首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Linke D  Frank J  Holzwarth JF  Soll J  Boettcher C  Fromme P 《Biochemistry》2000,39(36):11050-11056
More than 30% of all proteins in the living cell are membrane proteins; most of them occur in the native membranes only in very low amounts, which hinders their functional and structural investigation. Here we describe the in vitro reconstitution of overexpressed Outer Envelope Protein 16 (OEP16) from pea chloroplasts, a cation-selective channel, which has been purified from E. coli inclusion bodies. Reconstitution in detergent micelles was monitored by CD and fluorescence spectroscopy. Electron microscopy showed a homogeneous size distribution of the reconstituted protein, and differential scanning calorimetry gave an estimate of the enthalpy of protein folding. First protein crystals were obtained that have to be further refined for X-ray structural analysis. The described methods of membrane protein reconstitution and biophysical analysis might prove helpful in the study of other membrane proteins.  相似文献   

2.
The chloroplast outer membrane contains different, specialized pores that are involved in highly specific traffic processes from the cytosol into the chloroplast and vice versa. One representative member of these channels is the outer envelope protein 16 (OEP16), a cation-selective high conductance channel with high selectivity for amino acids. Here we study the mechanism and kinetics of the folding of this membrane protein by fluorescence and circular dichroism spectroscopy, using deletion mutants of the two single tryptophanes Trp-77-->Phe-77 and Trp-100-->Phe-100. In addition, the wild-type spectra were deconvoluted, depicting the individual contributions from each of the two tryptophan residues. The results show that both tryptophan residues are located in a completely different environment. The Trp-77 is deeply buried in the hydrophobic part of the protein, whereas the Trp-100 is partially solvent exposed. These results were further confirmed by studies of fluorescence quenching with I(-). The kinetics of the protein folding are studied by stopped flow fluorescence and circular dichroism measurements. The folding process depends highly on the detergent concentration and can be divided into an ultrafast phase (k > 1000 s(-1)), a fast phase (200-800 s(-1)), and a slow phase (25-70 s(-1)). The slow phase is absent in the W100F mutant. Secondary structure analysis and comparision with closely related proteins led to a new model of the structure of OEP16, suggesting that the protein is, in contrast to most other outer membrane proteins studied so far, purely alpha-helical, consisting of four transmembrane helices. Trp-77 is located in helix II, whereas the Trp-100 is located in the loop between helices II and III, close to the interface to helix III. We suggest that the first, very fast process corresponds to the formation of the helices, whereas the insertion of the helices into the detergent micelle and the correct folding of the II-III loop may be the later, rate-limiting steps of the folding process.  相似文献   

3.
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

4.
We report a detailed kinetic study of the folding of an alpha-helical membrane protein in a lipid bilayer environment. SDS denatured bacteriorhodopsin was folded directly into phosphatidylcholine lipid vesicles by stopped-flow mixing. The folding kinetics were monitored with millisecond time resolution by time-resolving changes in protein fluorescence as well as in the absorption of the retinal chromophore. The kinetics were similar to those previously reported for folding bacteriorhodopsin in detergent or lipid micelles, except for the presence of an additional apoprotein intermediate. We suggest this intermediate is a result of the greater internal two-dimensional pressure present in these lipid vesicles as compared to micelles. These results lay the groundwork for future studies aimed at understanding the mechanistic origin of the effect of lipid bilayer properties on protein folding. Furthermore, the use of biologically relevant phosphatidylcholine lipids, together with a straightforward rapid mixing process to initiate the folding reaction, means the method is generally applicable, and thus paves the way for an improved understanding of the in vitro folding of transmembrane alpha-helical proteins.  相似文献   

5.
Solution NMR of signal peptidase, a membrane protein   总被引:1,自引:0,他引:1  
Useful solution nuclear magnetic resonance (NMR) data can be obtained from full-length, enzymatically active type I signal peptidase (SPase I), an integral membrane protein, in detergent micelles. Signal peptidase has two transmembrane segments, a short cytoplasmic loop, and a 27-kD C-terminal catalytic domain. It is a critical component of protein transport systems, recognizing and cleaving amino-terminal signal peptides from preproteins during the final stage of their export. Its structure and interactions with the substrate are of considerable interest, but no three-dimensional structure of the whole protein has been reported. The structural analysis of intact membrane proteins has been challenging and only recently has significant progress been achieved using NMR to determine membrane protein structure. Here we employ NMR spectroscopy to study the structure of the full-length SPase I in dodecylphosphocholine detergent micelles. HSQC-TROSY spectra showed resonances corresponding to approximately 3/4 of the 324 residues in the protein. Some sequential assignments were obtained from the 3D HNCACB, 3D HNCA, and 3D HN(CO) TROSY spectra of uniformly 2H, 13C, 15N-labeled full-length SPase I. The assigned residues suggest that the observed spectrum is dominated by resonances arising from extramembraneous portions of the protein and that the transmembrane domain is largely absent from the spectra. Our work elucidates some of the challenges of solution NMR of large membrane proteins in detergent micelles as well as the future promise of these kinds of studies.  相似文献   

6.
The surrounding environment has significant consequences for the structural and functional properties of membrane proteins. While native structure and function can be reconstituted in lipid bilayer membranes, the detergents used for protein solubilization are not always compatible with biological activity and, hence, not always appropriate for direct detection of ligand binding by NMR spectroscopy. Here we describe how the sample environment affects the activity of the outer membrane protein Ail (attachment invasion locus) from Yersinia pestis. Although Ail adopts the correct β-barrel fold in micelles, the high detergent concentrations required for NMR structural studies are not compatible with the ligand binding functionality of the protein. We also describe preparations of Ail embedded in phospholipid bilayer nanodiscs, optimized for NMR studies and ligand binding activity assays. Ail in nanodiscs is capable of binding its human ligand fibronectin and also yields high quality NMR spectra that reflect the proper fold. Binding activity assays, developed to be performed directly with the NMR samples, show that ligand binding involves the extracellular loops of Ail. The data show that even when detergent micelles support the protein fold, detergents can interfere with activity in subtle ways.  相似文献   

7.
Hsp12 (heat shock protein 12) belongs to the small heat shock protein family, partially characterized as a stress response, stationary phase entry, late embryonic abundant-like protein located at the plasma membrane to protect membrane from desiccation. Here, we report the structural characterization of Hsp12 by NMR and biophysical techniques. The protein was labeled uniformly with nitrogen-15 and carbon-13 so that its conformation could be determined in detail both in aqueous solution and in two membrane-mimetic environments, SDS and dodecylphosphocholine (DPC) micelles. Secondary structural elements determined from assigned chemical shifts indicated that Hsp12 is dynamically disordered in aqueous solution, whereas it gains four helical stretches in the presence of SDS micelles and a single helix in presence of DPC. These conclusions were reinforced by circular dichroism spectra of the protein in all three environments. The lack of long range interactions in NOESY spectra indicated that the helices present in SDS micelles do not pack together. R(1) and R(2), relaxation and heteronuclear NOE measurements showed that the protein is disordered in aqueous solution but becomes more ordered in presence of detergent micelles. NMR spectra collected in presence of paramagnetic spin relaxation agents (5DSA, 16DSA, and Gd(DTPA-BMA)) indicated that the amphipathic α-helices of Hsp12 in SDS micelles lie on the membrane surface. These observations are in agreement with studies suggesting that Hsp12 functions to protect the membrane from desiccation.  相似文献   

8.
Proteins fold on timescales from hours to microseconds. In addition to protein size, sequence, and topology, the environment represents an equally important factor in determining folding speed. This is particularly relevant for proteins that require a lipid membrane or a membrane mimic to fold. However, only little is known about how properties of such a hydrophilic/hydrophobic interface modulate the folding landscape of membrane-interacting proteins. Here, we studied the influence of different membrane-mimetic micellar environments on the folding and unfolding kinetics of the helical-bundle protein Mistic. Devising a single-molecule fluorescence spectroscopy approach, we extracted folding and unfolding rates under equilibrium conditions and dissected the contributions from different detergent moieties to the free-energy landscape. While both polar and nonpolar moieties contribute to stability, they exert differential effects on the free-energy barrier: Hydrophobic burial stabilizes the folded state but not the transition state in reference to a purely aqueous environment; by contrast, zwitterionic headgroup moieties stabilize the folded state and, additionally, lower the free-energy barrier to accelerate the folding of Mistic to achieve ultrafast folding times down to 35 μs.  相似文献   

9.
The exact nature of membrane protein folding and assembly is not understood in detail yet. Addition of SDS to a membrane protein dissolved in mild, non-polar detergent results in formation of mixed micelles and in subsequent denaturation of higher ordered membrane protein structures. The exact nature of this denaturation event is, however, enigmatic, and separation of an individual helix pair in mixed micelles has also not been reported yet. Here we followed unfolding of the human glycophorin A transmembrane helix dimer in mixed micelles by fluorescence spectroscopy. Energy transfer between differently labelled glycophorin A transmembrane helices decreased with increasing SDS mole fractions albeit without modifying the helicity of the peptides. The energetics and kinetics of the dimer dissociation in mixed micelles is analyzed and discussed, and the experimental data demonstrate that mixed micelles can be used as a general method to investigate unfolding of α-helical membrane proteins.  相似文献   

10.
Recently, there have been several technical advances in the use of solution and solid-state NMR spectroscopy to determine the structures of membrane proteins. The structures of several isolated transmembrane (TM) helices and pairs of TM helices have been solved by solution NMR methods. Similarly, the complete folds of two TM beta-barrel proteins with molecular weights of 16 and 19 kDa have been determined by solution NMR in detergent micelles. Solution NMR has also provided a first glimpse at the dynamics of an integral membrane protein. Structures of individual TM helices have also been determined by solid-state NMR. A combination of NMR with site-directed spin-label electron paramagnetic resonance or Fourier transform IR spectroscopy allows one to assemble quite detailed protein structures in the membrane.  相似文献   

11.
This Review covers the delineation and optimization of protein-lipid systems for study using solution-state NMR spectroscopy. The first half presents the necessary background for a membrane protein biochemist to initiate collaboration with an NMR spectroscopist. The second half provides guidelines for the spectroscopist on data collection, analysis for obtaining conformational information, and structure generation and assessment. Although the emphasis is on the study of peptides in detergent micelles, methods are outlined for larger membrane-associated proteins and for use of other solubilizing agents.  相似文献   

12.
Membrane proteins are usually solubilized in polar solvents by incorporation into micelles. Even for small membrane proteins these mixed micelles have rather large molecular masses, typically beyond 50000 Da. The NMR technique TROSY (transverse relaxation-optimized spectroscopy) has been developed for studies of structures of this size in solution. In this paper, strategies for the use of TROSY-based NMR experiments with membrane proteins are discussed and illustrated with results obtained with the Escherichia coli integral membrane proteins OmpX and OmpA in mixed micelles with the detergent dihexanoylphosphatidylcholine (DHPC). For OmpX, complete sequence-specific NMR assignments have been obtained for the polypeptide backbone. The 13C chemical shifts and nuclear Overhauser effect data then resulted in the identification of the regular secondary structure elements of OmpX/DHPC in solution, and in the collection of an input of conformational constraints for the computation of the global fold of the protein. For OmpA, the NMR assignments are so far limited to about 80% of the polypeptide chain, indicating different dynamic properties of the reconstituted OmpA beta-barrel from those of OmpX. Overall, the present data demonstrate that relaxation-optimized NMR techniques open novel avenues for studies of structure, function and dynamics of integral membrane proteins.  相似文献   

13.
Spontaneous membrane insertion and folding of beta-barrel membrane proteins from an unfolded state into lipid bilayers has been shown previously only for few outer membrane proteins of Gram-negative bacteria. Here we investigated membrane insertion and folding of a human membrane protein, the isoform 1 of the voltage-dependent anion-selective channel (hVDAC1) of mitochondrial outer membranes. Two classes of transmembrane proteins with either alpha-helical or beta-barrel membrane domains are known from the solved high-resolution structures. VDAC forms a transmembrane beta-barrel with an additional N-terminal alpha-helix. We demonstrate that similar to bacterial OmpA, urea-unfolded hVDAC1 spontaneously inserts and folds into lipid bilayers upon denaturant dilution in the absence of folding assistants or energy sources like ATP. Recordings of the voltage-dependence of the single channel conductance confirmed folding of hVDAC1 to its active form. hVDAC1 developed first beta-sheet secondary structure in aqueous solution, while the alpha-helical structure was formed in the presence of lipid or detergent. In stark contrast to bacterial beta-barrel membrane proteins, hVDAC1 formed different structures in detergent micelles and phospholipid bilayers, with higher content of beta-sheet and lower content of alpha-helix when inserted and folded into lipid bilayers. Experiments with mixtures of lipid and detergent indicated that the content of beta-sheet secondary structure in hVDAC1 decreased at increased detergent content. Unlike bacterial beta-barrel membrane proteins, hVDAC1 was not stable even in mild detergents such as LDAO or dodecylmaltoside. Spontaneous folding of outer membrane proteins into lipid bilayers indicates that in cells, the main purpose of membrane-inserted or associated assembly factors may be to select and target beta-barrel membrane proteins towards the outer membrane instead of actively assembling them under consumption of energy as described for the translocons of cytoplasmic membranes.  相似文献   

14.
The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.  相似文献   

15.
16.
17.
Production of integral membrane proteins (IMPs) in a folded state is a key prerequisite for their functional and structural studies. In cell-free (CF) expression systems membrane mimicking components could be added to the reaction mixture that promotes IMP production in a soluble form. Here lipid–protein nanodiscs (LPNs) of different lipid compositions (DMPC, DMPG, POPC, POPC/DOPG) have been compared with classical membrane mimicking media such as detergent micelles, lipid/detergent bicelles and liposomes by their ability to support CF synthesis of IMPs in a folded and soluble state. Three model membrane proteins of different topology were used: homodimeric transmembrane (TM) domain of human receptor tyrosine kinase ErbB3 (TM-ErbB3, 1TM); voltage-sensing domain of K+ channel KvAP (VSD, 4TM); and bacteriorhodopsin from Exiguobacterium sibiricum (ESR, 7TM). Structural and/or functional properties of the synthesized proteins were analyzed. LPNs significantly enhanced synthesis of the IMPs in a soluble form regardless of the lipid composition. A partial disintegration of LPNs composed of unsaturated lipids was observed upon co-translational IMP incorporation. Contrary to detergents the nanodiscs resulted in the synthesis of ~ 80% active ESR and promoted correct folding of the TM-ErbB3. None of the tested membrane mimetics supported CF synthesis of correctly folded VSD, and the protocol of the domain refolding was developed. The use of LPNs appears to be the most promising approach to CF production of IMPs in a folded state. NMR analysis of 15N-Ile-TM-ErbB3 co-translationally incorporated into LPNs shows the great prospects of this membrane mimetics for structural studies of IMPs produced by CF systems.  相似文献   

18.
An efficient method is described for production of membrane protein KCNE3 and its isotope labeled derivatives (15N-, 15N-/13C-) in amounts sufficient for structural-functional investigations. The purified protein preparation within different detergent micelles was characterized using dynamic light scattering, CD spectroscopy, and NMR spectroscopy. It is shown that within DPC/LDAO micelles the protein is in monomeric form and acquires mainly α-helical conformation. The existence of cross-peaks for all glycines of the 15N-HSQC NMR spectra as well as relatively small line widths (∼20 Hz) confirm the high quality of the preparation and the possibility of obtaining structural-dynamic information on KCNE3 by high resolution heteronuclear NMR spectroscopy.  相似文献   

19.
Outer membrane protein A (OmpA) of Escherichia coli is a beta-barrel membrane protein that unfolds in 8 M urea to a random coil. OmpA refolds upon urea dilution in the presence of certain detergents or lipids. To examine the minimal requirements for secondary and tertiary structure formation in beta-barrel membrane proteins, folding of OmpA was studied as a function of the hydrophobic chain length, the chemical structure of the polar headgroup, and the concentration of a large array of amphiphiles. OmpA folded in the presence of detergents only above a critical minimal chain length of the apolar chain as determined by circular dichroism spectroscopy and a SDS-PAGE assay that measures tertiary structure formation. Details of the chemical structure of the polar headgroup were unimportant for folding. The minimal chain length required for folding correlated with the critical micelle concentration in each detergent series. Therefore, OmpA requires preformed detergent micelles for folding and does not adsorb monomeric detergent to its perimeter after folding. Formation of secondary and tertiary structure is thermodynamically coupled and strictly dependent on the interaction with aggregated amphiphiles.  相似文献   

20.
Hwang S  Hilty C 《Proteins》2011,79(5):1365-1375
The two-stage model for membrane protein folding postulates that individual helices form first and are subsequently packed against each other. To probe the two-stage model, the structures of peptides representing individual transmembrane helices of the disulfide bond forming protein B have been studied in trifluoroethanol solution as well as in detergent micelles using nuclear magnetic resonance (NMR) and circular dichroism spectroscopy. In TFE solution, peptides showed well-defined α-helical structures. Peptide structures in TFE were compared to the structures of full-length protein obtained by X-ray crystallography and NMR. The extent of α-helical secondary structure coincided well, lending support for the two-stage model for membrane protein folding. However, the conformation of some amino acid side chains differs between the structures of peptide and full-length protein. In micellar solution, the peptides also adopted a helical structure, albeit of reduced definition. Using measurements of paramagnetic relaxation enhancement, peptides were confirmed to be embedded in micelles. These observations may indicate that in the native protein, tertiary interactions additionally stabilize the secondary structure of the individual transmembrane helices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号