首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
蛋白质特定的三维结构与其生物功能密切相关,因此,研究蛋白质的三维结构有助于揭示其生物功能机制。将核磁共振(NMR)波谱法应用于研究溶液状态下蛋白质的三维结构,能够更加准确地揭示蛋白质结构与生物功能之间的关系。本文综述了NMR解析蛋白质三维结构的理论和技术方法,以及NMR结合其他生物物理手段,并辅以分子建模计算法研究蛋白质三维结构的研究进展和最新方法,为精准解析蛋白质的三维结构提供思路及策略。  相似文献   

2.
3.
A direct method for measuring the activity of erythrocyte triosephosphate isomerase using 1H NMR spectroscopy was developed. NMR spectroscopy allows the simultaneous monitoring of the substrate and the product of the reaction by virtue of the differences in the NMR spectrum of each chemical species. The assay conditions were based on a modification of a conventional spectrophotometric method. The enzymatic activity measured using NMR gave results comparable to those obtained in a standard assay. The results were used in the kinetic characterization of triosephosphate isomerase in hemolysates from subjects with homozygous or heterozygous deficiency of the enzyme. In general, NMR spectroscopy has the potential for wide application in the rapid development of new enzyme assays.  相似文献   

4.
5.
Structural genomics is on a quest for the structure and function of a significant fraction of gene products. Current efforts are focusing on structure determination of single-domain proteins, which can readily be targeted by X-ray crystallography, NMR spectroscopy and computational homology modeling. However, comprehensive association of gene products with functions also requires systematic determination of more complex protein structures and other biomolecules participating in cellular processes such as nucleic acids, and characterization of biomolecular interactions and dynamics relevant to function. Such NMR investigations are becoming more feasible, not only due to recent advances in NMR methodology, but also because structural genomics is providing valuable structural information and new experimental and computational tools. The measurement of residual dipolar couplings in partially oriented systems and other new NMR methods will play an important role in this synergistic relationship between NMR and structural genomics. Both an expansion in the domain of NMR application, and important contributions to future structural genomics efforts can be anticipated.  相似文献   

6.
A novel NMR spectroscopic approach to the direct biochemical characterization of bacterial culture broths is presented. A variety of one- and two-dimensional 1H NMR spectroscopic methods were used to characterize low-molecular-weight organic components of broth supernatants from cultures of Streptomyces citricolor. By applying 1H NMR spectroscopy to analyze whole, untreated culture supernatants, it was possible to identify and monitor simultaneously a range of media substrates and excreted metabolites. Identified metabolites include 2-phenylethylamine, trehalose, succinate, acetate, uridine, and aristeromycin, a secondary metabolite with antibiotic properties. Directly coupled HPLC-NMR spectroscopy was also applied to the analysis of broth supernatants for the first time, to aid spectral assignments, especially where signals were extensively overlapped in the 1H NMR spectra of the whole broth mixtures. Two-dimensional NMR methods such as 1H-1H correlation spectroscopy, 1H-13C heteronuclear single quantum correlation, and 1H-13C heteronuclear multiple bond correlation aided the structure elucidation and peak assignments of individual components in the mixtures by providing information on 1H-1H coupling networks and 13C chemical shifts. This work shows that high-resolution NMR spectroscopic methods provide a rapid and efficient means of investigating microbial metabolism directly without invasive or destructive sample pretreatment.  相似文献   

7.
Hoerr V  Purea A  Faber C 《Biophysical journal》2010,99(7):2336-2343
NMR spectroscopy is a powerful tool for detection and characterization of chemical compounds in biological systems. Its application in pharmaceutical studies in cell cultures, however, has been hampered by the enormous technical challenges in separating intra- from extracellular amounts of one substance. We introduce a novel approach to separate intra- from extracellular NMR signal based on the detection of intermolecular zero-quantum coherences in presence of a chemical shift agent. In a sample of large cells in culture, the investigation of cellular uptake of pharmacological substances becomes feasible. The addition of 10 mM Tm-DOTP to a suspension of 100 Xenopus laevis oocytes resulted in sufficient separation of resonance frequencies between intra- and extracellular water. Upon selective excitation of either intra- or extracellular water signal, only intra- or extracellular components were observed, respectively. The presented localization technique provides intrinsic averaging over a large number of cells, resulting in a significant signal gain. The method works on standard NMR spectrometers, which are available at most scientific research institutions today. On a high-resolution NMR system with a cryoprobe, a 20-fold sensitivity gain was observed as compared to conventionally localized NMR spectroscopy of a single X. laevis oocyte on dedicated NMR microscopes.  相似文献   

8.
9.
10.
Membrane proteins compose more than 30% of all proteins in the living cell. However, many membrane proteins have low abundance in the cell and cannot be isolated from natural sources in concentrations suitable for structure analysis. The overexpression, reconstitution, and stabilization of membrane proteins are complex and remain a formidable challenge in membrane protein characterization. Here we describe a novel, in vitro folding procedure for a cation-selective channel protein, the outer envelope membrane protein 16 (OEP16) of pea chloroplast, overexpressed in Escherichia coli in the form of inclusion bodies. The protein is purified and then folded with detergent on a Ni–NTA affinity column. Final concentrations of reconstituted OEP16 of up to 24 mg/ml have been achieved, which provides samples that are sufficient for structural studies by NMR and crystallography. Reconstitution of OEP16 in detergent micelles was monitored by circular dichroism, fluorescence, and NMR spectroscopy. Tryptophan fluorescence spectra of heterologous expressed OEP16 in micelles are similar to spectra of functionally active OEP16 in liposomes, which indicates folding of the membrane protein in detergent micelles. CD spectroscopy studies demonstrate a folded protein consisting primarily of α-helices. 15N-HSQC NMR spectra also provide evidence for a folded protein. We present here a convenient, effective and quantitative method to screen large numbers of conditions for optimal protein stability by using microdialysis chambers in combination with fluorescence spectroscopy. Recent collection of multidimensional NMR data at 500, 600 and 800 MHz demonstrated that the protein is suitable for structure determination by NMR and stable for weeks during data collection.  相似文献   

11.
Structural studies of integral membrane proteins typically rely upon detergent micelles as faithful mimics of the native lipid bilayer. Therefore, membrane protein structure determination would be greatly facilitated by biophysical techniques that are capable of evaluating and assessing the fold and oligomeric state of these proteins solubilized in detergent micelles. In this study, an approach to the characterization of detergent-solubilized integral membrane proteins is presented. Eight Thermotoga maritima membrane proteins were screened for solubility in 11 detergents, and the resulting soluble protein-detergent complexes were characterized with small angle X-ray scattering (SAXS), nuclear magnetic resonance (NMR) spectroscopy, circular dichroism (CD) spectroscopy, and chemical cross-linking to evaluate the homogeneity, oligomeric state, radius of gyration, and overall fold. A new application of SAXS is presented, which does not require density matching, and NMR methods, typically used to evaluate soluble proteins, are successfully applied to detergent-solubilized membrane proteins. Although detergents with longer alkyl chains solubilized the most proteins, further characterization indicates that some of these protein-detergent complexes are not well suited for NMR structure determination due to conformational exchange and protein oligomerization. These results emphasize the need to screen several different detergents and to characterize the protein-detergent complex in order to pursue structural studies. Finally, the physical characterization of the protein-detergent complexes indicates optimal solution conditions for further structural studies for three of the eight overexpressed membrane proteins.  相似文献   

12.
G-protein coupled receptors (GPCRs) are ubiquitous membrane proteins allowing intracellular responses to extracellular factors that range from photons of light to small molecules to proteins. Despite extensive exploitation of GPCRs as therapeutic targets, biophysical characterization of GPCR-ligand interactions remains challenging. In this minireview, we focus on techniques that have been successfully used for structural and biophysical characterization of peptide ligands binding to their cognate GPCRs. The techniques reviewed include solution-state nuclear magnetic resonance (NMR) spectroscopy, solid-state NMR, X-ray diffraction, fluorescence spectroscopy and single-molecule fluorescence methods, flow cytometry, surface plasmon resonance, isothermal titration calorimetry, and atomic force microscopy. The goal herein is to provide a cohesive starting point to allow selection of techniques appropriate to the elucidation of a given GPCR-peptide interaction.  相似文献   

13.
We propose a machine-learning approach to sequence-based prediction of protein crystallizability in which we exploit subtle differences between proteins whose structures were solved by X-ray analysis [or by both X-ray and nuclear magnetic resonance (NMR) spectroscopy] and those proteins whose structures were solved by NMR spectroscopy alone. Because the NMR technique is usually applied on relatively small proteins, sequence length distributions of the X-ray and NMR datasets were adjusted to avoid predictions biased by protein size. As feature space for classification, we used frequencies of mono-, di-, and tripeptides represented by the original 20-letter amino acid alphabet as well as by several reduced alphabets in which amino acids were grouped by their physicochemical and structural properties. The classification algorithm was constructed as a two-layered structure in which the output of primary support vector machine classifiers operating on peptide frequencies was combined by a second-level Naive Bayes classifier. Due to the application of metamethods for cost sensitivity, our method is able to handle real datasets with unbalanced class representation. An overall prediction accuracy of 67% [65% on the positive (crystallizable) and 69% on the negative (noncrystallizable) class] was achieved in a 10-fold cross-validation experiment, indicating that the proposed algorithm may be a valuable tool for more efficient target selection in structural genomics. A Web server for protein crystallizability prediction called SECRET is available at http://webclu.bio.wzw.tum.de:8080/secret.  相似文献   

14.
NMR spectroscopy as a particularly information-rich method offers unique opportunities for improving the structural and functional characterization of metabolomes, which will be essential for advancing the understanding of many biological processes. Whereas traditionally NMR spectroscopy was mostly relegated to the characterization of pure compounds, the past few years have seen a surge of interest in using NMR-spectroscopic techniques for characterizing complex metabolite mixtures. Development of new methods was motivated partly by the realization that using NMR for the analysis of metabolite mixtures can help identify otherwise inaccessible small molecules, for example compounds that are prone to chemical decomposition and thus cannot be isolated. Furthermore, comparative metabolomics and statistical analyses of NMR spectra have proven highly effective at identifying novel and known metabolites that correlate with changes in genotype or phenotype. In this review, we provide an overview of the range of NMR-spectroscopic techniques recently developed for characterizing metabolite mixtures, including methods used in discovery-oriented natural product chemistry, in the study of metabolite biosynthesis and function, or for comparative analyses of entire metabolomes.  相似文献   

15.
The applicability of 1H-NMR spectroscopy for the determination of the primary and tertiary structure of carbohydrate-containing molecules is demonstrated. For classes of known compounds the characterization can be based on chemical shifts observed in 1D NMR spectra with or without the aid of a computer database. For more complex structure determinations 2D NMR techniques are required. Here the application of 2D NMR is demonstrated for the primary structure determination of two bacterial exopolysaccharides, for the spatial structure determination of a disaccharide and a glycoprotein hormone.  相似文献   

16.
Assessing how excipients affect the self-association of monoclonal antibodies (mAbs) requires informative and direct in situ measurements for highly concentrated solutions, without sample dilution or perturbation. This study explores the application of solution nuclear magnetic resonance (NMR) spectroscopy for characterization of typical mAb behavior in formulations containing arginine glutamate. The data show that the analysis of signal intensities in 1D 1H NMR spectra, when compensated for changes in buffer viscosity, is invaluable for identifying conditions where protein-protein interactions are minimized. NMR-derived molecular translational diffusion rates for concentrated solutions are less useful than transverse relaxation rates as parameters defining optimal formulation. Furthermore, NMR reports on the solution viscosity and mAb aggregation during accelerated stability study assessment, generating data consistent with that acquired by size-exclusion chromatography. The methodology developed here offers NMR spectroscopy as a new tool providing complementary information useful to formulation development of mAbs and other large therapeutic proteins.  相似文献   

17.
High-resolution solid-state NMR spectroscopy can provide structural information of proteins that cannot be studied by X-ray crystallography or solution NMR spectroscopy. Here we demonstrate that it is possible to determine a protein structure by solid-state NMR to a resolution comparable to that by solution NMR. Using an iterative assignment and structure calculation protocol, a large number of distance restraints was extracted from (1)H/(1)H mixing experiments recorded on a single uniformly labeled sample under magic angle spinning conditions. The calculated structure has a coordinate precision of 0.6 A and 1.3 A for the backbone and side chain heavy atoms, respectively, and deviates from the structure observed in solution. The approach is expected to be applicable to larger systems enabling the determination of high-resolution structures of amyloid or membrane proteins.  相似文献   

18.
A multidisciplinary approach based on molecular dynamics (MD) simulations using homology models, NMR spectroscopy, and a variety of biophysical techniques was used to efficiently improve the thermodynamic stability of armadillo repeat proteins (ArmRPs). ArmRPs can form the basis of modular peptide recognition and the ArmRP version on which synthetic libraries are based must be as stable as possible. The 42-residue internal Arm repeats had been designed previously using a sequence-consensus method. Heteronuclear NMR revealed unfavorable interactions present at neutral but absent at high pH. Two lysines per repeat were involved in repulsive interactions, and stability was increased by mutating both to glutamine. Five point mutations in the capping repeats were suggested by the analysis of positional fluctuations and configurational entropy along multiple MD simulations. The most stabilizing single C-cap mutation Q240L was inferred from explicit solvent MD simulations, in which water penetrated the ArmRP. All mutants were characterized by temperature- and denaturant-unfolding studies and the improved mutants were established as monomeric species with cooperative folding and increased stability against heat and denaturant. Importantly, the mutations tested resulted in a cumulative decrease of flexibility of the folded state in silico and a cumulative increase of thermodynamic stability in vitro. The final construct has a melting temperature of about 85°C, 14.5° higher than the starting sequence. This work indicates that in silico studies in combination with heteronuclear NMR and other biophysical tools may provide a basis for successfully selecting mutations that rapidly improve biophysical properties of the target proteins.  相似文献   

19.
This review focuses on the recent developments in the study of drug interactions with biological membranes and membrane-associated proteins using nuclear magnetic resonance (NMR) spectroscopy and other spectroscopic techniques. Emphasis is placed on a class of low-affinity neurological agents as exemplified by volatile general anesthetics and structurally related compounds. The technical aspects are reviewed of how to prepare membrane-mimetic systems and of NMR approaches that are either in current use or opening new prospects. A brief literature survey covers studies ranging from drug distribution in simplified lipid matrix to specific drug interaction with neuronal receptors reconstituted in complicated synthetic membrane systems.  相似文献   

20.
Structure determination of secondary DNA structural elements, such as G-quadruplexes, gains an increasing importance as fundamental physiological roles are being associated with the formation of such structures in vivo. A truncated native DNA sequence generally requires further optimization to obtain a candidate with desired nuclear magnetic resonance (NMR) properties for structural analysis in solution. The optimum sequence is expected to form one dominant, stable molecular entity in solution with well-resolved NMR peaks. However, DNA sequences are prone to form structures composed of one, two, three, or four strands depending on sequence and solution conditions. The thorough characterization of the molecularity (stoichiometry and molecular weight) and appropriate solution conditions for sequences with different modifications traditionally applies analytical techniques that generally do not represent the solution conditions for NMR structure determination. Here we present the application of diffusion-ordered NMR spectroscopy as a useful analytical tool for the optimization and analysis of DNA secondary structural elements, specifically, the DNA G-quadruplex structures, including those formed in the human telomeric sequence and in the promoter regions of bcl-2 and c-myc genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号