首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Severe inflammation and mucus overproduction are partially responsible for respiratory syncytial virus (RSV)-induced disease in infants. Using a murine model, we characterized the virally induced chemokine receptors responsible for mediating the pathophysiological response to RSV infection, we found that CXCR2 mRNA was induced at 4 days after RSV infection. Immunohistochemical staining demonstrated that CXCR2 protein was expressed on alveolar macrophages. Immunoneutralization of CXCR2 resulted in decreased airway hyperreactivity relative to the RSV-infected controls. In addition, there was decreased mucus in the bronchoalveolar lavage fluid, decreased periodic-acid Schiff staining, and significantly less mucus-associated gob-5 mRNA and protein in anti-CXCR2-treated mice. The effects of anti-CXCR2 treatment were not a result of differences in viral clearance or neutrophil influx, as these parameters were comparable in both groups of animals. To confirm our immunoneutralization studies, we performed experiments in CXCR2(-/-) mice. Results in CXCR2(-/-) mice recapitulated results from our immunoneutralization studies. However, CXCR2(-/-) mice also showed a statistically significant decrease in muc5ac, relative to RSV-infected wild-type animals. Thus, CXCR2 may be a relevant target in the pathogenesis of RSV bronchiolitis, since it contributes to mucus production and airway hyperreactivity in our model of RSV infection.  相似文献   

2.
Mucus clearance is an important airway innate defense mechanism. Airway-targeted overexpression of the epithelial Na(+) channel β-subunit [encoded by sodium channel nonvoltage gated 1, beta subunit (Scnn1b)] in mice [Scnn1b-transgenic (Tg) mice] increases transepithelial Na(+) absorption and dehydrates the airway surface, which produces key features of human obstructive lung diseases, including mucus obstruction, inflammation, and air-space enlargement. Because the first Scnn1b-Tg mice were generated on a mixed background, the impact of genetic background on disease phenotype in Scnn1b-Tg mice is unknown. To explore this issue, congenic Scnn1b-Tg mice strains were generated on C57BL/6N, C3H/HeN, BALB/cJ, and FVB/NJ backgrounds. All strains exhibited a two- to threefold increase in tracheal epithelial Na(+) absorption, and all developed airway mucus obstruction, inflammation, and air-space enlargement. However, there were striking differences in neonatal survival, ranging from 5 to 80% (FVB/NJ相似文献   

3.
Murine models of allergic lung disease have many similar traits to asthma in humans and can be used to investigate mechanisms of allergic sensitization and susceptibility factors associated with disease severity. The purpose of this study was to determine strain differences in allergic airway inflammation, immunoglobulin production, and changes in respiratory responses between systemic and mucosal sensitization routes in BALB/cJ, FVB/NJ, and C57BL/6J, and to provide correlations between immune and pathophysiological endpoints. After a single intranasal ovalbumin (OVA) challenge, all three strains of mice systemically sensitized with OVA and adjuvant exhibited higher airflow limitation than non-sensitized mice. No changes were seen in mice that were pre-sensitized via the nose with OVA. Systemic sensitization resulted in an elevated response to methacholine (MCH) in BALB/cJ and FVB/NJ mice and elevated total and OVA-specific IgE levels and pulmonary eosinophils in all three strains. The mucosal sensitization and challenge produced weaker responses in the same general pattern with the C57BL/6J strain producing less serum IgE, IL5, IL13, and eosinophils in lung fluid than the other two strains. The converse was found for IL6 where the C57BL/6J mice had more than twice the amount of this cytokine. The results show that the FVB/NJ and BALB/cJ mice are higher Th2-responders than the C57BL/6J mice and that the levels of pulmonary eosinophilia and cytokines did not fully track with MCH responsiveness. These differences illustrate the need to assess multiple endpoints to provide clearer associations between immune responses and type and severity of allergic lung disease.  相似文献   

4.
The detection of a viral infection by pattern recognition receptors (PAMPs) is an integral part of antiviral immunity. In these studies we have investigated the role of TLR3, which recognizes dsRNA, in Respiratory Syncytial virus (RSV) infection using B6 background mice with a TLR3 deletion. Although we observed no changes in viral growth, we did find that TLR3-/- mice demonstrated significant increases in mucus production in the airways of RSV-infected mice. The qualitative assessment was observed by examining differentially stained lungs, followed by immunohistochemical staining for gob5, a mucus-associated protein. The histopathologic observations were verified using quantitative gene expression analyses examining gob5 gene expression. Changes in pulmonary mucus production were accompanied by an increase in pulmonary IL-13 as well as IL-5 expression and eosinophils in the airways of TLR3-/- mice. Examining leukocytes in the airway indicated an accumulation of eosinophils in TLR3-/- mice, but not wild-type mice, after RSV infection. Isolated lung draining lymph node cells from TLR3-/- mice produced significant increases in Th2-type cytokines, IL-5, and IL-13, compared with wild-type TLR3+/+ mice only after RSV infection. To demonstrate a causative link, we depleted TLR3-/- mice of IL-13 during RSV infection and found that mucus and gob5 expression in the lungs was attenuated. Together, these studies highlight that although TLR3 may not be required for viral clearance, it is necessary to maintain the proper immune environment in the lung to avoid developing pathologic symptoms of disease.  相似文献   

5.
Clara cell secretory protein (CCSP) has been shown to have anti-inflammatory and immunomodulatory functions in the lung. Respiratory syncytial virus (RSV) is the most common cause of respiratory infection in infants and young children. RSV usually infects small airways and likely interacts with the Clara cells of bronchioles. To determine a possible role for CCSP during acute RSV infection, CCSP-deficient (CCSP(-/-)) and wild-type (WT) mice were intratracheally infected with RSV and the lung inflammatory and immune responses to RSV infection were assessed. RSV-F gene expression was increased in the lungs of CCSP(-/-) mice as compared with WT mice following RSV infection, consistent with increased viral persistence. Lung inflammation was significantly increased in CCSP(-/-) mice as compared with WT mice after infection. Moreover, although the levels of Th1 cytokines were similar, the levels of Th2 cytokines and neutrophil chemokines were increased in the lungs of CCSP(-/-) mice following infection. Physiologic endpoints of exacerbated lung disease, specifically airway reactivity and mucus production, were increased in CCSP(-/-) mice after RSV infection. Importantly, restoration of CCSP in the airways of CCSP(-/-) mice abrogated the increased viral persistence, lung inflammation, and airway reactivity. These findings suggest a role for CCSP and Clara cells in regulating lung inflammatory and immune responses to RSV infection.  相似文献   

6.
Each year, approximately 20% of asthmatics in the United States experience acute symptom exacerbations, which commonly result from pulmonary viral infections. The majority of asthma exacerbations in very young children follow infection with respiratory syncytial virus (RSV). However, pathogenic mechanisms underlying induction of asthma exacerbations by RSV are not well understood. We therefore investigated the effect of post-sensitization RSV infection on lung function in ovalbumin (OVA)-sensitized BALB/c mice as a model of RSV asthma exacerbations. OVA sensitization of uninfected female BALB/c mice increased bronchoalveolar lavage fluid (BALF) eosinophil levels and induced airway hyperresponsiveness to the muscarinic agonist methacholine, as measured by the forced-oscillation technique. In contrast, intranasal infection with replication-competent RSV strain A2 for 2–8 days reduced BALF eosinophil counts and reversed airway hyperresponsiveness in a pertussis toxin-sensitive manner. BALF levels of the chemokine keratinocyte cytokine (KC; a murine homolog of interleukin-8) were elevated in OVA-sensitized, RSV-infected mice and reversal of methacholine hyperresponsiveness in these animals was rapidly inhibited by KC neutralization. Hyporesponsiveness could be induced in OVA-sensitized, uninfected mice by recombinant KC or the Gαi agonist melittin. These data suggest that respiratory syncytial virus induces KC-mediated activation of Gαi, resulting in cross-inhibition of Gαq-mediated M3-muscarinic receptor signaling and reversal of airway hyperresponsiveness. As in unsensitized mice, KC therefore appears to play a significant role in induction of airway dysfunction by respiratory syncytial virus. Hence, interleukin-8 may be a promising therapeutic target to normalize lung function in both asthmatics and non-asthmatics with bronchiolitis. However, the OVA-sensitized, RSV-infected mouse may not be an appropriate model for investigating the pathogenesis of viral asthma exacerbations.  相似文献   

7.
Airway damage and hyperreactivity induced during respiratory syncytial virus (RSV) infection can have a prolonged effect in infants and young children. These infections can alter the long-term function of the lung and may lead to severe asthma-like responses. In these studies, the role of IL-13 in inducing and maintaining a prolonged airway hyperreactivity response was examined using a mouse model of primary RSV infection. Using this model, there was evidence of significant airway epithelial cell damage and sloughing, along with mucus production. The airway hyperreactivity response was significantly increased by 8 days postinfection, peaked during days 10-12, and began to resolve by day 14. When the local production of Th1- and Th2-associated cytokines was examined, there was a significant increase, primarily in IL-13, as the viral response progressed. Treatment of RSV-infected mice with anti-IL-13 substantially inhibited airway hyperreactivity. Anti-IL-4 treatment had no effect on the RSV-induced responses. Interestingly, when IL-13 was neutralized, an early increase in IL-12 production was observed within the lungs, as was a significantly lower level of viral Ags, suggesting that IL-13 may be regulating an important antiviral pathway. The examination of RSV-induced airway hyperreactivity in STAT6(-/-) mice demonstrated a significant attenuation of the response, similar to the anti-IL-13 treatment. In addition, STAT6(-/-) mice had a significant alteration of mucus-producing cells in the airway. Altogether, these studies suggest that a primary factor leading to chronic RSV-induced airway dysfunction may be the inappropriate production of IL-13.  相似文献   

8.
Zhao J  Zhu H  Wong CH  Leung KY  Wong WS 《Proteomics》2005,5(11):2799-2807
Asthma is a chronic inflammatory disease characterized by pulmonary eosinophilia and airway hyperresponsiveness. Mechanisms underlying the pathogenesis of asthma are still not fully understood. The present study investigated alterations in global protein expression in bronchoalveolar lavage fluid in allergic airway inflammation using a proteomics approach. BALB/c mice sensitized and challenged with ovalbumin developed airway eosinophilia, mucus hypersecretion, elevation of immunoglobulin E, and airway hyperresponsiveness. Lavage fluid proteins from normal and asthmatic mice were resolved by two-dimensional gel electrophoresis, and identified by peptide mass fingerprinting matrix-assisted laser desorption/ionization-time of flight mass spectrometry. A total of 28 protein spots were significantly altered. Several of these proteins were undetectable or at very low levels in normal mice but were significantly increased in airway inflammation. These include lungkine, a recently described chemokine, a family of chitinases including Ym1, Ym2, and acidic mammalian chitinase, gob-5, a protein that mediates mucus secretion, and surfactant protein-D, a C-type lectin capable of modulating inflammatory responses. Overall, proteomics is a powerful tool in unraveling protein expression changes in allergic airway inflammation. The proteins identified in this study may be associated with the pathogenesis of allergic airway inflammation and may also be found useful as surrogate biomarkers for asthma.  相似文献   

9.
Interleukin (IL-) 10 is a pleiotropic cytokine with broad immunosuppressive functions, particularly at mucosal sites such as the intestine and lung. Here we demonstrate that infection of BALB/c mice with respiratory syncytial virus (RSV) induced IL-10 production by CD4(+) and CD8(+) T cells in the airways at later time points (e.g. day 8); a proportion of these cells also co-produced IFN-γ. Furthermore, RSV infection of IL-10(-/-) mice resulted in more severe disease with enhanced weight loss, delayed recovery and greater cell infiltration of the respiratory tract without affecting viral load. In addition, IL-10(-/-) mice had a pronounced airway neutrophilia and heightened levels of pro-inflammatory cytokines and chemokines in the bronchoalveolar lavage fluid. Notably, the proportion of lung T cells producing IFN-γ was enhanced, suggesting that IL-10 may act in an autocrine manner to dampen effector T cell responses. Similar findings were made in mice treated with anti-IL-10R antibody and infected with RSV. Therefore, IL-10 inhibits disease and inflammation in mice infected with RSV, especially during recovery from infection.  相似文献   

10.

Background

Respiratory syncytial virus (RSV) is the number one cause of lower respiratory tract infection in infants; and severe RSV infection in infants is associated with asthma development. Today, there are still no vaccines or specific antiviral therapies against RSV. The mechanisms of RSV pathogenesis in infants remain elusive. This is partly due to the fact that the largely-used mouse model is semi-permissive for RSV. The present study sought to determine if a better neonatal mouse model of RSV infection could be obtained using a chimeric virus in which the F protein of A2 strain was replaced with the F protein from the line 19 clinical isolate (rA2-19F).

Methods

Five-day-old pups were infected with the standard laboratory strain A2 or rA2-19F and various immunological and pathophysiological parameters were measured at different time points post infection, including lung histology, bronchoalveolar lavage fluid (BALF) cellularity and cytokines, pulmonary T cell profile, and lung viral load. A cohort of infected neonates were allowed to mature to adulthood and reinfected. Pulmonary function, BALF cellularity and cytokines, and T cell profiles were measured at 6 days post reinfection.

Results

The rA2-19F strain in neonatal mice caused substantial lung pathology including interstitial inflammation and airway mucus production, while A2 caused minimal inflammation and mucus production. Pulmonary inflammation was characterized by enhanced Th2 and reduced Th1 and effector CD8+ T cells compared to A2. As with primary infection, reinfection with rA2-19F induced similar but exaggerated Th2 and reduced Th1 and effector CD8+ T cell responses. These immune responses were associated with increased airway hyperreactivity, mucus hyperproduction and eosinophilia that was greater than that observed with A2 reinfection. Pulmonary viral load during primary infection was higher with rA2-19F than A2.

Conclusions

Therefore, rA2-19F caused enhanced lung pathology and Th2 and reduced effector CD8+ T cell responses compared to A2 during initial infection in neonatal mice and these responses were exacerbated upon reinfection. The exact mechanism is unknown but appears to be associated with increased pulmonary viral load in rA2-19F vs. A2 infected neonatal lungs. The rA2-19F strain represents a better neonatal mouse model of RSV infection.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-015-0244-0) contains supplementary material, which is available to authorized users.  相似文献   

11.
Respiratory syncytial virus (RSV) is a prominent cause of airway morbidity in children under 1 yr of age. It is assumed that host factors influence the severity of the disease presentation and thus the need for hospitalization. As a first step toward the identification of the underlying genes involved, this study was undertaken to establish whether inbred mouse strains differ in susceptibility to pneumonia virus of mice (PVM), the murine counterpart of RSV, which has been shown to accurately mimic the RSV disease of children. With this purpose in mind, double-chamber plethysmography and carbon monoxide uptake data were collected daily for 7 days after inoculation of PVM in six inbred strains of mice. In parallel, histological examinations and lung viral titration were carried out from day 5 to day 7 after inoculation. Pulmonary structure/function values reflected the success of viral replication in the lungs and revealed a pattern of continuous variation, with resistant, intermediate, and susceptible strains. The results suggest that SJL (resistant) and 129/Sv (susceptible) strains should be used in crossing experiments aimed at identifying genes controlling pneumovirus replication by the positional cloning approach. Similarly, crossing experiments using BALB/c or C57BL/6 (resistant) and DBA/2 or 129/Sv (susceptible) will allow the identification of the genes involved in the control of pulmonary inflammation during pneumovirus infection.  相似文献   

12.
In aquatic birds, influenza A viruses mainly replicate in the intestinal tract without significantly affecting the health of the host, but in mammals, they replicate in the respiratory tract and often cause disease. Occasionally, influenza viruses have been detected in stool samples of hospitalized patients and in rectal swabs of naturally or experimentally infected mammals. In this study, we compared the biological and molecular differences among four wild-type avian H1N1 influenza viruses and their corresponding fecal and lung isolates in DBA/2J and BALB/cJ mice. All fecal and lung isolates were more pathogenic than the original wild-type viruses, when inoculated into mice of both strains. The increased virulence was associated with the acquisition of genetic mutations. Most of the novel genotypes emerged as PB2E627K, HAF128V, HAF454L, or HAH300P variations, and double mutations frequently occurred in the same isolate. However, influenza virus strain- and host-specific differences were also observed in terms of selected variants. The avian H1N1 virus of shorebird origin appeared to be unique in its ability to rapidly adapt to BALB/cJ mice via the fecal route, compared to the adaptability of the H1N1 virus of mallard origin. Furthermore, a bimodal distribution in fecal shedding was observed in mice infected with the fecal isolates, while a normal distribution was observed after infection with the lung isolates or wild-type virus. Fecal isolates contained HA mutations that increased the activation pH of the HA protein. We conclude that influenza virus variants that emerge in fecal isolates in mammals might influence viral transmission, adaptation to mammals, and viral ecology or evolution.  相似文献   

13.
Respiratory syncytial virus (RSV) is a ubiquitous virus that preferentially infects airway epithelial cells, causing asthma exacerbations and severe disease in immunocompromised hosts. Acute RSV infection induces inflammation in the lung. Thymus- and activation-regulated chemokine (TARC) recruits Th2 cells to sites of inflammation. We found that acute RSV infection of BALB/c mice increased TARC production in the lung. Immunization of BALB/c mice with individual RSV proteins can lead to the development of Th1- or Th2-biased T cell responses in the lung after RSV infection. We primed animals with a recombinant vaccinia virus expressing either the RSV fusion (F) protein or the RSV attachment (G) protein, inducing Th1- and Th2-biased pulmonary memory T cell responses, respectively. After RSV infection, TARC production significantly increased in the vaccinia virus G-primed animals only. These data suggest a positive feedback loop for TARC production between RSV infection and Th2 cytokines. RSV-infected lung epithelial cells cultured with IL-4 or IL-13 demonstrated a marked increase in the production of TARC. The synergistic effect of RSV and IL-4/IL-13 on TARC production reflected differential induction of NF kappa B and STAT6 by the two stimuli (both are in the TARC promoter). These findings demonstrate that RSV induces a chemokine TARC that has the potential to recruit Th2 cells to the lung.  相似文献   

14.
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis and viral death in infants. Reduced CD8 T-cells and negligible interferon gamma (IFNγ) in the airway are associated with severe infant RSV disease, yet there is an abundance of alveolar macrophages (AM) and neutrophils. However, it is unclear, based on our current understanding of macrophage functional heterogeneity, if immature AM improve viral clearance or contribute to inflammation and airway obstruction in the IFNγ-deficient neonatal lung environment. The aim of the current study was to define the age-dependent AM phenotype during neonatal RSV infection and investigate their differentiation to classically activated macrophages (CAM) using i.n. IFNγ in the context of improving viral clearance. Neonatal and adult BALB/cJ mice were infected with 1×10(6) plaque forming units (PFU)/gram (g) RSV line 19 and their AM responses compared. Adult mice showed a rapid and robust CAM response, indicated by increases in major histocompatibility complex class II (MHC II), CD86, CCR7, and a reduction in mannose receptor (MR). Neonatal mice showed a delayed and reduced CAM response, likely due to undetectable IFNγ production. Intranasal (i.n.) treatment with recombinant mouse IFNγ (rIFNγ) increased the expression of CAM markers on neonatal AM, reduced viral lung titers, and improved weight gain compared to untreated controls with no detectable increase in CD4 or CD8 T-cell infiltration. In vitro infection of J774A.1 macrophages with RSV induced an alternatively activated macrophage (AAM) phenotype however, when macrophages were first primed with IFNγ, a CAM phenotype was induced and RSV spread to adjacent Hep-2 cells was reduced. These studies demonstrate that the neonatal AM response to RSV infection is abundant and immature, but can be exogenously stimulated to express the antimicrobial phenotype, CAM, with i.n. rIFNγ.  相似文献   

15.
We investigated the development of airway hyperreactivity (AHR) and inflammation in the lungs of nine genetically diverse inbred strains of mice [129/SvIm, A/J, BALB/cJ, BTBR+(T)/tf/tf, CAST/Ei, C3H/HeJ, C57BL/6J, DBA/2J, and FVB/NJ] after sensitization and challenge with ovalbumin (OVA). At 24, 48, and 72 h post-OVA exposure, the severity of AHR and eosinophilic inflammation of the mouse strains ranged from relatively unresponsive to responsive. The severity of the airway eosinophilia of some strains did not clearly correlate with the development of AHR. The temporal presence of T helper type 2 cytokines in lung lavage fluid also varied markedly among the strains. The levels of IL-4 and IL-13 were generally increased in the strains with the highest airway eosinophilia at 24 and 72 h postexposure, respectively; the levels of IL-5 were significantly increased in most of the strains with airway inflammation over the 72-h time period. The differences of physiological and biological responses among the inbred mouse strains after OVA sensitization and challenge support the hypothesis that genetic factors contribute, in part, to the development of allergen-induced airway disease.  相似文献   

16.
17.
Respiratory syncytial virus (RSV) infection in early life is suspected to play a role in the development of post-bronchiolitis wheezing and asthma. Reinfection is common at all ages, but factors that determine the development of altered airway function after reinfection are not well understood. This study was conducted in a mouse model to define the role of age in determining the consequences on airway function after reinfection. Mice were infected shortly after birth or at weaning and were reinfected 5 wk later, followed by assessment of airway function, airway inflammation, and lung histopathology. Infection of mice at weaning elicited a protective airway response upon reinfection. In this age group, reinfection resulted in increased airway inflammation, but without development of airway hyperresponsiveness (AHR) or eosinophilia and decreased IL-13 levels. By contrast, neonatal infection failed to protect the airways and resulted in enhanced AHR after reinfection. This secondary response was associated with the development of airway eosinophilia, increased IL-13 levels, and mucus hyperproduction. Both CD4- and CD8-positive T cells were a source of IL-13 in the lung, and inhibition of IL-13 abolished AHR and mucus production in these mice. Inoculation of UV-inactivated virus failed to elicit these divergent responses to reinfection, emphasizing the requirement for active lung infection during initial exposure. Thus, neonatal RSV infection predisposes to the development of airway eosinophilia and enhanced AHR via an IL-13-dependent mechanism during reinfection, whereas infection at a later age protects against the development of these altered airway responses after reinfection.  相似文献   

18.
The role of chemokines in chronic inflammatory responses are central to the recruitment of particular subsets of leukocytes. In the present studies, we have examined the role of CCR1 in the developing pathogenesis of respiratory syncytial virus (RSV) in the lungs of infected BALB/c mice. Although we did not observe significant differences in clearance of RSV, we were able to identify decreased pathophysiologic responses in CCR1(-/-) mice. CCR1(-/-) mice displayed a significant reduction in both airway hyperresponsiveness and mucus production that corresponded to significant increases in IFN-gamma and CXCL10. The goblet cell hyper/metaplasia and the expression of mucus-associated gene, gob5, were correspondingly reduced in the CCR1(-/-) mice. In addition, the Western blot analysis of gob5 protein indicated that CCR1(-/-) mice have virtually no up-regulation of the protein at day 6 of infection compared with wild-type-infected mice. Results from bone marrow chimeric mice indicated that partial reconstitution of the response could be achieved in the CCR1(-/-) mice with wild-type bone marrow cells, suggesting that these cells have a role in the response. However, transplanting of CCR1(-/-) bone marrow into wild-type mice did demonstrate an incomplete deficit in RSV-induced responses, indicating that CCR1(+) parenchymal cells may also play a significant role in the process. Thus, the presence of CCR1 appears to have a significant role in the development of detrimental airway physiologic responses during RSV infection. These data suggest that CCR1 may be a potential target during detrimental pulmonary responses during infection.  相似文献   

19.
Antibody responses to the 18-kDa protein of Mycobacterium leprae have been analyzed in different strains of mice. High, intermediate, and low responder strains have been identified and these response patterns show clear linkage to genes encoded in the H-2 complex. Three peptides, residues 1-50, 51-100, and 101-148 have been synthesized, as well as a series of 20-mer peptides, which span the entire 18-kDa protein. Repeated immunization of different strains of mice with the 18-kDa protein resulted in IgG responses to epitopes found on all three synthetic peptides. Immunization of BALB/cJ and B10.BR mice, two high responder strains, with 18-kDa protein resulted in high levels of IgG antibody to epitopes found on peptides 1-20, 16-35, 31-50, 46-65, and 76-95. B10.BR mice also contained IgG that bound peptide 61-80 and BALB/cJ mice produced IgG that bound peptide 91-110. Although B10.BR mice produced IgG that bound the 50-mer peptide 101-148, this IgG was not detected by binding to peptides 91-110, 106-125, 121-140, and 131-148. Immunization of B10.BR mice with individual overlapping 20-mer peptides as Ag revealed that peptides 1-20, 16-35, 31-50, and 76-95 elicited high titers of IgG that bound both the immunizing peptide as well as 18-kDa protein. As these peptides induce antibody synthesis they must contain both B cell and T cell epitopes. By contrast, immunization of BALB/cJ mice with the same 20-mer peptides, all of which contain B cell epitopes for this strain, failed to elicit IgG responses with one exception. Peptide 91-110 induced IgG that bound peptide 91-110, but not the intact 18-kDa protein. We conclude that peptides 1-20, 16-35, 31-50, and 76-95 either lack T cell epitopes for BALB/cJ mice, or activate different T cell subpopulations in the two strains. We suggest that the induction of IgG responses to small peptide Ag is an in vivo assay of the activity of Th2 cell subpopulations.  相似文献   

20.
Recent studies link early rhinovirus (RV) infections to later asthma development. We hypothesized that neonatal RV infection leads to an IL-13-driven asthma-like phenotype in mice. BALB/c mice were inoculated with RV1B or sham on day 7 of life. Viral RNA persisted in the neonatal lung up to 7 d postinfection. Within this time frame, IFN-α, -β, and -γ peaked 1 d postinfection, whereas IFN-λ levels persisted. Next, we examined mice on day 35 of life, 28 d after initial infection. Compared with sham-treated controls, virus-inoculated mice demonstrated airways hyperresponsiveness. Lungs from RV-infected mice showed increases in several immune cell populations, as well as the percentages of CD4-positive T cells expressing IFN-γ and of NKp46/CD335(+), TCR-β(+) cells expressing IL-13. Periodic acid-Schiff and immunohistochemical staining revealed mucous cell metaplasia and muc5AC expression in RV1B- but not sham-inoculated lungs. Mucous metaplasia was accompanied by induction of gob-5, MUC5AC, MUC5B, and IL-13 mRNA. By comparison, adult mice infected with RV1B showed no change in IL-13 expression, mucus production, or airways responsiveness 28 d postinfection. Intraperitoneal administration of anti-IL-13 neutralizing Ab attenuated RV-induced mucous metaplasia and methacholine responses, and IL-4R null mice failed to show RV-induced mucous metaplasia. Finally, neonatal RV increased the inflammatory response to subsequent allergic sensitization and challenge. We conclude that neonatal RV1B infection leads to persistent airways inflammation, mucous metaplasia, and hyperresponsiveness, which are mediated, at least in part, by IL-13.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号