首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thermophile Cupriavidus sp. strain S-6 accumulated polyhydroxybutyrate (PHB) from glucose at 50°C. A 9.0-kbp EcoRI fragment cloned from the genomic DNA of Cupriavidus sp. S-6 enabled Escherichia coli XL1-Blue to synthesize PHB at 45°C. Nucleotide sequence analysis showed a pha locus in the clone. The thermophilic polyhydroxyalkanoate (PHA) synthase (PhaC(Csp)) shared 81% identity with mesophilic PhaC of Cupriavidus necator H16. The diversity between these two strains was found dominantly on their N and C termini, while the middle regions were highly homologous (92% identity). We constructed four chimeras of mesophilic and thermophilic phaC genes to explore the mutations related to its thermostability. Among the chimeras, only PhaC(H16β), which was PhaC(H16) bearing 30 point mutations derived from the middle region of PhaC(Csp), accumulated a high content of PHB (65% [dry weight]) at 45°C. The chimera phaC(H16)(β) and two parental PHA synthase genes were overexpressed in E. coli BLR(DE3) cells and purified. At 30°C, the specific activity of the chimera PhaC(H16β) (172 ± 17.8 U/mg) was 3.45-fold higher than that of the parental enzyme PhaC(H16) (50 ± 5.2 U/mg). At 45°C, the half-life of the chimera PhaC(H16β) (11.2 h) was 127-fold longer than that of PhaC(H16) (5.3 min). Furthermore, the chimera PhaC(H16β) accumulated 1.55-fold (59% [dry weight]) more PHA content than the parental enzyme PhaC(H16) (38% [dry weight]) at 37°C. This study reveals a limited number of point mutations which enhance not only thermostability but also PhaC(H16) activity. The highly thermostable and active PHA synthase will provide advantages for its promising applications to in vitro PHA synthesis and recombinant E. coli PHA fermentation.  相似文献   

2.
Type II synthase (PhaC1(Ps)) for polyhydroxyalkanoate (PHA) from Pseudomonas sp. 61-3 was subjected to an in vitro evolution system including PCR-mediated mutagenesis in order to improve the function of PhaC1(Ps) in terms of its ability to produce poly(3-hydroxybutyrate) [P(3HB)] in recombinant Escherichia coli. Based on our established in vivo assay system, two positions (Ser325 and Gln481) where mutations provided remarkable increases in P(3HB) synthesis were identified. Saturation mutagenesis at these positions was carried out to explore whether there might be more beneficial sequences for P(3HB) synthesis than those identified in the point mutation library. As a result, five single mutants [S325C (T) and Q481M (K, R)] gave rise to highly enhanced P(3HB) synthesis. Drastically enhanced P(3HB) synthesis (up to 340- to 400-fold the amount of that of the wild type) was further achieved by generation of all five variants of the double mutants combining the codons for residues 325/481. It is feasible that the replacement of Ser (specific for type II synthase) by Thr (specific for type I synthase) at position 325 resulted in acquiring greater P(3HB) synthesis ability as exhibited by type I synthases. The other hot spot, 481, that positively contributes to enhanced P(3HB) synthesis is located adjacent to a His479, a residue that forms a putative catalytic diad that can be inferred by sequence alignment.  相似文献   

3.
In our previous study, in vitro evolution of type II polyhydroxyalkanoate (PHA) synthase (PhaC1Ps) from Pseudomonas sp. 61-3 yielded eleven mutant enzymes capable of synthesizing homopolymer of (R)-3-hydroxybutyrate [P(3HB)] in recombinant Escherichia coli JM109. These recombinant strains were capable of accumulating up to approximately 400-fold more P(3HB) than strains expressing the wild-type enzyme. These mutations enhanced the ability of the enzyme to specifically incorporate the 3HB-coenzyme A (3HB-CoA) substrate or improved catalytic efficiency toward the various monomer substrates of C4 to C12 (R)-3-hydroxyacyl-CoAs which can intrinsically be channeled by PhaC1Ps into P(3HB-co-3HA) copolymerization. In this study, beneficial amino acid substitutions of PhaC1Ps were analyzed based on the accumulation level and the monomer composition of P(3HB-co-3HA) copolymers generated by E. coli LS5218 [fadR601 atoC(Con)] harboring the monomer supplying enzyme genes. Substitutions of Ser by Thr(Cys) at position 325 were found to lead to an increase in the total amount of P(3HB-co-3HA) accumulated, whereas 3HB fractions in the P(3HB-co-3HA) copolymer were enriched by substitutions of Gln by Lys(Arg, Met) at position 481. This strongly suggests that amino acid substitutions at positions 325 and 481 are responsible for synthase activity and/or substrate chain-length specificity of PhaC1Ps. These in vivo results were supported by the in vitro results obtained from synthase activity assays using representative single and double mutants and synthetic substrates, (R,S)-3HB-CoA and (R,S)-3-hydroxydecanoyl-CoA. Notably, the position 481 was found to be a determinant for substrate chain-length specificity of PhaC1Ps.  相似文献   

4.
Seven strains of sulfate-reducing bacteria (SRB) were tested for the accumulation of polyhydroxyalkanoates (PHAs). During growth with benzoate Desulfonema magnum accumulated large amounts of poly(3-hydroxybutyrate) [poly(3HB)]. Desulfosarcina variabilis (during growth with benzoate), Desulfobotulus sapovorans (during growth with caproate), and Desulfobacterium autotrophicum (during growth with caproate) accumulated poly(3HB) that accounted for 20 to 43% of cell dry matter. Desulfobotulus sapovorans and Desulfobacterium autotrophicum also synthesized copolyesters consisting of 3-hydroxybutyrate and 3-hydroxyvalerate when valerate was used as the growth substrate. Desulfovibrio vulgaris and Desulfotalea psychrophila were the only SRB tested in which PHAs were not detected. When total DNA isolated from Desulfococcus multivorans and specific primers deduced from highly conserved regions of known PHA synthases (PhaC) were used, a PCR product homologous to the central region of class III PHA synthases was obtained. The complete pha locus of Desulfococcus multivorans was subsequently obtained by inverse PCR, and it contained adjacent phaE(Dm) and phaC(Dm) genes. PhaC(Dm) and PhaE(Dm) were composed of 371 and 306 amino acid residues and showed up to 49 or 23% amino acid identity to the corresponding subunits of other class III PHA synthases. Constructs of phaC(Dm) alone (pBBRMCS-2::phaC(Dm)) and of phaE(Dm)C(Dm) (pBBRMCS-2::phaE(Dm)C(Dm)) in various vectors were obtained and transferred to several strains of Escherichia coli, as well as to the PHA-negative mutants PHB(-)4 and GPp104 of Ralstonia eutropha and Pseudomonas putida, respectively. In cells of the recombinant strains harboring phaE(Dm)C(Dm) small but significant amounts (up to 1.7% of cell dry matter) of poly(3HB) and of PHA synthase activity (up to 1.5 U/mg protein) were detected. This indicated that the cloned genes encode functionally active proteins. Hybrid synthases consisting of PhaC(Dm) and PhaE of Thiococcus pfennigii or Synechocystis sp. strain PCC 6308 were also constructed and were shown to be functionally active.  相似文献   

5.
For the first time a functional protein was fused to a PHA synthase resulting in PHA granule formation and display of the respective function at the PHA granule surface. The GFP reporter protein was N-terminally fused to the class I PHA synthase of Cupriavidus necator (PhaC) and the class II PHA synthase of Pseudomonas aeruginosa PAO1 (PhaC1), respectively, while maintaining PHA synthase activity and PHA granule formation. Fluorescence microscopy studies of GFP-PHA synthase attached to emerging PHA granules indicated that emerging PHA granules locate to cell poles and to midcell representing the future cell poles. A rapid oscillating movement of GFP-PHA synthase foci from pole to pole was observed. In cell division impaired Escherichia coli, PHA granules were localized between nucleoids at regular spacing suggesting that nucleoid occlusion occurred. Accordingly, anucleate regions of the E. coli mukB mutant showed no regular spacing, but PHA granules with twofold increased diameter were formed. First evidence was provided that the cell division and the localization of GFP-PHA synthase foci are in vivo co-located.  相似文献   

6.
In vitro evolution of the polyhydroxyalkanoate (PHA) synthase gene from Pseudomonas sp. 61-3 (phaC1(Ps)) has been performed to generate highly active enzymes. In this study, a positive mutant of PHA synthase, Glu130Asp (E130D), was characterized in detail in vivo and in vitro. Recombinant Escherichia coli strain JM109 harboring the E130D mutant gene accumulated 10-fold higher (1.0 wt %) poly(3-hydroxybutyrate) [P(3HB)] from glucose, compared to recombinant E. coli harboring the wild-type PHA synthase gene (0.1 wt %). Recombinant E. coli strain LS5218 harboring the E130D PHA synthase gene grown on dodecanoate produced more poly(3HB-co-3-hydroxyalkanoate) [P(3HB-co-3HA)] (20 wt %) copolymer than an LS5218 strain harboring the wild-type PHA synthase gene (13 wt %). The E130D mutation also resulted in the production of copolymer with a slight increase in 3HB composition, compared to copolymer produced by the wild-type PHA synthase. In vitro enzyme activities of the E130D PHA synthase toward various 3-hydroxyacyl-CoAs (4-10 carbons in length) were all higher than those of the wild-type enzyme. The combination of the E130D mutation with other beneficial mutations, such as Ser325Thr and Gln481Lys, exhibited a synergistic effect on in vivo PHA production and in vitro enzyme activity. Interestingly, gel-permeation chromatography analysis revealed that the E130D mutation also had a synergistic effect on the molecular weight of polymers produced in vivo.  相似文献   

7.
Polyhydroxyalkanoate (PHA)-producing Bacillus strains possess class IV PHA synthases composed of two subunit types, namely, PhaR and PhaC. In the present study, PHA synthases from Bacillus megaterium NBRC15308(T) (PhaRC(Bm)), B. cereus YB-4 (PhaRC(YB4)), and hybrids (PhaR(Bm)C(YB4) and PhaR(YB4)C(Bm)) were expressed in Escherichia coli JM109 to characterize the molecular weight of the synthesized poly(3-hydroxybutyrate) [P(3HB)]. PhaRC(Bm) synthesized P(3HB) with a relatively high molecular weight (M(n) = 890 × 10(3)) during 72 h of cultivation, whereas PhaRC(YB4) synthesized low-molecular-weight P(3HB) (M(n) = 20 × 10(3)). The molecular weight of P(3HB) synthesized by PhaRC(YB4) decreased with increasing culture time and temperature. This time-dependent behavior was observed for hybrid synthase PhaR(Bm)C(YB4), but not for PhaR(YB4)C(Bm). These results suggest that the molecular weight change is caused by the PhaC(YB4) subunit. The homology between PhaCs from B. megaterium and B. cereus YB-4 is 71% (amino acid identity); however, PhaC(YB4) was found to have a previously unknown effect on the molecular weight of the P(3HB) synthesized in E. coli.  相似文献   

8.
The whole polyhydroxyalkanoate (PHA) synthesis gene locus of Pseudomonas stutzeri strain 1317 containing PHA synthase genes phaC1Ps, phaC2Ps and PHA depolymerase gene phaZPs was cloned using a PCR cloning strategy. The sequence analysis results of the phaC1Ps, phaC2Ps and phaZPs showed high homology to the corresponding pha loci of the known Pseudomonas strains, respectively. PhaC1Ps and PhaC2Ps were functionally expressed in recombinant Escherichia coli strains and their substrate specificity was compared. The results demonstrated that PhaC1Ps and PhaC2Ps from P. stutzeri 1317 had different substrate specificities when expressed in E. coli. In details, PhaC2Ps could incorporate both short-chain-length 3-hydroxybutyrate and medium-chain-length 3-hydroxyalkanoates (mcl 3HA) into PHA, while PhaC1Ps only favored mcl 3HA for polymerization.  相似文献   

9.
In vitro and in situ enzymatic polymerization of polyhydroxyalkanoate (PHA) on two hydrophobic surfaces, a highly oriented pyrolytic graphite (HOPG) and an alkanethiol self-assembled monolayer (SAM), was studied by atomic force microscopy (AFM) and quartz crystal microbalance (QCM), using purified Ralstonia eutropha PHA synthase (PhaC(Re)) as a biocatalyst. (R)-Specific enoyl-CoA hydratase was used to prepare R-enantiomer monomers [(R)-3-hydroxyacyl-CoA] with an acyl chain length of 4-6 carbon atoms. PHA homopolymers with different side-chain lengths, poly[(R)-3-hydroxybutyrate] [P(3HB)] and poly[(R)-3-hydroxyvalerate] [P(3HV)] were successfully synthesized from such R-enantiomer monomers on HOPG substrates. After the reaction, the surface morphologies were analyzed by AFM, revealing a nanometer thick PHA film. The same biochemical polymerization process was observed on an alkanethiol (C18) SAM surface fabricated on a gold electrode using QCM. This analysis showed that a complex sequence of PhaC(Re) adsorption and PHA polymerization has occurred on the hydrophobic surface. On the basis of these observations, the possible mechanisms of the PhaC(Re)-catalyzed polymerization reaction on the surface of hydrophobic substrates are proposed.  相似文献   

10.
This study describes a comparison of the polyhydroxyalkanoate (PHA) synthases PhaC1 and PhaC2 of Pseudomonas mendocina. The P mendocina pha gene locus, encoding two PHA synthase genes [phaC1Pm and phaC2pm flanking a PHA depolymerase gene (phaZ)], was cloned, and the nucleotide sequences of phaC1Pm (1,677 bp), phaZ (1,034 bp), and phaC2pm (1,680 bp) were determined. The amino acid sequences deduced from phaC1Pm and phaC2pm showed highest similarities to the corresponding PHA synthases from other pseudomonads sensu stricto. The two PHA synthase genes conferred PHA synthesis to the PHA-negative mutants P. putida GPp104 and Ralstonia eutropha PHB-4. In P. putida GPp 104, phaC1Pm and phaC2Pm mediated PHA synthesis of medium-chain-length hydroxyalkanoates (C6-C12) as often reported for other pseudomonads. In contrast, in R. eutropha PHB-4, either PHA synthase gene also led to the incorporation of 3-hydroxybutyrate (3HB) into PHA. Recombinant strains of R. eutropha PHB-4 harboring either P. mendocina phaC gene even accumulated a homopolyester of 3HB during cultivation with gluconate, with poly(3HB) amounting to more than 80% of the cell dry matter if phaC2 was expressed. Interestingly, recombinant cells harboring the phaC1 synthase gene accumulated higher amounts of PHA when cultivated with fatty acids as sole carbon source, whereas recombinant cells harboring PhaC2 synthase accumulated higher amounts when gluconate was used as carbon source in storage experiments in either host. Furthermore, isogenic phaC1 and phaC2 knock-out mutants of P. mendocina provided evidence that PhaC1 is the major enzyme for PHA synthesis in P. mendocina, whereas PhaC2 contributes to the accumulation of PHA in this bacterium to only a minor extent, and then only when cultivated on gluconate.  相似文献   

11.
In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738bp) and PHA synthase, class I (phaC(Co) gene, 1694bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33wt.% and 17wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.  相似文献   

12.
Polyhydroxyalkanoate (PHA) synthase PhaC plays a very important role in biosynthesis of microbial polyesters PHA. Compared to the extensively analyzed C-terminus of PhaC, N-terminus of PhaC was less studied. In this paper, the N-terminus of two class I PHA synthases PhaCRe and PhaCAh from Ralstonia eutropha and Aeromonas hydrophila, respectively, and one class II synthase PhaC2Ps of Pseudomonas stutzeri strain 1317, were investigated for their effect on PHA synthesis. For PhaCRe, deletion of 2–65 amino acid residues on the N-terminus led to enhanced PHB production with high PHB molecular weight of 2.50 × 106 Da. For PhaCAh, the deletion of the N-terminal residues resulted in increasing molecular weights and widening polydispersity accompanied by a decreased PHA production. It was found that 3-hydroxybutyrate (3HB) monomer content in copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate (3HHx) increased when the first 2–9 and 2–13 amino acid residues in the N-terminus of PhaC2Ps were deleted. However, deletion up to the 40th amino acid disrupted the PHA synthesis. This study confirmed that N-terminus in different types of PHA synthases showed significant roles in the PHA productivity and elongation activity. It was also indicated that N-terminal mutation was very effective for the location of functional regions at N-terminus.  相似文献   

13.
Two types of polyester inclusions of poly(3-hydroxybutyrate) [P(3HB)] and poly(3HB-co-3-hydroxyalkanoates) [P(3HB-co-3HA)] were isolated from crude extract of Pseudomonas sp. 61-3. Proteins associated with each inclusion were separated by SDS-PAGE. PHA synthase 1 (PhaC1(Ps)), PhaF(Ps), and PhaI(Ps) were identified from P(3HB-co-3HA) inclusions by N-terminal amino acid sequences analyses, as well as PHB synthase (PhbC(Ps)) and 24-kDa unknown protein were identified from P(3HB) inclusions. The structural genes of PhaF(Ps) and PhaI(Ps) were located downstream of the pha locus. The relative PHA/PHB synthase activities of each inclusion were measured for various 3-hydroxyacyl-coenzyme As of 4-12 carbon atoms. Direct atomic force microscopy observation of P(3HB) and P(3HB-co-3HA) inclusions demonstrated that the two types of inclusions had different morphologies.  相似文献   

14.
Ultrahigh-molecular-weight poly[(R)-3-hydroxybutyrate] [UHMW-P(3HB)] synthesized by genetically engineered Escherichia coli is an environmentally friendly bioplastic material which can be processed into strong films or fibers. An operon of three genes (organized as phaCAB) encodes the essential proteins for the production of P(3HB) in the native producer, Ralstonia eutropha. The three genes of the phaCAB operon are phaC, which encodes the polyhydroxyalkanoate (PHA) synthase, phaA, which encodes a 3-ketothiolase, and phaB, which encodes an acetoacetyl coenzyme A (acetoacetyl-CoA) reductase. In this study, the effect of gene order of the phaCAB operon (phaABC, phaACB, phaBAC, phaBCA, phaCAB, and phaCBA) on an expression plasmid in genetically engineered E. coli was examined in order to determine the best organization to produce UHMW-P(3HB). The results showed that P(3HB) molecular weights and accumulation levels were both dependent on the order of the pha genes relative to the promoter. The most balanced production result was achieved in the strain harboring the phaBCA expression plasmid. In addition, analysis of expression levels and activity for P(3HB) biosynthesis enzymes and of P(3HB) molecular weight revealed that the concentration of active PHA synthase had a negative correlation with P(3HB) molecular weight and a positive correlation with cellular P(3HB) content. This result suggests that the level of P(3HB) synthase activity is a limiting factor for producing UHMW-P(3HB) and has a significant impact on P(3HB) production.  相似文献   

15.
Ectothiorhodospira shaposhnikovii is able to accumulate polyhydroxybutyrate (PHB) photoautotrophically during nitrogen-limited growth. The activity of polyhydroxyalkanoate (PHA) synthase in the cells correlates with PHB accumulation. PHA synthase samples collected during the light period do not show a lag phase during in vitro polymerization. Synthase samples collected in the dark period displays a significant lag phase during in vitro polymerization. The lag phase can be eliminated by reacting the PHA synthase with the monomer, 3-hydroxybutyryl-CoA (3HBCoA). The PHA synthase genes (phaC and phaE) were cloned by screening a genomic library for PHA accumulation in E. coli cells. The PHA synthase expressed in the recombinant E. coli cells was purified to homogeneity. Both sequence analysis and biochemical studies indicated that this PHA synthase consists of two subunits, PhaE and PhaC and, therefore, belongs to the type III PHA synthases. Two major complexes were identified in preparations of purified PHA synthase. The large complex appears to be composed of 12 PhaC subunits and 12 PhaE subunits (dodecamer), whereas the small complex appears to be composed of 6 PhaC and 6 PhaE subunits (hexamer). In dilute aqueous solution, the synthase is predominantly composed of hexamer and has low activity accompanied with a significant lag period at the initial stage of reaction. The percentage of dodecameric complex increases with increasing salt concentration. The dodecameric complex has a greatly increased specific activity for the polymerization of 3HBCoA and a negligible lag period. The results from in vitro polymerizations of 3HBCoA suggest that the PHA synthase from E. shaposhnikovii may catalyze a living polymerization and demonstrate that two PhaC and two PhaE subunits comprise a single catalytic site in the synthase complex.  相似文献   

16.
PHA synthase is the key enzyme involved in the biosynthesis of microbial polymers, polyhydroxyalkanoates (PHA). In this study, we created a hybrid library of PHA synthase gene with different crossover points by an incremental truncation method between the C-terminal fragments of the phaC(Cn) (phaC from Cupriavidus necator) and the N-terminal fragments of the phaC1(Pa) (phaC from Pseudomonas aeruginosa). As the truncation of the hybrid enzyme increased, the in vivo PHB synthesis ability of the hybrids declined gradually. PHA synthase PhaC(Cn) with a deletion on N-terminal up to 83 amino acid residues showed no synthase activity. While with the removal of up to 270 amino acids from the N-terminus, the activity of the truncated PhaC(Cn) could be complemented by the N-terminus of PhaC1(Pa). Three of the hybrid enzymes W188, W235 and W272 (named by the deleted nucleic acid number) were found to have altered product specificities.  相似文献   

17.
Paracoccus denitrificans degraded poly(3-hydroxybutyrate) (PHB) in the cells under carbon source starvation. Intracellular poly(3-hydroxyalkanoate) (PHA) depolymerase gene (phaZ) was identified near the PHA synthase gene (phaC) of P. denitrificans. Cell extract of Escherichia coli carrying lacZ--phaZ fusion gene degraded protease-treated PHB granules. Reaction products were thought to be mainly D(--)-3-hydroxybutyrate (3HB) dimer and 3HB oligomer. Diisopropylfluorophosphonate and Triton X-100 exhibited an inhibitory effect on the degradation of PHB granules. When cell extract of the recombinant E. coli was used, Mg(2+) ion inhibited PHB degradation. However, the inhibitory effect by Mg(2+) ion was not observed using the cell extract of P. denitrificans.  相似文献   

18.
NADPH-dependent acetoacetyl-coenzyme A (acetoacetyl-CoA) reductase (PhaB) is a key enzyme in the synthesis of poly(3-hydroxybutyrate) [P(3HB)], along with β-ketothiolase (PhaA) and polyhydroxyalkanoate synthase (PhaC). In this study, PhaB from Ralstonia eutropha was engineered by means of directed evolution consisting of an error-prone PCR-mediated mutagenesis and a P(3HB) accumulation-based in vivo screening system using Escherichia coli. From approximately 20,000 mutants, we obtained two mutant candidates bearing Gln47Leu (Q47L) and Thr173Ser (T173S) substitutions. The mutants exhibited kcat values that were 2.4-fold and 3.5-fold higher than that of the wild-type enzyme, respectively. In fact, the PhaB mutants did exhibit enhanced activity and P(3HB) accumulation when expressed in recombinant Corynebacterium glutamicum. Comparative three-dimensional structural analysis of wild-type PhaB and highly active PhaB mutants revealed that the beneficial mutations affected the flexibility around the active site, which in turn played an important role in substrate recognition. Furthermore, both the kinetic analysis and crystal structure data supported the conclusion that PhaB forms a ternary complex with NADPH and acetoacetyl-CoA. These results suggest that the mutations affected the interaction with substrates, resulting in the acquirement of enhanced activity.  相似文献   

19.
Poly(3-hydroxybutyrate) (PHB) synthase (PhaC1) is the key enzyme of PHB synthesis in Ralstonia eutropha and other PHB-accumulating bacteria and catalyzes the polymerization of 3-hydroxybutyryl-CoA to PHB. Activity assays of R. eutropha PHB synthase are characterized by the presence of lag phases and by low specific activity. It is assumed that the lag phase is caused by the time necessary to convert the inactive PhaC1 monomer into the active dimeric form by an unknown priming process. The lag phase can be reduced by addition of nonionic detergents such as hecameg [6-O-(N-heptyl-carbamoyl)-methyl-α-d-glucopyranoside], which apparently accelerates the formation of PhaC1 dimers. We identified the PHB granule-associated protein (PGAP) PhaM as the natural primer (activator) of PHB synthase activity. PhaM was recently discovered as a novel type of PGAP with multiple functions in PHB metabolism. Addition of PhaM to PHB synthase assays resulted in immediate polymerization of 3HB coenzyme A with high specific activity and without a significant lag phase. The effect of PhaM on (i) PhaC1 activity, (ii) oligomerization of PhaC1, (iii) complex formation with PhaC1, and (iv) PHB granule formation in vitro and in vivo was shown by cross-linking experiments of purified proteins (PhaM, PhaC1) with glutardialdehyde, by size exclusion chromatography, and by fluorescence microscopic detection of de novo-synthesized PHB granules.  相似文献   

20.
Atomic force microscopy (AFM) was used to study the formation and growth of poly[(R)-3-hydroxybutyrate] (PHB) structures formed in the enzymatic polymerization of (R)-3-hydroxybutyryl coenzyme A [(R)-3-HBCoA] in vitro. Poly(3-hydroxyalkanoate) (PHA) synthase (PhaC(Re)) from Ralstonia eutropha, a class I synthase, was purified by one-step purification and then used for in vitro reactions. Before the reaction, PhaC(Re) molecules were deposited on highly oriented pyrolytic graphite (HOPG) and observed as spherical particles with an average height of 2.7 +/- 0.6 nm and apparent width of 24 +/- 3 nm. AFM analysis during the initial stage of the reaction, that is, after a small amount of (R)-3-HBCoA had been consumed, showed that the enzyme molecules polymerize (R)-3-HBCoA and form flexible 3HB polymer chains that extend from the enzyme particles, resulting in the formation of an enzyme-nascent PHB conjugate. When a sufficient amount of (R)-3-HBCoA was used as substrate, the reaction rapidly increased after the first minute followed by a slow increase in rate, and substrate was completely consumed after 4 min. After 4 min, spherical granules continued to grow in size to form clusters over 10 um in width, and in later stages of cluster formation, the cluster developed small projections with a size of approximately 100-250 nm, suggesting qualitative changes of the PHB clusters. Moreover, the high-resolution AFM images suggested that globular structures of approximately 20-30 nm apparent width, which corresponds to the size of PhaC(Re), were located on the surface of the small PHB granule particles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号