo-energy minimization algorithms have been implemented that have dramatically improved the speed of ENSEMBLE population weight assignment. Finally, we have greatly improved our conformational sampling by utilizing a variety of techniques to generate both random structures and structures that are biased to contain elements of native-like or non-native structure. Although it is not possible to uniquely define a representative structural ensemble, we have been able to assess various properties of the drkN SH3 domain unfolded state by performing ENSEMBLE minimizations of different conformer pools. Specifically, we have found that the experimental restraint set enforces a compact structural distribution that is not consistent with an overall native-like topology but shows preference for local non-native structure in the regions corresponding to the diverging turn and the beta5 strand of the folded state and for local native-like structure in the region corresponding to the beta6 and beta7 strands. We suggest that this approach could be generally useful for the structural characterization of disordered states.  相似文献   

6.
The N-terminal SH3 domain of drk (drkN SH3) is unstable, existing in equilibrium between a folded state (Fexch) and an unfolded state (Uexch) under non-denaturing buffer conditions. Using a15N/2H-labeled sample, long range amide NOEs can be observed in the Uexchstate as a result of reduced relaxation, in some cases correlating protons over 40 residues apart. These long range NOEs disappear upon addition of 2 M guanidinium chloride, demonstrating that there are substantial differences between the Uexchand the guanidine denatured states. Calculations using the long range NOEs of the Uexchstate yield highly compact structures having non-native turns and a non-native buried tryptophan residue. These structures agree with experimental stopped-flow fluorescence data and analytical ultracentrifugation results. Since protein stability depends on the structural and dynamic properties of both the folded and unfolded states, this study provides insights into the stability of the drkN SH3 domain. These results provide the first strong NOE-based evidence for compact unfolded states of proteins and suggest that some unfolded states under physiological conditions have specific interactions leading to compact structures.  相似文献   

7.
The N-terminal SH3 domain of the Drosophila drk protein (drkN SH3) exists in equilibrium between folded and unfolded states under non-denaturing buffer conditions. In order to examine the origins of this instability, we have made mutations in the domain and characterized the thermodynamics and kinetics of folding. Results of substitutions of negatively charged residues to neutral amino acid residues suggest that the large electrostatic potential of the domain does not play a dominant role in the instability of the domain. Sequence alignment of a large number of SH3 domains reveals that the drkN SH3 domain has a threonine (T22) at a position corresponding to an otherwise highly conserved glycine residue in the diverging beta-turn connecting the beta3 and beta4 strands. Mutation of T22 to glycine results in significant stabilization of the drkN SH3 domain by 2.5 kcal/mole. To further characterize the basis for the stabilization of the T22 mutant relative to wild-type, we made additional mutant proteins with substitutions of residue T22. A strong correlation is seen between protein stability or folding rate and propensity for native beta-turn structure at this position. Correlation of folding rates with AGADIR predictions of non-native helical structure in the diverging turn region, along with our previous NMR evidence for non-native structure in this region of the unfolded state of the drkN SH3 domain, suggests that the free energy of the unfolded state also plays a role in stability. This result highlights the importance of both folded and unfolded states for understanding protein stability.  相似文献   

8.
9.
A continuous-flow mixing device with a dead time of 100 micros coupled with intrinsic tryptophan and 1-anilinonaphthalene-8-sulfonate (ANS) fluorescence was used to monitor structure formation during early stages of the folding of staphylococcal nuclease (SNase). A variant with a unique tryptophan fluorophore in the N-terminal beta-barrel domain (Trp76 SNase) was obtained by replacing the single Trp140 in wild-type SNase with His in combination with Trp substitution of Phe76. A common background of P47G, P117G and H124L mutations was chosen in order to stabilize the protein and prevent accumulation of cis proline isomers under native conditions. In contrast to WT(*) SNase, which shows no changes in tryptophan fluorescence prior to the rate-limiting folding step ( approximately 100 ms), the F76W/W140H variant shows additional changes (enhancement) during an early folding phase with a time constant of 75 micros. Both proteins exhibit a major increase in ANS fluorescence and identical rates for this early folding event. These findings are consistent with the rapid accumulation of an ensemble of states containing a loosely packed hydrophobic core involving primarily the beta-barrel domain while the specific interactions in the alpha-helical domain involving Trp140 are formed only during the final stages of folding. The fact that both variants exhibit the same number of kinetic phases with very similar rates confirms that the folding mechanism is not perturbed by the F76W/W140H mutations. However, the Trp at position 76 reports on the rapid formation of a hydrophobic cluster in the N-terminal beta-sheet region while the wild-type Trp140 is silent during this early stage of folding. Quantitative modeling of the (un)folding kinetics and thermodynamics of these two proteins versus urea concentration revealed that the F76W/W140H mutation selectively destabilizes the native state relative to WT(*) SNase while the stability of transient intermediates remains unchanged, leading to accumulation of intermediates under equilibrium conditions at moderate denaturant concentrations.  相似文献   

10.
Atomic-level analyses of non-native protein ensembles constitute an important aspect of protein folding studies to reach a more complete understanding of how proteins attain their native form exhibiting biological activity. Previously, formation of hydrophobic clusters in the 6 M urea-denatured state of an ultrafast folding mini-protein known as TC5b from both photo-CIDNP NOE transfer studies and FCS measurements was observed. Here, we elucidate the structural properties of this mini-protein denatured in 6 M urea performing (15)N NMR relaxation studies together with a thorough NOE analysis. Even though our results demonstrate that no elements of secondary structure persist in the denatured state, the heterogeneous distribution of R(2) rate constants together with observing pronounced heteronuclear NOEs along the peptide backbone reveals specific regions of urea-denatured TC5b exhibiting a high degree of structural rigidity more frequently observed for native proteins. The data are complemented with studies on two TC5b point mutants to verify the importance of hydrophobic interactions for fast folding. Our results corroborate earlier findings of a hydrophobic cluster present in urea-denatured TC5b comprising both native and non-native contacts underscoring their importance for ultra rapid folding. The data assist in finding ways of interpreting the effects of pre-existing native and/or non-native interactions on the ultrafast folding of proteins; a fact, which might have to be considered when defining the starting conditions for molecular dynamics simulation studies of protein folding.  相似文献   

11.
Protein folding kinetic data have been obtained for the marginally stable N-terminal Src homology 3 domain of the Drosophila protein drk (drkN SH3) in an investigation of the hydrodynamic properties of its folding transition state. Due to the presence of NMR resonances of both folded and unfolded states at equilibrium, kinetic data can be derived from NMR magnetization transfer techniques under equilibrium conditions. Kinetic analysis as a function of urea (less than approximately 1 M) and glycerol enables determination of alpha values, measures of the energetic sensitivity of the transition state to the perturbation relative to the end states of the protein folding reaction (the folded and unfolded states). Both end states have previously been studied experimentally by NMR spectroscopic and other biophysical methods in great detail and under nondenaturing conditions. Combining these results with the kinetic folding data obtained here, we can characterize the folding transition state without requiring empirical models for the unfolded state structure. We are thus able to give a reliable measure of the solvent-accessible surface area of the transition state of the drkN SH3 domain (4730 +/- 360 A(2)) based on urea titration data. Glycerol titration data give similar results and additionally demonstrate that folding of this SH3 domain is dependent on solvent viscosity, which is indicative of at least partial hydration of the transition state. Because SH3 domains appear to fold by a common folding mechanism, the data presented here provide valuable insight into the transition states of the drkN and other SH3 domains.  相似文献   

12.
The chaperonin GroEL binds unfolded polypeptides, preventing aggregation, and then mediates their folding in an ATP-dependent process. To understand the structural features in non-native polypeptides recognized by GroEL, we have used alpha-lactalbumin (alpha LA) as a model substrate. alpha LA (14.2 kDa) is stabilized by four disulfide bonds and a bound Ca2+ ion, offering the possibility of trapping partially folded disulfide intermediates between the native and the fully unfolded state. The conformers of alpha LA with high affinity for GroEL are compact, containing up to three disulfide bonds, and have significant secondary structure, but lack stable tertiary structure and expose hydrophobic surfaces. Complex formation requires almost the complete alpha LA sequence and is strongly dependent on salts that stabilize hydrophobic interactions. Unfolding of alpha LA to an extended state as well as the burial of hydrophobic surface upon formation of ordered tertiary structure prevent the binding to GroEL. Interestingly, GroEL interacts only with a specific subset of the many partially folded disulfide intermediates of alpha LA and thus may influence in vitro the kinetics of the folding pathways that lead to disulfide bonds with native combinations. We conclude that the chaperonin interacts with the hydrophobic surfaces exposed by proteins in a flexible compact intermediate or molten globule state.  相似文献   

13.
Bousquet JA  Garbay C  Roques BP  Mély Y 《Biochemistry》2000,39(26):7722-7735
SH3 (src homology domain 3) domains are small protein modules that interact with proline-rich peptides. The structure of the N-terminal SH3 domain from growth factor receptor-binding protein 2 (Grb2), an adapter protein in the intracellular signaling pathway to Ras, was investigated by circular dichroic (CD) spectroscopy. The compact native beta-barrel conformation, previously elucidated by NMR spectroscopy, was largely predominant at pH = 4.8, in the absence of salt. From the structural changes induced by varying pH, ionic strength, temperature, or hydrophobicity of the environment, evidence for the existence of distinct nonnative conformations was obtained in the far- and near-UV domains. Along the free energy scale, these appear to distribute into two conformational ensembles, depending on the extent of structural and thermodynamic differences compared to the native conformation. The first ensemble consists of non-native conformations with a nativelike secondary structure, and the second is composed of partially unfolded conformations having short alpha-helical fragments or turnlike motifs in their nonnative secondary structure. Most of the observed nonnative conformations exist in mild or nondenaturing conditions. They probably have distinct compactness of their inner structure, depending on the strength of nonlocal interactions, but only the native all-beta conformation possesses a condensed protein exterior, appropriate for the binding to the VPPPVPPRRR decapeptide from Sos. Upon binding, the native conformation undergoes a local tertiary structure change in a hydrophobic pocket at the binding site. This is accompanied by the PP-II helix folding of the proline-rich peptide. Interestingly, in the near-UV domain, a significant change in the spectral contribution of an aromatic exciton was observed, thus allowing quantitative tracking of the binding process.  相似文献   

14.
Many proteins comprising of complex topologies require molecular chaperones to achieve their unique three-dimensional folded structure. The E.coli chaperone, GroEL binds with a large number of unfolded and partially folded proteins, to facilitate proper folding and prevent misfolding and aggregation. Although the major structural components of GroEL are well defined, scaffolds of the non-native substrates that determine chaperone-mediated folding have been difficult to recognize. Here we performed all-atomistic and replica-exchange molecular dynamics simulations to dissect non-native ensemble of an obligate GroEL folder, DapA. Thermodynamics analyses of unfolding simulations revealed populated intermediates with distinct structural characteristics. We found that surface exposed hydrophobic patches are significantly increased, primarily contributed from native and non-native β-sheet elements. We validate the structural properties of these conformers using experimental data, including circular dichroism (CD), 1-anilinonaphthalene-8-sulfonic acid (ANS) binding measurements and previously reported hydrogen-deutrium exchange coupled to mass spectrometry (HDX-MS). Further, we constructed network graphs to elucidate long-range intra-protein connectivity of native and intermediate topologies, demonstrating regions that serve as central “hubs”. Overall, our results implicate that genomic variations (or mutations) in the distinct regions of protein structures might disrupt these topological signatures disabling chaperone-mediated folding, leading to formation of aggregates.  相似文献   

15.
Site-directed mutagenesis has been used to probe the interactions that stabilize the equilibrium and burst phase kinetic intermediates formed by apomyoglobin. Nine bulky hydrophobic residues in the A, E, G and H helices were replaced by alanine, and the effects on protein stability and kinetic folding pathways were determined. Hydrogen exchange pulse-labeling experiments, with NMR detection, were performed for all mutants. All of the alanine substitutions resulted in changes in proton occupancy or an increased rate of hydrogen-deuterium exchange for amides in the immediate vicinity of the mutation. In addition, most mutations affected residues in distant parts of the amino acid sequence, providing insights into the topology of the burst phase intermediate and the interactions that stabilize its structure. Differences between the pH 4 equilibrium molten globule and the kinetic intermediate are evident: the E helix region plays no discernible role in the equilibrium intermediate, but contributes significantly to stabilization of the ensemble of compact intermediates formed during kinetic refolding. Mutations that interfere with docking of the E helix onto the preformed A/B/G/H helix core substantially decrease the folding rate, indicating that docking and folding of the E helix region occurs prior to formation of the apomyoglobin folding transition state. The results of the mutagenesis experiments are consistent with rapid formation of an ensemble of compact burst phase intermediates with an overall native-like topological arrangement of the A, B, E, G, and H helices. However, the experiments also point to disorder in docking of the E helix and to non-native contacts in the kinetic intermediate. In particular, there is evidence for translocation of the H helix by approximately one helical turn towards its N terminus to maximize hydrophobic interactions with helix G. Thus, the burst phase intermediate observed during kinetic refolding of apomyoglobin consists of an ensemble of compact, kinetically trapped states in which the helix docking appears to be topologically correct, but in which there are local non-native interactions that must be resolved before the protein can fold to the native structure.  相似文献   

16.
In the oxidative folding of onconase, the stabilization of intermediates early in the folding process gives rise to efficient formation of its biologically active form. To identify the residues responsible for the initial formation of structured intermediates, the transition from an ensemble of unstructured three-disulfide species, 3S(U), to a single structured three-disulfide intermediate species, des-[30-75] or 3S(F), at pH 8.0 and 25 °C was examined. This transition was first monitored by far-UV circular dichroism spectroscopy at pH 8.0 and 25 °C, showing that it occurs with the formation of secondary structure, presumably because of native interactions. The time dependence of formation of nativelike structure was then followed by nuclear magnetic resonance spectroscopy after we had arrested the transition at different times by lowering the pH to 3 and then acquiring (1)H-(15)N heteronuclear single-quantum coherence spectra at pH 3 and 16 °C to identify amide hydrogens that become part of nativelike structure. H/D exchange was utilized to reduce the intensity of resonances from backbone amide hydrogens not involved in structure, without allowing exchange of backbone amide hydrogens involved in initial structure. Six hydrogen-bonding residues, namely, Tyr38, Lys49, Ser82, Cys90, Glu91, and Ala94, were identified as being involved in the earliest detectable nativelike structure before complete formation of des-[30-75] and are further stabilized later in the formation of this intermediate through S-S/SH interchange. By observing the stabilization of the structures of these residues by their neighboring residues, we have identified the initial, nativelike structural elements formed in this transition, providing details of the initial events in the oxidative folding of onconase.  相似文献   

17.
The N-terminal SH3 domain of the Drosophila adapter protein Drk (drkN SH3 domain) is marginally stable (DeltaG(U) = 1 kcal/mol) and exists in equilibrium between folded and highly populated unfolded states. The single substitution T22G, however, completely stabilizes the protein (DeltaG(U) = 4.0 kcal/mol). To probe the causes of instability of the wild-type (WT) protein and the dramatic stabilization of the mutant, we determined and compared nuclear magnetic resonance structures of the folded WT and mutant drkN SH3 domains. Residual dipolar coupling (RDC) and carbonyl chemical-shift anisotropy (C'-CSA) restraints measured for the WT and T22G domains were used for calculating the structures. The structures for the WT and mutant are highly similar. Thr22 of the WT and Gly22 of the mutant are at the i + 2 position of the diverging, type-II beta-turn. Interestingly, not only Gly22 but also Thr22 successfully adopt an alpha(L) conformation, required at this position of the turn, despite the fact that positive phi values are energetically unfavorable and normally disallowed for threonine residues. Forcing the Thr22 residue into this unnatural conformation increases the free energy of the folded state of the WT domain relative to its T22G mutant. Evidence for residual helix formation in the diverging turn region has been previously reported for the unfolded state of the WT drkN SH3 domain, and this, in addition to other residual structure, has been proposed to play a role in decreasing the free energy of the unfolded state of the protein. Together these data provide evidence that both increasing the free energy of the folded state and decreasing the free energy of the unfolded state of the protein contribute to instability of the WT drkN SH3 domain.  相似文献   

18.
The folding mechanism of the dimeric Escherichia coli Trp repressor (TR) is a kinetically complex process that involves three distinguishable stages of development. Following the formation of a partially folded, monomeric ensemble of species, within 5 ms, folding to the native dimer is controlled by three kinetic phases. The rate-limiting step in each phase is either a non-proline isomerization reaction or a dimerization reaction, depending on the final denaturant concentration. Two approaches have been employed to test the previously proposed folding mechanism of TR through three parallel channels: (1) unfolding double-jump experiments demonstrate that all three folding channels lead directly to native dimer; and (2) the differential stabilization of the transition state for the final step in folding and the native dimer, by the addition of salt, shows that all three channels involve isomerization of a dimeric species. A refined model for the folding of Trp repressor is presented, in which all three channels involve a rapid dimerization reaction between partially folded monomers followed by the isomerization of the dimeric intermediates to yield native dimer. The ensemble of partially folded monomers can be captured at equilibrium by low pH; one-dimensional proton NMR spectra at pH 2.5 demonstrate that monomers exist in two distinct, slowly interconverting conformations. These data provide a potential structural explanation for the three-channel folding mechanism of TR: random association of two different monomeric forms, which are distinguished by alternative packing modes of the core dimerization domain and the DNA-binding, helix-turn-helix, domain. One, perhaps both, of these packing modes contains non-native contacts.  相似文献   

19.
In an attempt to characterize the early folding events in bovine beta-lactoglobulin (BLG), a set of peptides, covering the flexible N-terminal region and the stable C-terminus beta-core, was synthesized and analyzed by circular dichroism and by nuclear magnetic resonance in water, trifluoroethanol (TFE), and sodium dodecyl sulfate (SDS) below and above the critical micellar concentration. The role of local and long-range hydrophobic interactions in guiding the folding has been investigated. For the peptide fragment covering the more flexible N-terminal region of BLG (beta-strands A, B), where both theoretical predictions and kinetic refolding experiments suggested the formation of non-native alpha-helix, no native long-range contacts were identified, and a helical secondary structure was stabilized only in the presence of 25 mM SDS. At variance, in 50% (v/v) TFE, native, long-range hydrophobic interactions were observed in the peptide covering the core region comprising G and H beta-strands. The side chains involved in these interactions form a nativelike hydrophobic cluster, thus suggesting that the GH region may act as the folding initiation site for BLG. This result is reinforced by the identification, in the urea denaturated BLG, of residual structure located at the level of the GH interface, as evidenced by NMR analysis. These results, in excellent agreement with kinetic, thermodynamic, and cold denaturation folding data, once more underline the utmost importance of the GH region for the stability and folding of BLG. Severe aggregation effects prevented the structural analysis of the peptide covering the EFGH region, indicating that this larger segment does not represent an independent folding domain and that the terminal alpha-helix is necessary for stabilizing the BLG folding core.  相似文献   

20.
Jiménez B  Poggi L  Piccioli M 《Biochemistry》2003,42(44):13066-13073
Early steps of unfolding of P43M Calbindin D(9k) have been evaluated by NMR spectroscopy on the native dicalcium and on the paramagnetic monocerium-substituted derivative. Although at 2 M GdmHCl the protein core maintains its overall folding and structure, amide (15)N R(2) measurements and cross correlation rates between N-H dipole-dipole relaxation and (15)N CSA relaxation reveal a closer and stronger packing of the hydrophobic interactions in the protein as a response to the presence of denaturing agents in solution. A complete reorientation of the Met43 side chain toward the hydrophobic core is accomplished by the disappearance of the millisecond dynamics observed on the native form of Calbindin D(9k), while cross correlation rates provide evidence that the two-way hydrogen bond between Leu23 and Val61 is broken or substantially weakened. The substitution of the calcium ion in site II with the paramagnetic Ce(3+) ion allowed us to obtain a number of long-range nonconventional constraints, namely, pseudocontact shifts, which were used, together with the NOEs collected on the native state, to monitor subtle structural variations occurring in the non-native state of the protein. Although the average rmsd between the structures of native and non-native states is small (0.48 A), structural rearrangements could be reliably identified. Our results provide unprecedented information about the behavior of Calbindin D(9k) during the early steps of unfolding. Furthermore, they constitute strong evidence of the efficiency of paramagnetism-based constraints in monitoring subtle structural changes that are beyond the sensitivity of an approach based only on NOE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号